

PLANTX

PLAnar NTd-Ge microcalorimeter array for hard X-rays

Ugo Lo Cicero Osservatorio Astronomico di Palermo locicero@astropa.inaf.it

Proposta MIS-19 in risposta al bando ASI-INAF "Attività di studio per la comunità scientifica di astrofisica delle alte energie e fisica astro-particellare"

Outline

Solar physics

Yohkoh X-ray Image of a Solar Flare, Combined Image in Soft X-rays (left) and Soft X-rays with Hard X-ray Contours (right). Jan 13, 1992.

Solar physics

Schematic model of a solar flare [Priest & Forbes 2002]

Hot plasma fills closed magnetic channels (soft X-ray emission) then the plasma slowly cools down and drains to the surface; accelerated electrons hit dense solar surface (hard X-ray emission)

Solar physics

Typical flare spectra are fit by a thermal component at temperatures >10 MK and a non-thermal one. The flare explosions accelerate electrons up to hundreds of MeV and ions up to tens of GeV.

Example of flare spectrum well-observed by RHESSI and related fitting with a thermal (red) and a non-thermal (blue) component. The low thin line is the background [Krucker+ 2007]

Solar physics – hard X-ray missions

1 keV FWHM resolution:

- appropriate to constrain the general features of the nonthermal component of the solar emission, e.g. the slope of the power law
- does not allow to distinguish any possible deviation from the envelope trend, nor to resolve any possible spectral line, which might come from highly ionized heavy elements.

Mission idea

Cooling needed: a commercial ADR, not optimized for flight, weights about 90 kg.

A balloon borne experiment could validate the technology while also providing scientific data.

Microcalorimeters for X-ray detection

ΔT: temperature incrementEph: photon energyC: heat capacity

NTD-Ge microcalorimeters

Technology advantages:

- Robust & reliable
- Low sensitivity to static magnetic fields
- Easily usable in a wide temperature range
- Wide dynamic energy range
- Simple electronics

Project aim: increment NTD-Ge array TRL from 3 to 4

Fabrication process for soft X-rays

Collaborations:

- Dep. Of Physics and Chemistry, UNIPA
- Harvard-Smithsonian Center for Astrophysics (USA)
- CEA (France)
- Centre de Nanosciences et de Nanotechnologies (France)

U. Lo Cicero, et al., 17th Int. Workshop on Low Temp. Detectors - LTD17, Kurume, JP, 17-21 July (2017)
U. Lo Cicero, et al., J. of low temperature physics 167, 3-4, 535-540 (2012)
U. Lo Cicero, et al., J. of Low Temperature Physics, 167, 3-4, 541-546 (2012)
U. Lo Cicero, et al., AIP Conf. Proc., 13th Int. Workshop on Low Temp. Detectors - LTD13, 1185, 112–114 (2009)
U. Lo Cicero, et al., IEEE NSS Conference Record, pp. 1789–1792 (2008)

Absorbers

Electroplating:

- Thick
- Uniform
- Uniform thermal contact

Sensor contacts

Project timeline > Project costs

Bonding with substrate

Bonding with substrate

Integration

- All the technological steps have been specifically developed or they are commonly employed in other fields.
- They all have to be integrated to fabricate a laboratory prototype.
- Adaptations needed for the integration are planned, but still to be implemented and tested.

Hard X-rays detection

Optimization for hard X-rays detection:

Absorber

- □ Sensor parameters (geometry, doping)
- Thermal link

ABSORBERS

<u> Tin</u>

- Might be an option in range 30 keV 90 keV
- Superconductor: very low heat capacity
- Thermalization issues to be weighted

<u>Bismuth</u>

- Can be deposited by electroplating
- Presents a quite low heat capacity
- Not a superconductor: better thermalization

Others: deposition issues

Testing at low temperature is needed to develop and characterize the detector parts and the detector assembly.

Cryogenic electrical measurements performed at CEA, Paris, on a NTD-Ge sample (2016)

Low temperature testing

Liquid based ADR at OAPA

With liquid based ADR:

- impossibility to rearrange the experiment during the same cryogenic session
- low cooling power and reduced wiring
- very complex logistic to organize each session
- very high cost for each session
- strong logistic problems to organize more sessions in a row

Liquid-free cryostat is mandatory to allow for further development

With liquid-free ADR:

- cooling during the night
- several sessions per week feasible
- two sessions per week per two years repay the cost

Project timeline

Hard X-ray / gamma-ray sources

241-Americium, HL 432.2 y 90-Strontium, HL 28.8 y 137-Caesium, HL 30.2 y 60-Cobalt, HL 5.3 y 192-Iridium, 73.8 d

241-Am source [education.scichem.com]

241-Am gamma-ray spectrum measured with a CdTe detector [DrMattV at English Wikipedia]

Project timeline

Deliverables after one year:

Reports on technological processes developed to build an integrated hard X-ray detector array.

Deliverables at the conclusion of the project:

Reports on integration process, prototype array description and testing results. Flyer for outreach.

Personnel	12 month fellowship	24000€
Equipments	Liquid free cryostat, X-ray source	285000€
Consumables	NTD Ge, micro-photolitography consumables, electroplating solutions and electrodes, chemicals and glassware, SiN on Si, evaporation crucible liners and targets	
Travels	4x2 Italy, 4x2 Europe	13784€
Other	Metrology (SEM, optical 3D micro-profilometry, material analysis), services (germanium doping, flip-chip bonding, SiN/Si patterning and etching, wire bonding)	
TOTAL		357784 €

People – research unit

Name	Institute	Position
Ugo Lo Cicero	INAF – Osservatorio astronomico di Palermo	Technologist
Alfonso Collura	INAF – Osservatorio astronomico di Palermo	Astronomer researcher
Marco Barbera	UNIPA, INAF – Osservatorio astronomico di Palermo associate	Associate professor
Domenico Spoto	ASI, INAF – Osservatorio astronomico di Palermo associate	Senior technologist

Expertise and equipment available at OAPA XACT (X-ray Astronomy Calibration and Testing) facility enable project development.

- Micro-technologies
- Cryogenics
- X-ray instruments for astrophysics
- Vacuum technologies

Artwork Of The Solar Corona Based On X-ray Imagery is a photograph by Detlev Van Ravenswaay [fineartamerica]