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ABSTRACT
We present the first application of the extended Fast Action Minimization method (eFAM) to
a real dataset, the SDSS-DR12 Combined Sample, to reconstruct galaxies orbits back-in-time,
their two-point correlation function (2PCF) in real-space, and enhance the baryon acoustic
oscillation (BAO) peak. For this purpose, we introduce a new implementation of eFAM that
accounts for selection effects, survey footprint, and galaxy bias.
We use the reconstructed BAO peak to measure the angular diameter distance,

𝐷A (𝑧)𝑟fids /𝑟s, and the Hubble parameter, 𝐻 (𝑧)𝑟s/𝑟fids , normalized to the sound horizon
scale for a fiducial cosmology 𝑟fids , at the mean redshift of the sample 𝑧 = 0.38, obtaining
𝐷A (𝑧 = 0.38)𝑟fids /𝑟s = 1090 ± 29(Mpc)−1, and 𝐻 (𝑧 = 0.38)𝑟s/𝑟fids = 83 ± 3(km s−1 Mpc−1),
in agreement with previous measurements on the same dataset.
The validation tests, performed using 400 publicly available SDSS-DR12 mock cata-

logues, reveal that eFAM performs well in reconstructing the 2PCF down to separations of
∼ 25ℎ−1Mpc, i.e. well into the non-linear regime. Besides, eFAM successfully removes the
anisotropies due to redshift-space distortion (RSD) at all redshifts including that of the survey,
allowing us to decrease the number of free parameters in the model and fit the full-shape of the
back-in-time reconstructed 2PCF well beyond the BAO peak. Recovering the real-space 2PCF,
eFAM improves the precision on the estimates of the fitting parameters. When compared with
the no-reconstruction case, eFAM reduces the uncertainty of the Alcock-Paczynski distortion
parameters 𝛼⊥ and 𝛼‖ of about 40 per cent and that on the non-linear damping scale Σ‖ of
about 70 per cent.
These results show that eFAM can be successfully applied to existing redshift galaxy

catalogues and should be considered as a reconstruction tool for next-generation surveys
alternative to popular methods based on the Zel’dovich approximation.
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1 INTRODUCTION

Baryon acoustic oscillations (BAO) are one of the main cosmolog-
ical probes to investigate the nature of dark energy and search for
deviations from General Relativity on cosmological scales. For this
reason, they have been selected as primary science case of both
current spectroscopic surveys, such as WiggleZ (Drinkwater et al.
2009), the Baryon Oscillation Spectroscopic Survey (BOSS; Daw-
son et al. 2013), and its successor the extended Baryon Oscillation
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Spectroscopic Survey (eBOSS; Blanton et al. 2017), and future sur-
veys operated by the Dark Energy Spectroscopic Instrument (DESI;
DESI Collaboration et al. 2016), the ESA Euclid mission (Laureĳs
et al. 2011), and the RomanObservatory (Green et al. 2012). Thanks
to their wide sky coverage, all the new-generation surveys allows
the measurement of the acoustic scale with unprecedented accuracy.
However, to reach the ambitious goal of sub-per cent precision and
extract the maximum information from the non-linear scales, one
needs to pair the quality of observations with an accurate model of
the small-scale clustering. To this end, the use of highly-optimized
BAO reconstruction techniques able to minimise the non-linear ef-
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2 E. Sarpa et al.

fects that blur the acoustic feature and possibly trace the orbits of
galaxies backwards-in-time is nowadays an essential step of any
clustering analyses.

For the official SDSS-III/BOSS analysis, the Zel’dovich re-
construction technique (ZA; Eisenstein et al. 2007b; Padmanabhan
et al. 2012) has been successfully adopted, yielding a remarkable
improvement on the BAO measurements in both momentum (Beut-
ler et al. 2017) and configuration space (Alam et al. 2017). However,
the intrinsic linearity of the method prevents the accurate modelling
of redshift-space distortions (RSD), usually overestimating their
amplitude (Kazin et al. 2013), and limits the range of validity of the
recovered linear two-point correlation to relatively large separations
(Padmanabhan et al. 2009). Pursuing a more accurate description
of the real-space linear correlation function, new non-linear BAO
reconstruction techniques have been proposed. In particular, itera-
tive reconstruction techniques (e.g. Schmittfull et al. 2017; Hada &
Eisenstein 2018; Wang et al. 2017)) have attracted special attention
and have been successfully tested on 𝑁-body dark matter simula-
tions. Mao et al. (2020) proposed an innovative approach which
intends to recover the BAO signal using deep convolutional neural
networks. The extended Fast Action Minimization method (eFAM;
Sarpa et al. 2019), used in this work, is a variational reconstruction
method designed to recover the geodesics of the mass tracers via
minimization of the action of the system.

In this study, we present the first application of eFAM to spec-
troscopic data emphasising its distinctive capability to simultane-
ously recover the real-space correlation function at both the ob-
served and high redshift well into the mildly non-linear regime. To
fully exploit the non-linearity of eFAM, we apply the reconstruc-
tion on the lower redshift bin 0.2 < 𝑧 < 0.55 extracted from the
BOSS-DR12 Combined Sample, which is mostly affected by non-
linear clustering. Finally, we measure the expansion rate 𝐻 (𝑧) and
the angular diameter distance 𝐷A (𝑧) before and after reconstruction
using the clustering wedges (Kazin et al. 2012).

The paper is organized as follows. In Section 2 we illustrate the
new features of the eFAM algorithm accounting for masked regions,
fibres collision, flux selection, and galaxy bias, as required for the
application towide-field,massive spectroscopic galaxy surveys. The
BOSS-DR12 data and the mocks employed to test the method and
build the covariance matrix are illustrated in Section 3. In Section 4
we describe the statistical tools used in the analysis, and motivate
the choice of the fiducial fitting procedure in Section 5. We study
the systematic behaviour of eFAM by reconstructing 400 realistic
mocks in Section 6, and analyse SDSS data in Section 7. In Section 8
we discuss the main points of our study and present our conclusions.

2 eFAM FOR REAL GALAXY SURVEYS

The eFAM method, described in details in Sarpa et al. (2019),
reconstructs the full-orbit of 𝑁 point-like mass particles at their
observed positions {x𝑖 (𝑡)}𝑖=1, · · · ,𝑁 , by minimizing the action of
the self-gravitating system

𝑆 =

𝑁∑︁
𝑖=1

∫ 𝐷obs

0
d𝐷

[
𝑓 𝐸𝐷𝑎2

1
2

(
dx𝑖
d𝐷

)2
+
3Ωm,0
8𝜋 𝑓 𝐸𝐷𝑎

𝜙tot (x𝑖)
]

+
𝑁∑︁
𝑖=1

1
2
( 𝑓 𝐸𝐷𝑎)2obs

(
𝑑x𝑖,obs
𝑑𝐷

· x𝑖,obs
)2

(1)

usingmixed boundary conditions (Peebles 1989). Under the hypoth-
esis that galaxies trace the underling mass distribution, boundary
conditions are set by the galaxies observed redshifts, s𝑖,obs, and

their assumed vanishing peculiar velocities at early times. Here, 𝑎
indicates the scale factor, 𝐷 is the linear growth factor that we used
as time variable, 𝑓 = d ln𝐷/d ln 𝑎 is the linear growth rate, and
𝐸 = 𝐻/𝐻0 is the dimensionless Hubble parameter. Ωm represents
the mass density parameter and the subscripts ‘0’ and ‘obs’ indi-
cate, respectively, quantities measured at the present epoch and at
the redshift of the survey 𝑧 = 𝑧obs. Following Nusser & Branchini
(2000), we model galaxies’ orbits as a linear combination of 𝑀
time-dependent basis functions {𝑞𝑛 (𝐷)}𝑛 viz.

x𝑖 (𝐷) = x𝑖,obs +
𝑀∑︁
𝑛=0

C𝑖,𝑛𝑞𝑛 (𝐷) (2)

andminimise the action inEquation (1)with respect to the expansion
coefficients C𝑖,𝑛.

In this work, we modify the original implementation of the
eFAM algorithm (Sarpa et al. 2019), which has been already tested
on simulated halos catalogues, to optimize its application to real
surveys. Specifically, we focus on the inclusion of unique selection
effects, observational biases, and sample geometry in the computa-
tion of the total gravitational potential of the system, 𝜙tot.

2.1 Survey geometry

Real surveys probe the mass distribution within a large yet finite
region of the Universe. The total gravitational potential at any point
x in this region, 𝜙tot (x), is given by the sum of two terms: the
potential due to the matter distribution inside the volume of the sur-
vey, 𝜙int (x), and the potential due to the external mass distribution,
𝜙ext (x), which is unknown. Neglecting the external matter distri-
bution in the estimation of 𝜙tot in Equation (1) generates spurious
tidal fields that affect the quality of the reconstruction. To mitigate
their effect, a typical approach is to estimate 𝜙ext (x) assuming a ho-
mogeneous and isotropic distribution of matter outside the survey
volume with the same mean density of the galaxy sample. This pro-
cedure removes the spurious tidal fields due to the geometry of the
survey. However, since we do not model the clustering properties of
the external mass distribution, residual tidal effects are expected to
degrade the quality of the reconstruction as we approach the edge
of the survey volume. For this reason, we define a buffer region
at a distance 𝑑Buffer from the edges that we use to perform the re-
construction but discard in the analysis of the reconstructed field.
The optimal value for 𝑑Buffer depends on the survey geometry and
on the desired accuracy of the reconstruction and thus needs to be
evaluated in each specific eFAM application.

A simple, brute force implementation of this strategy would be
to embed the survey region in a much larger volume filled with an
un-clustered distribution of synthetic objects with same angular and
radial selection function and mean density as the real galaxies of
the survey, and run eFAM over all objects, real and synthetic alike.
However, the computational time required by this procedure is pro-
hibitive since the number of synthetic objects needs to be very large
to minimize shot-noise errors (with the Poisson solver implemented
by eFAM, the CPU time required to compute the gravitational po-
tential increases linearly with the number of objects).

For this reason, we adopt instead an equivalent, more effective
approach based on the Newton’s shell theorem: i) we assume a
homogeneous isotropic distribution of mass throughout the whole
Universe, inside and outside the survey volume, and set 𝜙tot (x) = 0
everywhere; ii) we use a Poisson solver to numerically estimate the
potential 𝜙int as generated by a uniform distribution of matter within
the survey volume; iii) we set 𝜙ext = −𝜙int. As mentioned above,
the CPU time required for the computation of the potential due to
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Figure 1. 2D velocity maps for the BOSS-like sub-sample carved from the deus dark matter halos simulation. Top-left panel: N-body velocity field. Top-right
panel: velocity field reconstructed without accounting for the external tidal field and assuming an empty universe outside the survey; the bulk flow induced by
the geometry of the survey is dominant. Bottom-left panel: velocity field reconstructed including the external tidal field; the geometrical bulk flow is successfully
removed and the Nbody velocity field efficiently recovered. Bottom-right panel: residuals velocity field VNbody-VeFAM after correcting for the external tidal field.

synthetic objects is larger than the one needed to compute it from
galaxies. Though, here the calculation is performed only once per
eFAM reconstruction and not at each time-step in Equation (1). The
increase in computational time is, therefore, negligible.

To assess the accuracy of this procedure, we apply eFAM
to a set of dark matter halos extracted from the deus simulation
(Rasera et al. 2014) with same footprint and similar depth as the
BOSS-DR12 survey. Figure 1 illustrates the comparison between the
“true” velocity field in the 𝑁-body simulation (top-left panel) and
the reconstructed one before (top-right panel) and after (bottom-
left panel) including the effect of the model tidal field 𝜙ext. Our
procedure effectively removes the spurious bulk-flow that would
otherwise dominate the velocity field. The velocity residuals map
(bottom-right panel) confirms that spurious flows are confined to
the regions near the edges justifying our choice of discarding those
regions in the analysis. A quantitative assessment of the quality of
the reconstruction and a test designed to evaluate systematic errors
is illustrated in Appendix A.

2.2 Galaxy bias

The original implementation of FAM (Nusser & Branchini 2000)
assumes that the averagemass density of the survey volumematches
the cosmological mean and that all the mass is associated to individ-
ual, discrete and visible objects. However, real galaxies are known
to be biased tracers of the mass density field. To account for galaxy
bias, we assume that bias is a local, linear and deterministic phe-
nomenon and that the total mass distribution can be split in two
components: a distribution of point-like discrete masses accounting
for both the luminous and dark matter associated to each observed
galaxy, 𝜌′g (x), surrounded by a uniform, smooth distribution of dark

matter, 𝜌̄DM, filling the survey volume, i.e.

𝜌tot (x) ≡ 𝜌′g (x) + 𝜌̄DM
∑︁
g

[
1 − 𝛿D (x − xg)

]
, (3)

where the sum runs over galaxy positions xg. The relation between
the observed galaxy density field, 𝜌g, and 𝜌′g is set by the linear
biasing assumption 𝛿tot = 𝛿g/𝑏 to

𝜌′g (x) =
(
𝛿g (x)
𝑏

+ 1
)
Ωm,0

3𝐻2

8𝜋𝐺

∑︁
g

𝛿D (x − xg), (4)

where Ωm,03𝐻2/(8𝜋𝐺) = 𝜌̄tot, 𝛿tot = 1 + 𝜌tot/𝜌̄tot, and 𝛿g =

1 + 𝜌g/𝜌̄g.
Equation (4) implies that the net effect of the bias is to down-

weight themass of individual objects, hence lowering their contribu-
tion to the mass density below the cosmological mean. Since eFAM
solely accounts for the mass component associated with discrete
objects, the down-weighting of the masses will cause the survey
volume to be treated as an underdense region and a net outflow
will be predicted. To restore the density balance, we thus need to
account for the gravitational pull of the smooth dark component.
Our strategy is to model the gravitational potential generated by
the smooth dark matter distribution, 𝜙smooth, as an extra unknown
external field to be added to the one exerted by the homogeneous
external distribution described in Section 2.1. Similarly to the pro-
cedure adopted for the external tidal field, we infer the new external
gravitational potential 𝜙′ext ≡ 𝜙ext + 𝜙smooth setting 𝜙′ext = −𝜙′int,
where 𝜙′int is now estimated having fixed the mean density of the
smooth matter distribution within the survey to 𝜌′R = 𝜌̄tot − 𝜌̄DM.

MNRAS 000, 1–16 (2018)
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3 DATA AND SIMULATIONS

3.1 SDSS-DR12 Combined Sample

We apply eFAM reconstruction algorithm to the galaxies in the
low-redshift bin 0.2 < 𝑧 < 0.55 of the “BOSS Combined Sample”,
corresponding to the first redshift bin considered in the clustering
analyses of the BOSS collaboration (Kitaura et al. 2016; Ross et al.
2017; Vargas-Magaña et al. 2018). The “Combined Sample” spans
the redshift range 0.2 < 𝑧 < 0.75 and includes both the Constant
StellarMass sampe (CMASS), designed to be approximately stellar-
mass limited above 𝑧 = 0.45, and the low-redshift (LOWZ) sample,
targeting galaxies in the redshift range 0.15 < 𝑧 < 0.43. Having
considered the survey footprint, we decide to focus on the northern
galactic cap to reduce both the computational cost of the reconstruc-
tion and the impact of the external tidal field, which would be large
in the thinner southern strip. Following (Ross et al. 2017, hereafter
Ross17), we assign a statistical weight to each galaxy to account for
fibre collision, veto flag, and the need to minimize the variance of
the clustering estimator. The latter aspect is dealt with using the so-
called FKPweight (Feldman et al. 1994)𝜔FKP = 1/[1+𝑛̄(𝑧𝑖)𝑃(𝑘0)]
where 𝑛̄ is the redshift distribution at the galaxy redshift (𝑧𝑖), and
𝑃(𝑘0) = 40000(ℎ−1Mpc)3 is the amplitude of the power spectrum
evaluated approximately at the BAO scale for SDSS Luminous Red
Galaxies (LRG). In the eFAM implementation, we use these weights
to assign an effective mass to each individual object.

3.2 MultiDark-Patchy mock catalogues

To test the performances of eFAM and estimate the covariant errors
employed in the likelihood analysis, we make use of the publicly
available MultiDark-Patchy (hereafter MD-Patchy) mocks (Kitaura
et al. 2016; Rodríguez-Torres et al. 2016). MD-Patchy are extracted
from the Big-MultiDark Planck simulation (Klypin et al. 2016)
which assumes a spatially flat ΛCDM 𝑃𝑙𝑎𝑛𝑐𝑘 cosmology with Ωm
= 0.307115, ΩΛ = 0.692885, Ωb = 0.048, 𝜎8 = 0.8288, 𝑛s= 0.9611,
ℎ = 0.6777. Furthermore, a non-linear, deterministic, stochastic
bias recipe has been applied to the galaxy catalogue to match the
clustering properties of the BOSS LRG sample.

In the following analysis, we use the V6-C version of the
“Combined” sample mocks, built to estimate the covariance matrix
of the 1, 2, and 3-points clustering statistic of SDSS-DR12/BOSS.
Sincewe are interested in computing the 2PCF of themock galaxies,
we also use the associated mock random catalogue which contains
50 times as many objects as the SDSS-DR12 mocks and has the
same footprint, selection function, and statistical weights. To reduce
the computational cost of our analysis, we decide to consider only
400 mocks out to the 1000 employed by Ross17. The impact of this
choice is discussed in Section 8.

4 STATISTICAL TOOLS

4.1 Two-point correlation function estimator

To gauge the performance of the eFAM method, we perform a
similar clustering analysis to that already carried out by the BOSS
collaboration aimed at estimating the Hubble parameter, 𝐻, and the
diameter angular distance, 𝐷A, from the analysis of the BAO peak
in the anisotropic 2PCF, 𝜉 (𝑠, 𝜇). Here, 𝑠 represents the separation
of the galaxy pair and 𝜇 is the cosine of the angle between s and
the bisector of the angle to the pair. To estimate the 𝜉 (𝑠, 𝜇) of each
sample,we use the minimum variance, unbiased Landy & Szalay

(1993) estimator

𝜉 (𝑠, 𝜇) = 𝐷𝐷 (𝑠, 𝜇) − 2𝐷𝑅(𝑠, 𝜇) + 𝑅𝑅(𝑠, 𝜇)
𝑅𝑅(𝑠, 𝜇) , (5)

where the data-data, 𝐷𝐷, data-random, 𝐷𝑅, and random-random,
𝑅𝑅, counts are evaluated in bins of Δ𝑠 = 5ℎ−1Mpc and Δ𝜇 = 0.05,
within the ranges 30 < 𝑠 < 190 and 0 < 𝜇 < 1, respectively.
We measure the 2PCF of three types of datasets: i) the observed,
redshift-space (hereafter labelled ‘Obs’), in which SDSS galaxies
are placed at their comoving coordinates using measured redshift
as distance proxy and assuming the cosmology of the mocks as
fiducial model, ii) the reconstructed real-space galaxies at the epoch
of observation (labelled ‘RecZ’), obtained by placing galaxies at
their reconstructed real-space positions, and iii) the back-in-time
reconstructed real-space positions (‘RecL’) in which galaxies are
displaced back-in-time to the real-space positions they occupied
at an earlier epoch. Unlike the standard ZA reconstruction, eFAM
does not require any spatial smoothing of the observed density
field to obtain the reconstructed one. We can thus use the estimator
in Equation (5) rather than the modified version of Padmanabhan
et al. (2012), which additionally requires to reconstruct the back-
in-time orbits of the random objects, with a consequent important
computational load.

To minimize the impact of the external tidal field, we estimate
the 2PCF of the sample after having discarded all the objects, real
and random alike, that reside in the buffer region (see Section 2.1).
Besides, since reconstruction displaces the objects from their origi-
nal positions, we trim the reconstructed catalogs to match the survey
footprint and depth. Finally, the 2PCF is estimated by assigning to
each object its statistical weight accounting for FKP, fibre collision,
and veto flag.

4.2 Clustering wedges

We analyse the anisotropic 2PCF focusing on the wedge clustering
statistics introduced by Kazin et al. (2012) and applied by Kazin
et al. (2013) to the study of the SDSS-DR11 galaxy clustering.
We shall consider the two wedges that model clustering along the
parallel (‖) and transverse (⊥) direction to the line-of-sight:

𝜉 ‖ (⊥) (𝑠) =
1
Δ𝜇

∫ 1(0.5)

0.5(0)
𝑑𝜇𝜉 (𝑠, 𝜇). (6)

Following Kazin et al. (2013), we focus on the BAO peak whose
scale depends on a combination of 𝐻, 𝐷A and the sound horizon
scale during baryon drag epoch, 𝑟s. Since the radial clusteringwedge
𝜉 ‖ is mostly sensitive to 𝐻 while the transverse one, 𝜉⊥, is sensi-
tive to 𝐷A, one can measure 𝜉 ‖ and 𝜉⊥ to break this degeneracy.
This is done by exploiting the Alcock-Paczynski effect (Alcock &
Paczynski 1979) (hereafter AP), which quantifies the dependence
of the measured separations along and across the line of sight, 𝑠fid‖
and 𝑠fid⊥ , on a fiducial cosmological model, i.e.

𝑠t⊥ = 𝛼⊥𝑠fid⊥ with 𝛼⊥ ≡
𝐷tA
𝐷fidA

𝑟fids
𝑟 ts

, (7)

𝑠t‖ = 𝛼‖ 𝑠
fid
‖ with 𝛼‖ ≡

𝐻fid

𝐻t
𝑟fids
𝑟 ts

, (8)

to infer the ‘true’ values 𝐻t and 𝐷t from the modelling of the
anisotropy in the measured 2PCF. The discrepancy between the
fiducial and true separation, and thus between the fiducial and true
cosmology, is quantified by the parallel and perpendicular dilation
parameters, 𝛼‖ and 𝛼⊥.
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Figure 2. Correlation matrices of the clustering wedges estimated from 400 MD-Patchy mocks. Left panels: Obs sample.Middle panels: RecZ samples. Right
panels RecL samples. Top panels: catalogs extracted by excluding all objects laying within 𝑑Buffer = 200ℎ−1Mpc from the survey edges. Bottom panels:
𝑑Buffer = 125ℎ−1Mpc. The color code is set accordingly to the normalized covariance amplitude.

In redshift-space, anisotropies in the 2PCF are generated by
both RSD and AP-distortions. Hence, one needs to disentangle
the two effects to accurately estimate 𝐻t and 𝐷t. In this work,
we use eFAM to remove RSD. However, since the reconstruction
algorithm demands to set a value for the linear growth rate, 𝑓 , we
shall not attempt to estimate its value in the likelihood analysis of
reconstructed samples. Instead, we will check the adequacy of the
fiducial 𝑓 by verifying that the RSD have been consistently removed
in both reconstructed datasets, RecZ and RecL.

In addition to clustering wedges, we study the anisotropy in
the 2PCF considering its multipoles (Padmanabhan &White 2008)

𝜉𝑙 (𝑠) =
2𝑙 + 1
2

∫ 1

−1
𝑑𝜇𝜉 (𝑠, 𝜇)L𝑙 (𝜇), (9)

whereL𝑙 (𝜇) are the Legendre polynomials, which provide an equiv-
alent analysis of the clustering properties to that of the wedges but
ease the estimation of anisotropies as a non-vanishing quadrupole.

4.3 Covariance matrix

Given the strong correlation between 𝜉⊥ and 𝜉 ‖ , the covariance
matrix of the clustering wedges 𝐶s is built by combining the auto-
covariance and the cross-covariance of the binned parallel and per-
pendicular wedges measured from the 400 mocks. As shown by
Hartlap et al. (2007); Percival et al. (2014), the precision matrix,
Ψ, estimated by inverting the measured covariance matrix, 𝐶s, is
a biased estimate of the true one, with the amplitude of this bias
depending on both the number of mocks 𝑛s used to measure 𝐶s and

its dimension 𝑛b × 𝑛b. To correct for this bias we set

Ψ =

(
1 − 𝑛b + 1

𝑛s − 1

)
𝐶−1
s . (10)

The core of our analysis focuses on the properties of the 2PCF in the
separation range [50, 150]ℎ−1Mpc. For this application, we sample
the clustering wedges in 20 bins of 5ℎ−1Mpc covering the whole
range of interest.

Figure 2 illustrates the auto and cross-correlation matrices of
the clustering wedges measured for the Obs (left panels), RecZ
(middle) and RecL (right) mock samples. The difference between
the top and bottom panels is due to the different extent of the buffer
region that contains objects excluded from the analysis. A simple
visual inspection reveals that the application of eFAM significantly
reduces the amplitude of the off-diagonal terms in both RecZ and
RecL samples.

5 MODELLING THE 2PCF

5.1 Two-point correlation function model

The goal of this study is to model the anisotropic 2PCF over a large
range of scales including the BAO peak. Hence, we need to take into
account RSD, AP-distortions and non-linear clustering evolution.
The first step is to model the non-linear mass power spectrum in
real-space, 𝑃R (𝑘, 𝜇), using the Eisenstein & Hu (1998) model

𝑃R (𝑘, 𝜇) = [𝑃l (𝑘) − 𝑃nw (𝑘)] e
−𝑘2

[
(1−𝜇2)Σ2⊥/2+𝜇2Σ2‖/2

]
+ 𝑃nw (𝑘),

where 𝑃l (𝑘) is the linear power spectrum, 𝑃nw is the no-wiggle
power spectrum, and Σ‖ and Σ⊥ quantify the non-linear damping
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Table 1. Fitting parameters in the likelihood analysis and their prior range. Top: parameters used to fit the correlation function averaged over the mocks 〈𝜉 〉
(Section 6.1). Bottom: parameters used to fit the 2PCF of the data (Section 7 and that of a single mock (Section 6.2).

sample 𝛼⊥ 𝛼‖ Σ⊥ (ℎ−1Mpc) Σ‖ (ℎ−1Mpc) 𝑏 𝑓 Σs (ℎ−1Mpc)
{
𝐴𝑝,𝑖

}
𝑖=0,1,2

〈𝜉 〉 (Section 6.1)

All Flat: [0.7, 1.3] Flat [0.7, 1.3] Flat: [0, 15] Flat: [0, 15] Flat: [0, 10] Flat: [0, 5] Flat: [0, 10] Flat: [−10, 10]

Data and individual mocks (Section 6.2 and 7)

Obs Flat: [0.7, 1.3] Flat: [0.7, 1.3] Fixed to 〈𝜉 〉 Fixed to 〈𝜉 〉 Fixed to 〈𝜉 〉 Fixed to 〈𝜉 〉 Fixed to 〈𝜉 〉 Flat: [−10, 10]
RecL Flat: [0.7, 1.3] Flat: [0.7, 1.3] Fixed to 〈𝜉 〉 Fixed to 〈𝜉 〉 Fixed to 〈𝜉 〉 Fixed to 0 Fixed to 0 Flat: [−10, 10]

along and across the line-of-sight (Crocce & Scoccimarro 2006;
Eisenstein et al. 2007a; Crocce & Scoccimarro 2008). 𝑃l is esti-
mated using CAMB (Lewis et al. 2000) having assumed the same
cosmological model as the mock catalogs while 𝑃nw is computed
analytically.

To model RSD, we combine linear theory to model large-scale
coherent motion (Kaiser 1987), with the streaming model (Peacock
& Dodds 1994) to account for small-scale incoherent velocities
obtaining

𝑃S (𝑘, 𝜇) =

(
1 + 𝜇2 𝑓 /𝑏

)2
1 + (𝑘2𝜇2Σ2𝑠)2

𝑃R (𝑘, 𝜇) , (11)

where the superscript ‘S’ indicates quantities measured in redshift-
space, 𝜇 is the cosine angle between the wave vector and the line-
of-sight direction, 𝑏 is the linear bias parameter, and Σs is the
velocity dispersion parameter. The redshift-space template is only
used to fit the 2PCF of the Obs sample, i.e. before performing eFAM
reconstructions; it is not included to model the reconstructed 2PCF
of the RecZ and RecL sample since we find that the reconstructed
2PCF of the RecZ and RecL samples is well fit by a model with
𝑓 = Σs = 0 (see Section 6.1).
Finally, we model the measured clustering wedges,

{𝜉R(S)𝑝 }𝑝=⊥, ‖ , as follows: i) we estimate the multipoles of the
anisotropic power spectrum, 𝑃R(S) (𝑘, 𝜇), defined as

𝑃
R(S)
𝑙

(𝑠) = 2𝑙 + 1
2

∫ 1

−1
𝑑𝜇𝑃R(S) (𝑘, 𝜇)L𝑙 (𝜇); (12)

ii) we compute the corresponding 2PCF multipoles 𝜉𝑙 performing a
Fourier transform of each multipole 𝑃𝑙 ; iii) we combine the 2PCF
multipoles to obtain the clustering wedges, 𝜉R(S)𝑝 (𝑠) as described
in Kazin et al. (2012), and iv) we obtain the fiducial template by
adding the full-shape term 𝐴𝑝 (𝑠), viz.

𝜉
R(S)
𝑝 (𝑠;𝛼⊥, 𝛼‖) = 𝜉

R(S)
𝑝 (𝑠;𝛼⊥, 𝛼‖) + 𝐴𝑝 (𝑠). (13)

Here, the two dilation parameters are free parameters accounting
for the mismatch between the fiducial and the true cosmology while
the full-shape term 𝐴𝑝 (𝑠) = 𝐴𝑝,0 + 𝐴𝑝,1/𝑠 + 𝐴𝑝,2/𝑠2 is intro-
duced to account for possible systematic errors in reconstructing the
broad-band shape of the 2PCF. Differently from the fiducial BOSS
template (Ross17), we omit the shape parameter 𝐵 that would be
highly degenerate with those controlling the RSD.

5.2 Likelihood analysis

5.2.1 Maximization of the likelihood

To fit the model to the measured 2PCF, we search for the maxi-
mum of the likelihood in the space of the free parameters using the

modelling routine in the CosmoBolognaLib library (Marulli et al.
2016). Maxima are searched for using a two-step procedure. First,
the Nelder-Med method (Nelder & Mead 1965) is used to approach
the best-fit value. Here, the the 𝑁p-dimensional parameters space
is probed by evaluating the likelihood at the vertex of a running
(𝑁p + 1)-dimensional simplex which progressively approaches the
nearest maximum. Second, once convergence is attained, we refine
the search by running a Markov Chain around the best-fit value. In
the following, we perform different likelihood analyses varying the
number of free parameters. Table 1 summarizes our choices for the
analysis of the mean correlation function averaged over 400 mocks,
〈𝜉〉, and for the study of individual mocks.

Similarly to the majorities of the multidimensional optimiza-
tion algorithms, the Nelder-Medmethod approximates a local rather
than the global maximum. To ensure convergence to the global max-
imum, it is crucial to set the initial size of the simplex so as to cover
a sufficiently large portion of the 𝑁p-dimensional domain. We do so
by starting the maximization of the likelihood from an equilateral
simplex and re-scaling the fitting parameters so that to have similar
magnitudes. The parameters 𝛼⊥, ‖ , Σ⊥, ‖ , Σs, 𝑓 , and 𝑏 represents
physical quantities thus their amplitude can be guessed from per-
turbation theory (Crocce & Scoccimarro 2008). Ross17 estimate
them to be in the range [1, 10]. On the contrary, the values of the
shape parameters

{
𝐴𝑝,𝑖

}
𝑖
is a priori unknown and their values

can significantly vary. To avoid handling quantities with very dif-
ferent magnitudes we normalize the values of 𝐴𝑝,𝑖 by the factor
3𝜎𝜉𝑝 (𝑟ref )𝑟

𝑖
ref , where 𝜎𝜉𝑝 (𝑟ref ) is the standard deviation of 𝜉𝑝 (𝑟ref)

among the mocks evaluated at an arbitrary scale 𝑟ref . With this
parameterization, and assuming 𝐴𝑝,𝑖 = 0 ∀𝑖 for the mean wedges
averaged over all the mocks 〈𝜉𝑝〉, we are able to model the 2PCF at
𝑟ref for the almost totality of the mocks using |𝐴𝑝,𝑖 | . 1. Aiming at
modelling the distortion of the 2PCF that can not be described solely
by physical parameters (e.g. a negative value of the correlation func-
tion at small scales), we set 𝑟ref ∼ 80ℎ−1Mpc, corresponding to the
deep of the correlation function at small separations.

5.2.2 Prior and posterior

To minimize the risk of biased results, we assign flat, non-
informative, priors to the parameters of the model. This approach
differs from the one of Ross17, Anderson et al. (2014), Xu et al.
(2012), which assigned a Gaussian prior to the shape parameter 𝐵.
The downside of this choice is the risk of hitting a local maxima of
the likelihood, PL (p), hence of increasing the uncertainty of the
parameters estimate. To minimize this effect, we infer the median
and the variance of the 𝑖-𝑡ℎ parameter 𝑝𝑖 by performing a robust-
sigma estimation (Section 3.2 in Longobardi et al. 2015) on the
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corresponding marginalized one-dimensional posterior

PL (𝑝𝑖) =
∫
𝐷
𝑑𝑝1 . . . 𝑑𝑝𝑖−1𝑑𝑝𝑝+1 . . . 𝑑𝑝NpPL (p), (14)

where 𝐷 is the interval over which the prior of all 𝑗 parameters
( 𝑗 ≠ 𝑖) are defined. We do so by defining the 2𝜎-clipped posterior,
P2𝜎 (𝑝𝑖) = PL (𝑝𝑖)Θ

(
𝑝𝑖 − 〈𝑝𝑖〉f − 𝜎f,𝑖

)
Θ
(
〈𝑝𝑖〉f − 𝜎f,𝑖 − 𝑝𝑖

)
,

where 〈𝑝𝑖〉f and 𝜎f,𝑖 are the mean and variance of PL (𝑝𝑖) prior to
sigma-clipping, and Θ is the Heaviside step function. The variance
of P2𝜎 (𝑝𝑖) is assigned to 𝑝𝑖 , scaled by a numerical factor deter-
mined from Monte Carlo simulations to complete the 2𝜎-clipped
distribution to a complete Gaussian.

6 eFAM RECONSTRUCTION IN THE MOCK
CATALOGS. VALIDATION TESTS

In this section, we validate and investigate the performance of eFAM
reconstruction focusing on two key aspects: its ability to remove
RSD, and that of improving the signal-to-noise ratio of the BAO
feature. For the following tests, we use the 400 MD-Patchy mocks
mimicking the SDSS catalog described in Section 3.2.

6.1 From redshift to real-space

To assess the quality of the redshift-to-real space reconstruction, we
apply eFAM to each of the 400 mock catalogues and measure the
2PCF monopole and quadrupole moments as well as the clustering
wedges of the observed (Obs) and reconstructed (RecZ and RecL)
samples defined in Section 4.1. Tominimize the effect of tidal fields,
we discard all objects within 𝑑Buffer = 200ℎ−1Mpc from the edges
of the survey. The results are illustrated in Figure 3. Top panels
illustrates the results obtained from the Obs sample. Middle and
Bottom panel refer to the RecZ and RecL cases, respectively. Panels
on the left show the 2PCF parallel (red) and perpendicular (blue)
clustering wedges. Panels on the right illustrate the 2PCFmonopole
and the quadrupole moments. All quantities are multiplied by the
square of the spatial separation 𝑠. Thin curves show the measure-
ment for each of the 400 mocks, thick curves show their average
values, and shaded areas indicate the standard deviation among the
mocks, corresponding to the square root of the diagonal elements
of the covariance matrix. Finally, yellow thick curves on the left
panels represent the best-fit model for the clustering wedges.

In redshift-space (Obs, top-left), the parallel and perpendicu-
lar wedges are significantly different from each other. This discrep-
ancy is expected. Indeed, RSD simultaneously reduce the ampli-
tude of the clustering signal along the line-of-sight and boost up
the amplitude of the perpendicular wedge. Moreover, RSD generate
a quadrupole moment that is clearly visible in the top-right panel.
A visual inspection of the mid panels (RecZ) shows the success of
eFAM at removing RSD; the two wedges are now in agreement,
almost superimposed to each other (left panel), and the quadrupole
moment is consistent with zero (marked by the black, dotted hori-
zontal line in the right panels). Remarkably enough, the statistical
isotropy is restored down to the smallest scales shown in the plot,
∼ 40ℎ−1Mpc, demonstrating that eFAM is indeed able to model
dynamics well into the non-linear regime.

A successful reconstruction must remove RSD at all epochs,
not only at the redshift of the survey. We check for this behaviour
estimating the isotropic 2PCF of the RecL sample at a conveniently
high redshift. Here, we stop the reconstruction at 𝑧 ∼ 40 corre-
sponding to the highest redshift for which the measured Σ‖ and Σ⊥
have the smallest, non-negative value (see Section 4 of Sarpa et al.
(2019) for a detailed discussion on the definition and justification

of the maximum redshift of the eFAM reconstruction). The 2PCF
wedges and multipoles of the RecL sample are plotted in the bottom
panels of Figure 3. Similarly to the RecZ case, RSD are success-
fully removed, although some residual anisotropy is seen at very
large separations. We interpret this feature as a signature of imper-
fect correction for external tidal fields. To check this hypothesis,
we repeated the test varying the depth of the buffer region 𝑑Buffer.
The results are shown in Figure 4. Thick lines represent the aver-
age monopole (blue-solid) and quadrupole (red-dashed) moments
of the 2PCF measure in 20 independent mock catalogues. Shaded
areas represent the standard deviation. The value of 𝑑Buffer used in
each reconstruction is indicated in each panel. For all the values of
𝑑Buffer we testes, we also show the reference case 𝑑Buffer = 200 ℎ−1
Mpc (light blue and light red curves and areas for the monopole and
quadrupole moments, respectively). The quality of the reconstruc-
tion improves when using larger 𝑑Buffer, i.e. when discarding an
increasing fraction of objects in the sample. The main effect of the
spurious tidal field is a deceptive quadruple at large separation that is
particularly significant for 𝑑Buffer = 50 ℎ−1 Mpc, and progressively
vanishes when moving towards larger sizes of the buffer region. A
second effect is a tiny artificial correlation at the deep’s scale in the
monopole. Based on this test, we decide to set 𝑑Buffer = 200 ℎ−1

Mpc being confident that with this choice RSD are effectively re-
moved down to ∼ 40 ℎ−1 Mpc and the measured monopole signal
is robust to less conservative choices of 𝑑Buffer.

A more quantitative assessment of the quality of the RSD re-
moval is provided by the likelihood analysis. Table 2 shows the
values of the best fitting parameters to the mean clustering wedges
estimated in the 400 mocks and their 1𝜎 uncertainty. The parame-
ters that quantify RSD are the growth rate 𝑓 and the velocity dis-
persion Σ𝑆 . Their value can be estimated by measuring the wedges
in redshift-space (Obs sample, first row in the Table). The efficient
removal of RSD by eFAM is testified by the 1𝜎 compatibility of
both parameters with zero the RecZ and RecL samples alike. To
perform the likelihood analysis we have considered the range of
separation 𝑠 = [50, 150]ℎ−1Mpc and the best fitting curves are
drawn in yellow color in Figure 3.

As shown by Padmanabhan et al. (2012), another test of the
quality of the reconstruction is to compare the relative magnitude of
the two damping parameters, Σ⊥, ‖ , before and after reconstruction.
Indeed, to move galaxies to their correct real-space position one
should remove all sources of anisotropy, not just the RSD. As result,
a successful reconstruction should bring the ratio Σ‖/Σ⊥ closer
to unity (Ivanov & Sibiryakov 2018). Since eFAM is designed to
account for non-linear motions, we also expect that the absolute
magnitude of both parameters should be reduced. The contour levels
of the marginalized, joint probability distribution of Σ‖ and Σ⊥
shown in Figure 5 prove that this is indeed the case. The blue-
dotted contours show the results obtained before reconstruction for
the Obs sample while the large blue-dot show the median values.
The magnitude of the two parameters is rather large and their ratio
is about 2𝜎 apart from unity (dot-dashed purple line). Dark-green
continuous curves (and the green-triangle) show the results after
the eFAM reconstruction for the RecZ sample, i.e. after removing
RSD but with non-linear effects still present. The magnitude of the
two parameters remains the same but their ratio is closer to unity.
Gold-dashed contours show theRecL case, after eFAMback-in-time
reconstruction. In this case, also the magnitude of both parameters
is significantly reduced. Besides, we notice that the reconstruction
significantly diminishes the uncertainty in the measured Σ‖ . This
improvement indicates that eFAM efficiently lifts the degeneracy
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Figure 3. Two-point correlation function wedges (left panels) and multiples (right) estimated from 400 mock catalogues. Top: mock galaxies are placed at
their observed redshift positions, Middle: galaxies are placed at the reconstructed real-space positions at the same redshift of the survey. Bottom: galaxies are
located at their back-in-time reconstructed real-space positions. Thin curves show the wedges measured in each mock. Thick curves with different line-styles
show their average. Shaded regions show the 1𝜎 uncertainty strip. Yellow curves on the right hand panels are the best fitting models.

.

Table 2. Best fit parameters and their 1𝜎 uncertainties estimated to the mean clustering wedges for the three cases considered: redshift-space sample (Obs),
eFAM reconstructed real-space sample at the redshift of the survey (RecZ), and back-in-time reconstructed sample (RecL).

sample 𝛼⊥ 𝛼‖ Σ⊥ (ℎ−1Mpc) Σ‖ (ℎ−1Mpc) 𝑓 Σs (ℎ−1Mpc)

Obs 0.997 ± 0.003 1.011 ± 0.007 7.37 ± 0.45 10.20 ± 1.82 0.51 ± 0.13 4.43± 1.83
RecZ 0.997 ±0.003 1.011± 0.006 7.79 ± 0.36 9.12± 0.68 0.07 ± 0.06 1.09±1.18
RecL 0.997 ± 0.002 1.010 ± 0.004 5.21 ± 0.39 6.93 ± 0.53 0.06 ± 0.05 1.02 ± 0.88
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50
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dBuffer = 150h−1Mpc dBuffer = 125h−1Mpc

dBuffer = 100h−1Mpc dBuffer = 50h−1Mpc

Figure 4. Effect of the external (super-survey) tidal field on reconstruction.
Mean monopole (blue-solid lines) and quadrupole (red-dashed lines) of
the 2PCF averaged over 20 mocks measured for different choices of the
discarded buffer region, 𝑑Buffer. Light-blue dot-dashed lines and orange-
dotted lines mark the mean monopole and quadrupole as estimated for
𝑑Buffer = 200ℎ−1Mpc.

Figure 5.Marginalized probability contours of Σ⊥, Σ‖ estimated from the fit
of the mean clustering wedges of the mocks obtained from the Obs sample
(blue dotted contours), the RecZ sample (dark green solid contours) and the
RecL sample (gold, dashed contours). The large symbols (circle, triangle
and star) show the value of the best fitting parameters for, respectively,
the Obs, RecZ and RecL cases. The contours are drawn at 1, 2, and 3𝜎
confidence levels. Small dots show the values obtained at each step of the
Markov-Chain. The purple, dot-dashed line is drawn for reference to indicate
Σ‖ = Σ⊥.

between Σ‖ and the 𝐴𝑝 (𝑠) parameters describing the broad-band
shape of the 2PCF while restoring statistical isotropy.

The validation tests performed in this section are designed to
quantify the ability of eFAM to remove the anisotropies generated
by linear and non-linear motions rather than the ones arising from
an incorrect choice of the fiducial cosmology. For this reason, we
assume the same cosmological model as the mock catalogues. To

test for the absence of Alcock-Paczynski distortions, we do not set
the dilation parameters equal to unity but treat instead 𝛼‖ and 𝛼⊥ as
free parameters in the fit and check if their best-fit value is indeed
consistent with unity. The results listed in Table 3 show that this
is indeed the case. The largest departures are at ∼ 2𝜎 level for 𝛼‖ .
These results prove that eFAM successfully removes RSD from the
2PCF and allow us to use the real-space template ( 𝑓 = Σ𝑠 = 0) to
model the reconstructed 2PCF of the data in Section 7.

6.2 Acoustic scale measurements

6.2.1 Alcock-Paczynski distortions

The second part of the validation process focuses on the abil-
ity of eFAM to estimate the dilation parameters 𝛼‖ and 𝛼⊥.
For this purpose, we perform a likelihood analysis in each mock
using the clustering wedges measured in the separation range
𝑠 ∈ [50, 150]ℎ−1Mpc. In this analysis, the values of 𝑓 , Σ‖ , and
Σ⊥ are kept constant. For the Obs sample they are set equal to their
best-fit values listed in Table 2, while for RecZ and RecL we set
them equal to zero. To reduce the uncertainty in the estimated 𝛼⊥
and 𝛼‖ , we searched for the largest volume of the sample, namely
for the minimum value of 𝑑Buffer, yielding an unbiased estimation
of the real-space density field. We find 𝑑Buffer = 125ℎ−1Mpc to
be a good compromise between sample volume size and systematic
errors driven by edge effects. A smaller 𝑑Buffer would not bias the
position of the BAO peak, albeit it would reduce the accuracy of
the RSD modelling for 𝑠 > 150ℎ−1Mpc, as shown in the top-right
panel of Figure 4. Hereafter, we will only consider the Obs and
RecL samples.

The results of our reconstruction of the acoustic feature are
shown in Figure 6 and summarized in Table 3. Each point in Figure 6
represents the best-fit value obtained from eachmock catalog before
(top) and after (bottom) eFAM reconstruction. In both cases, we fit
the distribution of points in the (𝛼⊥, 𝛼‖) plane with a bi-variate
Gaussian for which we show its maximum (star symbol) and the
68, 95 and 99 per cent confidence levels. The histograms on the
top and right side of each panel show the marginalized probability
distribution function of 𝛼⊥ and 𝛼‖ , respectively. Since our fiducial
cosmology is set to the one of the mocks, the expected values are
𝛼⊥ = 𝛼‖ = 1.

The distribution of the best fit 𝛼‖ and 𝛼⊥ in the Obs sam-
ple (top panel) is & 30 per cent broader than in the RecZ sample
(bottom panel). Alongside, the central value of the bi-variate Gaus-
sian is more biased pre-reconstruction, ∼ 1.7 per cent along the
𝛼‖ direction, than post-reconstruction; see Table 3. Not expecting
any Alcock-Paczynski distortion, we interpret both the bias and the
strong uncertainty in the pre-reconstruction estimates of 𝛼‖ and 𝛼⊥
as a sign of the inadequacy of the fiducial RSDmodel (Equation 11)
to account for non-linear effects. Remarkably enough, the fact that
our reconstruction significantly decreases both the dispersion and
the offset of the dilation parameters indicates that eFAM success-
fully accounts for both linear and non-linear motions in the range of
scales considered in the analysis. The residual bias and dispersion
affecting in the post-reconstruction measurements are probably a
consequence of the imperfect modelling of the external mass distri-
bution and its tidal field.

To further investigate the sources of uncertainty we have con-
sidered the results of the likelihood analysis performed on a single
mock in which no clear BAO peak is detected in the clustering
wedges before reconstruction (top right panel of Figure 8). The his-
tograms in the central and right top panels show the one-dimensional
posterior probability function for 𝛼⊥ and 𝛼‖ , respectively, obtained

MNRAS 000, 1–16 (2018)



10 E. Sarpa et al.

0.8

1.0

1.2

α
‖

0.8 1.0 1.2
α⊥

0.8

1.0

1.2

α
‖

5

15

5 15

5 15

Figure 6. Best fit 𝛼‖ an 𝛼⊥ values estimated from the clustering wedges
in the range 𝑠 = [50, 150]ℎ−1Mpc measured in in each MD-Patchy mocks
(dots) for the Obs (Top) and RecL (Bottom) cases. The histograms on the
top and on the right part of the panels show the one-dimensional distribution
functions of 𝛼⊥ and 𝛼‖ , respectively. Elliptical contours and blue-shaded
areas are drawn at the 68, 95, and 99 per cent confidence level of the best
fitting Gaussian bivariate, centered at the starred symbol.Grey-dashed lines
show the expected 𝛼⊥ = 1 and 𝛼‖ = 1 values.

from the Markov Chain procedure. With no BAO feature detected,
neither distribution exhibit a well defined, main peak. Instead, P𝛼⊥
(left) has twomaxima of comparable amplitude whereas P𝛼‖ shows
a broad peak extending beyond the range allowed for this param-
eter. As a result, one obtains a noisy and biased estimate of both
parameters. The situation dramatically improves after eFAM recon-
struction (bottom panels). A BAO signature is now visible in both
wedges (bottom right) and, consequently, the posterior probability
distributions of both dilation parameters show a well defined, sharp
maximum centered on the expected values 𝛼⊥ = 𝛼‖ = 1.

An alternative way to assess the impact of eFAM in reducing
the uncertainty of 𝛼⊥ and 𝛼⊥ is that of considering the errors of
these parameters estimated from the clustering wedges measured in
a single mock catalog. The scatter-plot in Figure 7 compares the
single-mock uncertainties 𝜎𝛼⊥ (top panel) and 𝜎𝛼‖ (bottom panel)
estimated before the reconstruction (X-axis) to those estimated af-
ter the reconstruction (Y-axis). The histograms on top and on the
side show the marginalized one-dimensional distributions of both
quantities. Before the reconstruction, both distributions are skewed
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Figure 7. Error on the perpendicular (top) and parallel (bottom) dilation pa-
rameters, 𝜎𝛼⊥ (top panel) and 𝜎𝛼‖ , before and after eFAM-reconstruction
estimated from the clustering wedges. Each dot shows the results from each
mock catalog. Shaded areas contain 68, 95, and 99 of the points. The aver-
age value of the distribution is represented by a starred symbol. Histograms
depict the 1D marginalized distribution of both errors, before (histogram on
top) and after (histogram on the side) eFAM reconstruction. Dotted lines
show the case in which reconstruction gives no improvement.

toward large errors. After reconstruction eFAM succeeds in reduc-
ing the the skewness by ∼ 30 per cent.

6.2.2 Robustness to non-linear effects.

To test the robustness of eFAM reconstruction to the inclusion of
small scales characterized by non-linear effects, we push the likeli-
hood analysis performed in the previous section down to separations
as small as 𝑠min = 25ℎ−1Mpc. The results of this test are summa-
rized in Table 3 where we list the best fit values of 𝛼⊥ and 𝛼‖ and
their error for 𝑠min = 25 and 40ℎ−1Mpc along with the reference
case 𝑠min = 50ℎ−1Mpc. We notice that the bias on 𝛼‖ measured
before the reconstruction increases when pushing the correlation
analysis down to smaller scales. This is not surprising and confirms
the increasing inadequacy of the RSD model in accounting for the
effect of non-linear peculiar velocities. The eFAM reconstruction
reverse this trend. The systematic error on 𝛼‖ remains the same,
irrespective of the 𝑠min considered. This result demonstrates the
success of eFAM reconstruction and corroborates our conclusion

MNRAS 000, 1–16 (2018)



eFAM: application to SDSS-DR12 Combined Sample 11

0.50 0.75 1.00 1.25 1.50
↵ ?

0

2

4

6

P
(↵
?

,k
)

0.50 0.75 1.00 1.25 1.50
↵ k

40 60 80 100 120 140 160 180 200
s (Mpc/h)

�100

�50

0

50

100

s2 ⇠
?

,k
(s

)
(M

p
c/

h
)2

40 60 80 100 120 140 160 180 200
s (Mpc/h)

�60

�40

�20

0

20

40

s2 ⇠
?

,k
(s

)
(M

p
c/

h
)2

0.50 0.75 1.00 1.25 1.50
�↵?

0

2

4

6

P
(↵
?

,k
)

0.50 0.75 1.00 1.25 1.50
�↵k

Figure 8.Modelling the clustering wedges in a single mock realization. Left panels: parallel (red-dashed lines) and perpendicular (blue-solid lines) clustering
wedges multiplied by the square of the spatial separation 𝑠. Shaded areas represent the standard deviation.Central and Right panels:marginalized 1-dimensional
probability distribution of P𝛼⊥ and P𝛼‖ , respectively. Top panels: Results obtained from the Obs sample. Top panels: Results obtained from the RecL sample.
Solid-black vertical lines mark the median values of the 1-dimentional P while dashed-gray lines demote the best fit values.

Table 3. Best fit vs. separation range. Median values and variance of 𝛼⊥, 𝛼‖ , 𝜎𝛼⊥ , and 𝜎𝛼‖ estimated from clustering wedges in different separation ranges.

fitting range sample 〈𝛼⊥ 〉 − 1 𝑆〈𝛼⊥〉 〈𝜎𝛼⊥ 〉 𝑆〈𝜎𝛼⊥ 〉 〈𝛼‖ 〉 − 1 𝑆〈𝛼‖ 〉 〈𝜎𝛼‖ 〉 𝑆〈𝜎𝛼‖ 〉

[50, 150]ℎ−1Mpc Obs 0.002 0.036 0.031 +0.017
-0.004 -0.017 0.081 0.053 +0.067

-0.005

RecL -0.002 0.024 0.024 +0.013
-0.002 -0.010 0.056 0.049 +0.032

-0.006

[40, 150]ℎ−1Mpc Obs 0.002 0.035 0.032 +0.024
-0.004 -0.026 0.088 0.054 +0.061

-0.004

RecL -0.002 0.025 0.027 +0.007
-0.004 -0.011 0.051 0.043 +0.030

-0.004

[25, 150]ℎ−1Mpc Obs 0.004 0.036 0.033 +0.017
-0.004 -0.032 0.091 0.059 +0.065

-0.007

RecL 0.000 0.023 0.026 +0.013
-0.003 -0.010 0.053 0.048 +0.030

-0.004

that systematic errors on 𝛼‖ originate from the external tidal field
rater than non-linear effects.

7 RECONSTRUCTING SDSS DATA

In this section, we apply eFAM to the SDSS DR12 galaxy sam-
ple and analyze the clustering properties before and after eFAM
reconstruction.

To perform the reconstruction, we set the fiducial cosmology
to the one of the mocks. We weigh the mass of each galaxy by
its linear bias, 𝑏 = 𝑏(𝑧gal), estimated interpolating the redshift-to-
bias relation of SDSS-III galaxies at the redshift of the galaxy, 𝑧gal
(Salazar-Albornoz et al. 2017).

For the present study, we consider the Obs and RecL sample.
Here, distances are assigned to redshift coordinates using the same
(fiducial) cosmological of reconstruction. To avoid to be affected
by spurious tidal fields induced by edge effects, we exclude from
the analysis all galaxies lying in a buffer region within 𝑑Buffer =
125ℎ−1Mpc from the sample’s edges.

For the two samples, we evaluate the 2PCFof the galaxies using
the statistical weights described in Section 3.1 and measure its its
parallel and perpendicular clustering wedges. Finally, we compare
𝜉⊥ and 𝜉 ‖ with the models presented in Section 5.1.

Similarly to Ross17, we focus the analysis on the estimate of
𝐻 (𝑟s/𝑟fids ) and 𝐷A (𝑟fids /𝑟s), largely determined from the modelling
of the BAO peak. We follow the same procedure adopted in Sec-
tion 6.2. We model the clustering wedges in the separation range
50 < 𝑠 < 150 and fix the values of 𝑓 , Σs, Σ‖ , and Σ⊥ to those mea-
sured in the mocks (Table 3). In particular, for the RecL sample, we
set 𝑓 = Σs = 0 after having verified that the effective removal of
RSD in the reconstructed data.

In the likelihood analysis, we use the covariance matrix esti-
mated from the mocks, as described in Section 4.3. We note here
that, although eFAM reconstruction is rather insensitive to the back-
ground cosmology (Nusser & Colberg 1998), a mismatch between
the fiducial and correct values of the cosmological parameters may
generate spurious peculiar velocities and residual anisotropies in
the reconstructed 2PCF of the SDSS-DR12 galaxies. We search for
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Figure 9. Clustering wedges of the BOSS-DR12 Combined Sample before
(top-panel), and after eFAM reconstruction (bottom-panel). Open blue cir-
cles show the measured perpendicular wedge. Open red triangles show the
parallel wedge. The error-bars are the square root of diagonal of the covari-
ance matrix estimated from the mocks. Best fit clustering wedges models
are also shown with black continuous curves. Solid and dashed curves show
the best fit model that include the BAO feature. Dot and dot-dashed curves
are best fitting models with no acoustic peak.

such anisotropies by comparing the two clustering wedges and pro-
ceed with the likelihood analysis only after having excluded their
presence.

We illustrate the results of our analysis in Figure 9. Top panel
shows the SDSS-DR12 parallel and perpendicular wedge as mea-
sured in redshift-space before eFAM reconstruction. The bottom
panel shows the same quantities measured after the reconstruction.
Red-triangles and blue-dots show 𝜉 ‖ and 𝜉⊥, respectively,multiplied
by the square of the spatial separation, 𝑠2. The error-bars are the 1𝜎
uncertainties estimated from the mocks, which corresponds to the
diagonal elements of the covariancematrix. TheBAOpeak is clearly
seen in all measurements. To highlight its statistical significance,
we over-plot the best fitting models (Equation 13) represented by
continuous and dashed, solid curves. Dotted and dot-dashed curves
show the best fit clustering wedge model with no BAO feature in it,
obtained using the no-wiggle power spectrum 𝑃nw of Eisenstein &
Hu (1998).

As expected, in redshift-space (top panel) 𝜉 ‖ and 𝜉⊥ are signifi-
cantly different from each other because of RSD. In the RecL sample
(bottom panel), the two wedges are in good agreement, confirming
the efficiency of the eFAM at recovering the real-space correlation
function and thus justifying our decision to set 𝑓 = Σs = 0 in the
model fitting. From the plots, it is also evident that the eFAM recon-
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Figure 10.marginalized likelihood contours for𝐷A𝑟fids /𝑟s) and 𝐻 (𝑟s/𝑟fids )
from the clustering wedges analysis of the SDSS-DR12 Combined Sample
in the range 0.2 < 𝑧 < 0.55. Parameters are estimated at the effective
redshift 𝑧 = 0.38. Contours and shaded areas show 1, 2, and 3𝜎 probability
contours of a best fitting Gaussian bi-variate. Blue contours: results before
eFAM reconstruction. Yellow contours: results after eFAM reconstruction.
Large blue and star symbols show the best fit values for the two cases.

Table 4. Fit results from the SDSS-DR12 Combined Sample.

sample 𝐷A (0.38) (𝑟fids /𝑟s)
(Mpc)

𝐻 (0.38) (𝑟s/𝑟fids )
(km s−1 Mpc−1)

Obs 1129 ± 40 82 ± 4
RecL 1090 ± 29 83 ± 3

struction increases the amplitude and the sharpness of the acoustic
peak.

The results of the likelihood analysis corroborate and quan-
tify this visual impression. Figure 11 show the two-dimensional
marginalised maximum likelihood of the dilation parameters 𝛼⊥,
𝛼‖ surfaces before (left panel) and after eFAM reconstruction (right
panel). Solid surfaces show the likelihood of models that include
the BAO peak while transparent surfaces depict the case in which no
acoustic feature is included in the model. The comparison between
the amplitudes of the peaks in the solid and transparent likelihood
surfaces is a proxy of the significance of the BAO peak detection.

Before reconstruction, non-linear RSD undermine the agree-
ment with the fiducial model yielding a modest maximum in the
likelihood. Alongside, the limited prominence of the acoustic fea-
ture legitimates the model without acoustic oscillations. For eight
free fitting parameters, the maximum Δ𝜒2 between the two surfaces
translates into a 2.1𝜎 BAO detection. After reconstruction, the ac-
curate modelling of both RSD and non-linear clustering favours the
fiducial template against the no-wigglemodel rising the significance
of the BAO detection to 4.4𝜎.

Let us now focus on the estimate of the two parameters 𝐻 and
𝐷A derived from the dilation parameters. Equations (7, 8) Figure 10
shows the probability contours level of the bi-variate Gaussian that
best fits the marginalized likelihood. Contours and shaded areas
represent the 1, 2 and 3𝜎 confidence levels of the Gaussian before
(blue) and after (yellow) eFAM reconstructions. Best fitting values
are shown with a blue circle and yellow star, respectively. In the
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Figure 11. Two-dimensional marginalized maximum likelihood surfaces of 𝛼⊥, 𝛼‖ , before (left) and after (right) eFAM reconstruction. Solid surfaces describe
the best-fit model including the acoustic feature, while transparent surfaces depict the best-fit model without BAO (Eisenstein & Hu 1998).

likelihood analysis the two parameters 𝐻 (𝑟s/𝑟fids ) and 𝐷A (𝑟fids /𝑟s),
are measured at the redshift of the sample 𝑧 = 0.38. The cor-
responding fiducial values are 𝐻fid = 83(km/s)−1 (Mpc)−1 and
𝐷fidA = 1098Mpc.

Table 4 quantifies these considerations. The best fit value of
𝐷A is shifted by ∼ 3.5 per cent, comparably to what seen in the
analysis of the mock catalogues (Table 3. There, the effect of eFAM
was to increase the magnitude of 𝛼‖ , bringing it into an agreement
with the expected value. We thus assume that, similarly, eFAM
successfully removes systematic errors on 𝛼‖ , and hence on 𝐷A,
from the real dataset too. In support of this hypothesis, we note that
Ross17 (see Table 3 in Alam et al. (2017) where 𝐷M = 𝐷A (1− 𝑧))
found 𝐻 (𝑟s/𝑟fids) = (81 ± 2) (km s−1 Mpc−1) and 𝐷A (𝑟ss/𝑟s) =

(1096 ± 17)Mpc in their post-reconstruction analysis, which are
in best agreement with our post-reconstruction measurements. On
top of this, eFAM also reduces random errors. Relative errors on
𝐷A decrease from 𝜎𝐷A/𝐷A ' 3.5 per cent, to ' 2.6 per cent and
statistical uncertainties on 𝐻 decrease from 𝜎𝐻 /𝐻 ' 5 per cent to
' 3.6 per cent. We further discuss the amplitudes of the parameters
uncertainties in Section 8.

8 DISCUSSION AND CONCLUSIONS

In this study, we have applied the eFAM reconstruction algorithm to
a subset of the SDSS-DR12 Combined Sample of galaxies aiming
at assessing the performances of eFAM when applied to a real
dataset characterized by specific selection effects and observational
uncertainties.

This work is the follow-up of the study conducted in Sarpa
et al. (2019). There, we have appraised the performance of eFAM
using a somewhat idealized, simulated datasetswithO(106) objects,
similar in size to that of current and future spectroscopic redshift
surveys. The results of our past analysis have shown that the first im-
plementation of eFAM was indeed able to successfully reconstruct
the real-space positions and velocities of each object at any epochs,
and specifically at both the observed redshift and at a back-in-time
epoch in which density fluctuations were still evolving in the linear
regime. Urged by the rising need for accurate reconstruction tech-
niques able to enhance the signal-to-noise of the acoustic feature in
the two-point correlation function, we have focused or study on the
BAO scale. Despite being of high scientific interest, the application

of eFAM to the mere study of the BAO scale is a bit of a limitation.
Indeed, eFAM is a non-perturbative, non-linear technique designed
to describe non-linear self-gravitating systems, and thus it is able to
extract information from scales much smaller than the BAO one.

In the current study, we have repeated the original analysis
using a real dataset and a suite of realistic simulated catalogues. We
chose the SDSS-DR12 Combined Sample for three reasons. First of
all, its size and characteristics are representative of the state-of-the-
art surveys as well as next-generation, wide surveys such as DESI or
Euclid. Second, reconstruction techniques based on the Zel’dovich
approximation have been already applied to this dataset, mainly to
extract scientific information from the position and the amplitude
of the BAO peak in the two-point correlation function, providing us
with a reference for our results. When performing the comparison,
we must keep in mind that this constitutes a specific test, limited
to quasi-linear scales, where eFAM is supposed to perform just
as well as Zel’dovich-based reconstruction algorithms. Third, our
choice was encouraged by the public availability of a sufficiently
large number of realistic mock catalogues mimicking its clustering
properties. A large number of mocks is crucial to both calibrate our
reconstruction technique to the specific characteristics of the survey
and to estimate errors and their covariance.

To perform this analysis, we modified the eFAM algorithm to
be able to deal with all the specific properties of real datasets that are
not necessarily present in simulated catalogues. The first one is the
galaxy bias. The first implementation of eFAM implicitly assumes
that all the mass in the system is associated with discrete, visible
objects thanmaintain their identity when traced back in time. Nusser
et al. (1991) have proposed a method to modify this assumption to
include the linear bias. Here, we adopted an alternative approach.
We associated with each galaxy a statistical weigh accounting for
both the clustered dark matter component located at the galaxy
position and the smooth dark component filling the survey volume.
The inclusion of the smooth dark matter field is crucial to match
the average mass density within the survey with the cosmic mean
and hence to avoid the observed system to be seen as a local under-
density. Although we did not perform specific tests to evaluate the
goodness of this approach,we did not find any evidence of detectable
systematic errors introduced by this biasing scheme in any of the
validation tests we performed.

The second aspect we considered in the new implementation
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of eFAM is the gravitational influence of the unknown mass dis-
tribution lying outside the volume of the survey. The problem is
general. The lack of clustering information outside the survey vol-
ume prevents us to fully reproduce the bulk motions within the
survey, while the gravitational potential estimated from a finite and
possibly anisoropic volume induces deceptive tidal fields in the
proximity of the edges of the survey. In Sarpa et al. (2019), we were
able to minimize those effects by considering a spherical geometry
and discarding from the post-reconstruction analysis all the objects
lying in the proximity of the spherical surface. However, real surveys
are often characterized by more complicated geometry, hence mod-
elling the influence of external matter distribution for real datasets
is a serious problem. We proposed here a solution consisting of
a two-step procedure. First, we modelled the tidal field and assess
their impact under the assumption of a homogeneous isotropic mass
distribution outside the sample. Second, as in our original work, we
defined a buffer region near the survey’s edges. Objects in the buffer
region are accounted for in the eFAM reconstruction but excluded
from scientific analyses. We run several dedicated tests to validate
this procedure and chose the size and shape of the buffer region
such as to optimize the compromise between a meaningful statisti-
cal sampling and systematic uncertainties induced by tidal effects.
We proceeded as follows. eFAM is supposed to displace objects
from their observed redshift to their back-in-time real-space posi-
tion. When it does it successfully, it removes all the anisotropies in
the two-point correlation function due to RSD. In our tests, we found
that an imperfect removal of tidal effects would manifest itself as a
non-zero quadrupole moment on scales larger than the BAO peak.
One can then enlarge the buffer region until this spurious signal is
completely removed. The availability of realistic mock catalogues
is obviously of paramount importance to calibrate the procedure. It
is worth stressing that tidal field will become an even more relevant
issue with the advent of next-generation wide surveys. Indeed, to
minimize evolution effects, typical sub-samples used for scientific
analyses will have a depth along the radial direction much shorter
than the their transverse size. The impact of the tidal field will thus
play an important role in optimizing the shape and the volume of
the sample to be analyzed.

A distinctive trait of eFAM reconstruction is its ability to re-
construct the full orbit of the mass tracers, as opposed to solely
provide their positions at some fixed early epoch. We can thus use
eFAM to recover the real-space positions of objects at the observed
and high redshift, alike, effectively modelling both redshift distor-
tions and non-linear evolution. This is done by assuming a value for
the linear growth rate 𝑓 . The success of the reconstruction can be
then assessed by searching for residual anisotropy in the real-space
two-point correlation function of the galaxies. Our tests on themock
reveal a remarkably accuratemodelling of RSD. The values of 𝑓 and
Σs in the real-space 2PCFmeasured at the redshift of the sample are
consistent with zero. Besides, the eFAM reconstruction reduces by
65 per cent the damping of the acoustic oscillations due to late-time
non-linear clustering, Σ‖,⊥. Having successfully removed RSD, we
can set the parameters 𝑓 and Σs equal to zero when modelling the
2PCF of galaxies at their back-in-time reconstructed positions, ef-
fectively decreasing the number of free parameters in the fit. Further-
more, we found no need to include the additional shape parameters
𝐵0,2 used in Ross17 to fit the 2PCF. As a result, the back-in-time
eFAM reconstructed two-point correlation function can be well fit
with an 11-parameter model over the range [50, 150]ℎ−1Mpc, to
be compared with the 15-parameter model used to fit the measured
2-point correlation function in redshift-space.

A final, positive characteristic of eFAM worth stressing is

its non-linear nature which allows us to push the analyses down
to scales that are not accessible to Zel’dovich-based reconstruc-
tions. This fact is already evident from the wide separation range,
[50, 150]ℎ−1Mpc, used in our analysis. However, our validation
tests show that one can safely push the analysis down to separa-
tions as small as 25ℎ−1Mpc without introducing systematic errors.
Strictly speaking, in this work we only checked this to be true for
the estimate of the dilation parameters. However, the visual inspec-
tions of the clustering wedges reveal no obvious departures from
model predictions on those scales. In fact, we found that RSD are
successfully removed and models fit the reconstructed 2PCF up to
180ℎ−1Mpc.

We conclude by summarizing the main results of our analysis:

• The tests performed with 400 SDSS-DR12 mock catalogs
show that eFAM successfully reconstruct the real-space position
of galaxies at the mean redshift of the sample, 𝑧 = 0.38. As a result,
redshift-space distortions are removed from the two-point corre-
lation signal in the separation range [50, 180]ℎ−1Mpc. On larger
scales, we detect non-zero quadrupole moments that we attribute
to the gravitational pull of the inhomogeneous mass distribution
outside the survey volume. The impact of these external tidal field
can be reduced by excluding objects near the edge of the survey.
The size of this exclusion region should be set by compromising
between number of objects and range of separation to be used in
the clustering analysis. Ultimately it depends on the volume, shape,
and redshift of the sample. The lower bound in separation, set to
50ℎ−1Mpc, simply represents a conservative choice. In fact, we
showed that it can be safely reduced to 25ℎ−1Mpc without compro-
mising our ability to estimate the dilation parameters, 𝛼⊥, ‖ , and,
therefore, the values of 𝐻 and 𝐷A.

• eFAM reconstruction allows us to increase the precision of
both 𝛼⊥, ‖ by ∼ 3 per cent. This is a significant reduction which,
however, is smaller in magnitude than the one obtained by Ross17
using the Zel’dovich approximation to perform the back-in-time
reconstruction. This is somewhat surprising since onewould expect,
based on the results of Sarpa et al. (2019), which the quality of
the eFAM reconstruction should be higher than that of Zel’dovich
approximation. Part of this discrepancy can be explained by the
very nature of the analysis. Here, we are focusing on the 𝛼⊥, ‖
parameters that are mainly determined by the reconstruction quality
of the BAO peak, and we do not eFAM to perform significantly
better than Zel’dovich on these scales. However, we do not expect
worse performances either, especially considering that the number
of free parameters used in our model for the reconstructed 2PCF is
smaller than the one employed in Ross17. We believe that the larger
eFAMuncertainty, that are estimated from themock catalogs, reflect
the fewer catalogs (400) and reduced volume (north galactic cap)
used to evaluate the covariance matrix with respect to that (1000,
both north and south caps) used by Ross17. To corroborate this
hypothesis, we notice that Kazin et al. (2013) performed a similar
analysis estimating the values of the dilation parameters and their
uncertainties using 600 rather than 1000 mocks. The uncertainties
presented in their work, 𝜎𝐻 /𝐻 = 5.8 per cent and 𝜎𝐷A/𝐷A = 3.1
per cent (see Table 3), are overestimated with respect Ross17 and
comparable with ours.

• From the clustering wedges of the back-in-time reconstructed
position of the SDSS-DR12 galaxies, we have estimated the Hub-
ble parameter and the angular diameter distance at the effective
redshift of the sample, normalized to their values in the fiducial
cosmological model. We found 𝐷A (𝑟fids /𝑟s) = 1090 ± 29 Mpc and
𝐻 (𝑟s/𝑟fids ) = 83±3(km s−1Mpc−1). The eFAM reconstruction sig-
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nificantly reduces the error in these estimates by 35 and 39 per cent,
respectively, compared to the case in which the analysis is carried
out in redshift-space, i.e. before reconstruction. These results are in
good agreement with those of previous, similar analyses performed
on the same datasets (Ross17,Vargas-Magaña et al. (2018)).

The results presented in this work show that eFAM can be suc-
cessfully applied to current and future spectroscopic datasets with
O(106) objects. The enhancement of the clustering signal-to-noise
at the BAO peak is comparable to that obtained by the popular
reconstruction techniques that assume Zel’dovich approximation.
However, eFAM also succeeds in recovering the correlation sig-
nal well into non-linear regime, as demonstrated by its ability to
recover the correct shape and amplitude of the galaxy-galaxy cor-
relation function down to separation as small as 25ℎ−1Mpc. We
conclude that eFAM provides a back-in-time reconstruction method
that, although not quite as fast as those based on Zel’dovich ap-
proximation, can be regarded as a complementary tool to extract
scientific information from the numerous small-scale modes that
cannot be accessed by standard reconstruction techniques.
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APPENDIX A: CORRECTION FOR SURVEY
GEOMETRY: ACCURACY TEST

To asses the validity of the procedure described above, we applied
eFAM on a uniform random catalogue with same sky-coverage and
redshift proportions of the SDSS-DR12 survey. Figure A1 depicts
the reconstructed velocity field obtained neglecting the external
contribution (top panel) and including the correction for the survey
geometry (bottom panel). As expected, in the first case the veloc-
ity field is dominated by a spurious coherent bulk-flow generated
by the non-spherically symmetry of the survey. Adopting the cor-
rect estimation for 𝜙ex, the reconstructed velocity field is instead
characterized by almost vanishing and randomly oriented peculiar
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Figure A1. 2D velocity map for the BOSS-like random distribution. Top
panel velocity field reconstructed without correcting the external tidal field;
the bulk-flow induced by the shape of the survey is dominant. Bottompanel:
velocity field reconstructed including the external tidal field; the geometrical
bulk flow is successfully removed.
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Figure A2.Probability distribution function of two components of the recon-
structed peculiar velocities for the BOSS-like random distribution. Before
accounting for the external tidal field (top-right) the velocity distribution is
characterized by a strong velocity dispersion of about ∼ 1400 km/s, describ-
ing the spurious in-fall of particles induced by the survey geometry. With
the inclusion of the external field (bottom-left) the rms of the velocities is
of about ∼ 140 km/s, proving the efficiency of the method in removing the
bulk-flow.

velocities. This illustrates the efficiency of the correction in erasing
the spurious motions and, more importantly, reassuring from the
presence of additional systematics.

A more quantitative description of the efficiency of the cor-
rection is provided by Figure A2, which illustrates the PDF of two
components of the peculiar velocities. Before applying the cor-
rection (blue), the reconstructed PDF is characterized by a wide
dispersion accounting for the artificial in-fall of particles and, for
the V𝑧 component, by a spurious bulk flow component. With the
new method, the rms of the velocities is reduced by 90 per cent and
the bulk flow removed, proving the efficacy of the method.

The improvement in the velocity reconstruction due to the ex-
ternal field correction can be more quantitatively assessed through
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Figure A3. Accuracy tests for eFAM velocity reconstruction applied on a
non-spherically symmetric survey. “True” vs. reconstructed peculiar veloc-
ities for one Cartesian component before (left) and after (right) including
the external tidal field computed from a random distribution (results are
similar for other components). Along every Cartesian direction, a perfect
reconstruction would give a linear regression 𝑉Nbody = 𝑚𝑉eFAM + 𝑞 with
slope 𝑚 = 1 , no residual bulk velocity (𝑞 = 0), and no scatter (solid line).
The reconstructed peculiar velocities before including the tidal field are not
correlated with the true ones, having a significantly larger velocity disper-
sion with respect to the N-body velocities. After including the external tidal
field the reconstructed peculiar velocities are instead well-correlated with
the true ones.

the velocity-velocity comparison illustrated in Figure A3. Before
applying the geometrical correction (left panel), the reconstructed
velocities are completely uncorrelatedwith the “true” ones, showing
high-velocity tails which don’t find correspondence in the 𝑁-body
field. The correlation is efficiently restored after including the ex-
ternal field (right panel), yielding a precise reconstruction.
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