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ABSTRACT

Among the possible extensions of general relativity that have been put forward to address some long-standing issues in our under-
standing of the Universe, scalar-tensor theories have received a lot of attention for their simplicity. Interestingly, some of these predict
a potentially observable non-linear phenomenon, known as spontaneous scalarisation, in the presence of highly compact matter dis-
tributions, as in the case of neutron stars. Neutron stars are ideal laboratories for investigating the properties of matter under extreme
conditions and, in particular, they are known to harbour the strongest magnetic fields in the Universe. Here, for the first time, we
present a detailed study of magnetised neutron stars in scalar-tensor theories. First, we showed that the formalism developed for the
study of magnetised neutron stars in general relativity, based on the “extended conformally flat condition”, can easily be extended
in the presence of a non-minimally coupled scalar field, retaining many of its numerical advantages. We then carried out a study of
the parameter space considering the two extreme geometries of purely toroidal and purely poloidal magnetic fields, varying both the
strength of the magnetic field and the intensity of scalarisation. We compared our results with magnetised general-relativistic solutions
and un-magnetised scalarised solutions, showing how the mutual interplay between magnetic and scalar fields a↵ect the magnetic and
the scalarisation properties of neutron stars. In particular, we focus our discussion on magnetic deformability, maximum mass, and
range of scalarisation.

Key words. gravitation – stars: magnetic field – stars: neutron – magnetohydrodynamics (MHD) – methods: numerical –
relativistic processes

1. Introduction

The recent observation of gravitational and electromagnetic radi-
ation coming from the merger of a binary neutron star system
(Abbott et al. 2017a) has given us a new opportunity to test the
theory of general relativity (GR) in the strong-field regime (Will
2014), beyond the vacuum case of binary black hole (BH) merg-
ers (Abbott et al. 2016), and to probe the physics of compact
objects in unprecedented detail (Abbott et al. 2017b,c), fostering
a renewed interest in neutron stars (NSs) as possible probes of
new gravitational physics.

Indeed, it is well known that our understanding of the Uni-
verse lacks an explanation for what is called the “dark sector”.
While a possible solution is to assume the existence of dark matter
and dark energy (Trimble 1987; Peebles & Ratra 2003), a di↵erent
approach is to consider the possibility that GR is not the definitive
theory of gravity. Moreover, on a more theoretical basis, a consis-
tent quantum theory of GR does not yet exist (Bars & Pope 1989;
Deser 2000). This led to the development of theoretical frame-
works [e.g. the hypothesis of Strings (Green et al. 1988)] which
try to give an explanation of the fundamental interactions which
is di↵erent from the mainstream one, leading to a modification, in
the low energy limit, of GR itself.

Many attempts have been made to extend GR to account
for such issues, giving rise to many alternative theories of grav-
ity (Capozziello & de Laurentis 2011). Among the most stud-
ied are: f (R) theories (Buchdahl 1970; De Felice & Tsujikawa
2010), where deviations from GR are introduced by modify-

ing the functional dependence of the gravitational Lagrangian
on the Ricci scalar R; Gauss-Bonnet gravity (Lovelock 1971),
which increases the dimensionality of the spacetime; scalar-
tensor theories (STTs) – to some extent equivalent to f (R) theo-
ries (Sotiriou 2006) – which modify gravity with respect to GR
replacing the gravitational constant G with a dynamical scalar
field. STTs have been widely studied in the past (Brans & Dicke
1961; Nordtvedt 1970; Wagoner 1970; Matsuda & Nariai 1973;
Damour & Esposito-Farèse 1993, 1996; Novak 1998b; Fujii &
Maeda 2003; Faraoni 2004; Shibata et al. 2014; Langlois et al.
2018; Gong et al. 2018; Quiros 2019; Zhang et al. 2019) and
are among the most promising alternatives to GR. This is due
to a number of reasons: they are the most simple extensions
of GR (Sect. 1.2 Papantonopoulos 2015); they are predicted to
be the low-energy limit of some possible theories of Quantum
Gravity (Damour et al. 2002); most of them respect the weak
equivalence principle (WEP) – that is they are metric theories
of gravity (Will 2014) – which has been extremely well tested
(Touboul et al. 2017). They also seem to be free of some of the
pathologies a↵ecting other extensions of GR (De Felice et al.
2006; De Felice & Tanaka 2010; Bertolami & Páramos 2016).
On the other hand, STTs violate the strong equivalence principle
(SEP), which means that tests using self-gravitating bodies are
ideal to constrain them (Barausse 2017).

The foundations of STTs were laid by Brans & Dicke
(1961) in a seminal paper, in which the authors modified the
Einstein-Hilbert action of GR attempting to bring it in
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conformity with Mach’s principle by replacing the gravitational
constant G by a scalar field non-minimally coupled to the space-
time metric, giving birth to the Jordan-Fierz-Brans-Dicke the-
ory (BD). Unfortunately, observational tests in the Solar System
seem to have proved BD wrong, unless its only parameter is
precisely fine tuned, in contrast with the principle of natural-
ness (Schärer et al. 2014). In this scenario, the study of NSs
is especially important, because since the first work on mass-
less mono-scalar STTs (Damour & Esposito-Farèse 1993), a
non-perturbative strong field e↵ect has been predicted, allowing
the scalar field to exponentially grow in magnitude inside com-
pact material objects. Even generalisations of STTs to massive
scalar fields and other gravitational theories have been shown
to be subject to a similar phenomenon (Salgado et al. 1998;
Ramazanoğlu & Pretorius 2016; Ramazanoğlu 2017; Silva et al.
2018; Andreou et al. 2019). Scalarisation can happen in various
contexts: binary systems of merging NSs can undergo a “dynam-
ical scalarisation” process (Barausse et al. 2013), in which the
initially non-scalarised NSs become scalarised once they get
closer to each other; again, in a binary NS system, one scalarised
star can prompt an “induced scalarisation” on its non-scalarised
companion (Barausse et al. 2013); or even in an isolated NS sys-
tem, where “spontaneous scalarisation” can develop (this was
the first discovered non-perturbative strong field e↵ect in STTs,
Damour & Esposito-Farèse 1993). The importance of scalari-
sation is that STTs which include such e↵ects predict strong
deviations from GR only inside compact objects, while allowing
the tight observational constraints in the weak-gravity regime to
be fulfilled (Shao et al. 2017). As of today, the strongest limit
on the strength of spontaneous scalarisation for massless STTs
comes from observations of pulsars in binary systems, in partic-
ular in systems characterised by a large mass di↵erence between
the two stars, where STTs predict the emission of dipole scalar
waves, potentially observable in the dynamics of the inspiral
(Freire et al. 2012; Will 2014; Shao et al. 2017; Anderson et al.
2019). These, however, are binaries with large separations and
the constraints do not apply in the case of screening (Yazadjiev
et al. 2016; Doneva & Yazadjiev 2016).

Scalarisation modifies the relation between the mass and
radius of the NS and its central density. In general, scalarised
NSs have larger radii and higher maximum masses than the cor-
responding GR solutions computed with the same equation of
state (EoS). Moreover, scalarisation is more e↵ective at higher
compactness. The presence of a strong scalar charge could, in
principle, have important consequences on the phenomenology
of NSs, even if many of these e↵ects might be degenerate with
the EoS. A di↵erent dependence of the mass and radius from
the central density could lead to appreciable changes in the
thermal evolution of NSs (Dohi et al. 2020), given the depen-
dence of many cooling processes on the density itself (Yakovlev
et al. 2005). Changes in radii could potentially be observable
in the distribution function of millisecond pulsars (Papitto et al.
2014). The same holds for the distribution of NS masses, and the
expected maximum mass (the recent measure of a 13 km radius
for a 1.44 M� NS by NICER, Miller et al. 2019, suggests larger
NS radii than previously thought, Özel & Freire 2016). Spon-
taneous scalarisation might impact the dynamics and evolution
of the post merger remnant of binary NS coalescence (Raithel
et al. 2018; Abbott et al. 2017). Indeed, there is some observa-
tional evidence suggesting the presence of long lived NSs power-
ing the X-ray afterglow of Short-GRBs (Rowlinson et al. 2013),
suggesting values of the maximum NS mass &2.2 M� (Gao et al.
2016; Margalit & Metzger 2017). Scalar fields can a↵ect the
deformability of NSs (Doneva et al. 2013, 2018), leaving an

imprint in the pre-merger inspiral, and in the spin-down his-
tory of millisecond proto-magnetar as possible engines of GRBs
(Dall’Osso et al. 2009). Scalarised NSs di↵er in the frequency
of their normal modes (Sotani & Kokkotas 2005). On top of
this STTs predicts also a new scalar wave emission, potentially
detectable with future gravitational waves (GWs) observatories
(Gerosa et al. 2016; Hagihara et al. 2020).

So far, only non-magnetised models of NSs have been stud-
ied in STTs in the full non-linear regime (see e.g. Suvorov 2018
for a perturbative approach to the magnetised scenario). Most of
them focus on static (Damour & Esposito-Farèse 1993; Harada
1998; Novak 1998a; Taniguchi et al. 2015; Anderson & Yunes
2019; Doneva & Yazadjiev 2020) or slowly rotating (Damour
& Esposito-Farèse 1996; Sotani 2012; Pani & Berti 2014; Silva
et al. 2015) stars, while recently some work has been done for
rapidly (Doneva et al. 2013; Doneva & Yazadjiev 2016; Pappas
et al. 2019) and di↵erentially (Doneva et al. 2018) rotating mod-
els. NSs have also been studied beyond the massless limit, and in
the presence of a screening potential (Doneva & Yazadjiev 2016,
2020; Yazadjiev et al. 2016; Brax et al. 2017; Staykov et al. 2018,
2019). However, NSs are known to contain extremely power-
ful magnetic fields, inferred to be in the range 108�12G for nor-
mal pulsars and up to 1016G at the surface of magnetars, while
newly formed proto-NSs are hypothesised to store magnetic
fields as high as 1017�18G in their core (Bonanno et al. 2003;
Rheinhardt & Geppert 2005; Burrows et al. 2007; Spruit et al.
2009; Ferrario et al. 2015; Popov 2016; see also Price &
Rosswog 2006; Kawamura et al. 2016; Ciolfi et al. 2019 for
simulations showing remnants of binary NSs merger harboring
such intense magnetic fields). These magnetic fields substan-
tially a↵ect the electromagnetic phenomenology of NSs, can act
as a potentially detectable source of deformation, can modify the
torsional oscillations of NSs and can also alter the cooling prop-
erties of the crust. This shows that an accurate modelling of the
magnetised structure of NSs is fundamental for a correct under-
standing of their properties.

In GR, the first magnetised model of NS dates back to
Chandrasekhar & Fermi (1953). Throughout the years,
many magnetised models were proposed (Ferraro 1954; Roberts
1955; Prendergast 1956; Woltjer 1960; Monaghan 1965, 1966;
Roxburgh 1966; Ostriker & Hartwick 1968; Miketinac 1975),
up to more recent works (Tomimura & Eriguchi 2005; Yoshida
et al. 2006; Fujisawa & Eriguchi 2015). Due to the non-linearity
of the general-relativistic magnetohydrodynamic (GRMHD)
equations, an accurate study of the structure of NSs must be
done in a numerical way, and only recently numerical results in
the full GR regime have appeared. Many of these models focus
on either purely toroidal (Kiuchi & Yoshida 2008; Kiuchi et al.
2009; Frieben & Rezzolla 2012) or purely poloidal (Bocquet
et al. 1995; Konno 2001; Yazadjiev 2012) magnetic field config-
urations [see also Pili et al. (2014, 2017)]. However, such mod-
els are shown to develop an instability which causes the mag-
netic field to rearrange in a mixed configuration, called Twisted
Torus, which is roughly axisymmetric (Prendergast 1956; Tayler
1973; Wright 1973; Braithwaite & Nordlund 2006; Braithwaite
& Spruit 2006; Braithwaite 2009; Lasky et al. 2011). Twisted
Torus configurations have been studied only very recently (Ciolfi
& Rezzolla 2013; Pili et al. 2014; Uryū et al. 2014; Bucciantini
et al. 2015; Uryū 2019), because they require to solve a large set
of coupled non-linear elliptic PDEs, which can be numerically
unstable.

In this paper, we present the first numerical computations
of a magnetised NS in a STT of gravity in the full non-linear
regime. We wish to investigate how the mutual interplay of a
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strong magnetic field and a scalar field modifies both the mag-
netic properties of NSs, with respect to GR, and their scalar-
isation properties with respect to the un-magnetised case. For
this reason we are going to provide a characterisation as com-
plete as possible of our equilibrium configurations, including a
parametrisation of their deformation, and to carry a comparison
with GR, not just in terms of global quantities but also in the
specific internal distribution of density and magnetic field. The
purpose is to quantify for example how much the presence of
a scalar field a↵ects the magnetic deformability of NSs, which
is a key parameter to evaluate the relative importance of GW
vs electromagnetic dipole emission in the early spin-down of
proto-NSs (Dall’Osso et al. 2009), and to assess the validity of
the millisecond-magnetar model for Long GRBs (Metzger et al.
2011). On the other hand, we also want to evaluate if the pres-
ence of a magnetic field favours or disfavours the scalarisation
of NSs, and how it changes the scalarisation range, or the max-
imum NS mass. For this reason we limit our analysis only to
the two extreme cases of purely poloidal or purely toroidal mag-
netic fields, neglecting rotation. In this sense our work is both an
extension of the existing literature on magnetised models of NSs
in GR, and of un-magnetised models in STTs.

We also take the opportunity to introduce a computational
strategy, which, for the sake of simplicity, we discuss here just
in the case of non-rotating NSs, but that can easily be gener-
alised to rotating and even dynamical regimes and that allows
a straightforward extension of well established algorithms for
GRMHD to handle MHD in STTs. Our algorithm is an extension
of the well-tested XNS solver (Pili et al. 2014, 2017) to the case
of a generic STT. It is based on the eXtended Conformally Flat
Condition (XCFC) for the metric (Wilson et al. 1996; Wilson &
Mathews 2003; Cordero-Carrión et al. 2009; Bucciantini & Del
Zanna 2011), which, even if not formally exact, has proved to
be highly accurate for rotating NSs (Camelio et al. 2019). We
wish to point here that the accuracy of the solution with respect
to full GR depends on which parameter, that is the central rota-
tion rate or the surface ellipticity, is held fixed in the compari-
son (larger deviations have been found for di↵erentially rotating
models having the same surface ellipticity Iosif & Stergioulas
2014). The XCFC system has several advantages from a numer-
ical point of view. These, as we are going to show, are retained
also in STTs, and that can easily be adapted to the more complex
case of time dependent dynamical evolution.

This paper is structured as follows. In Sect. 2 we introduce
MHD within STTs, both from a Lagrangian point of view, and
within the 3+1 formalism. In Sect. 3 we show how the formalism
developed to model magnetised NSs in GR can be extended to
STTs. In Sect. 4 we present the new version of XNS for STTs. In
Sect. 5 we illustrate and discuss our results for various magnetic
configurations and choice of STT and, finally, we conclude in
Sect. 6.

2. Scalar-tensor theories and 3+1

In the following we assume a signature {�,+,+,+} for the space-
time metric and use Greek letters µ, ⌫, �,. . . (running from 0 to
3) for 4D spacetime tensor components, while Latin letters i, j,
k,. . . (running from 1 to 3) are employed for 3D spatial tensor
components. Moreover, we use the dimensionless units where
c = G = M� = 1, and we absorb the

p
4⇡ factors in the definition

of the electromagnetic quantities. Variables denoted with a tilde,
·̃, are calculated in the Jordan frame, while quantities denoted
with a bar, ·̄, are expressed in the Einstein frame.

2.1. STT frames and ideal MHD

The most general action S J that describes the mutual interplay
of an ideal magnetised fluid at thermodynamic equilibrium with
a gravitational space-time containing one scalar field ' non-
minimally coupled to the metric g̃µ⌫, is invariant under space-
time di↵eomorphisms, is at most quadratic in the derivatives of
the fields, and which satisfies the WEP, can be written as the
sum of two terms. The first term, encoding the information about
the gravitational fields, S̃ g[g̃µ⌫,'], according to the “Bergmann-
Wagoner formulation” (Bergmann 1968; Wagoner 1970; Berti
et al. 2015) is

S̃ g =
1

16⇡

Z
d4x

p
�g̃

"
'R̃ �

!(')
'
r̃µ'r̃

µ' � U(')
#
, (1)

where g̃ is the determinant of the spacetime metric g̃µ⌫, r̃µ its
associated covariant derivative, R̃ its Ricci scalar, while!(') and
U(') are, respectively, the coupling function and the potential of
the scalar field '. The second term S̃ p[g̃µ⌫, Ñµ, Ãµ, "̃, s̃] contains
information on the other physical fields and it is a function of
the mass current density Ñµ = ⇢̃ũµ, expressed as a function of
the rest mass density ⇢̃ and four-velocity ũµ, the specific entropy
s̃, the internal energy density "̃(⇢̃, s̃), and the electromagnetic
four-potential Ãµ. For an ideal fluid neglecting polarisation, mag-
netisation (Chatterjee et al. 2015; Franzon et al. 2016), dynamo
or resistivity (Bucciantini & Del Zanna 2013; Del Zanna et al.
2016; Del Zanna & Bucciantini 2018; Tomei et al. 2020), it is

S̃ p =

Z
d4x

p
�g̃


"̃(ÑµÑµ, s̃) + ⇣r̃µÑµ + ⌘Ñµr̃µ s̃

F̃µ⌫F̃µ⌫ + ⌧⌫ÑµF̃µ⌫
�
, (2)

where F̃µ⌫ := r̃µÃ⌫ � r̃⌫Ãµ is the Faraday tensor, and ⇣, ⌘, ⌧⌫, are
Lagrangian multipliers that enforce mass conservation, entropy
conservation, and the ideal MHD condition ũµF̃µ⌫ = 0 respec-
tively (Hawking & Ellis 1973; Brown 1993; Bekenstein & Oron
2001).

The frame where the action reads S J = S̃ g + S̃ p is called the
“Jordan frame” (J-frame). Variation of the action with respect
to the various fields (and Lagrangian multipliers) leads to the
Euler-Lagrange field equations (and to the constraints). In par-
ticular, variations with respect to the four potential Ãµ lead to the
Maxwell equation:

�S J/�Ãµ = 0 ) r̃µF̃µ⌫ = �J̃⌫, (3)

where J̃⌫ is the electromagnetic four-current. Variations with
respect to the matter four-current Ñµ lead, ultimately, to the fluid
Euler equation and to the momentum-energy conservation law:

�S J/�Ñµ = 0 ) r̃µT̃
µ⌫
p = 0, (4)

where the energy momentum tensor is

T̃ µ⌫p = [⇢̃ + "̃ + p̃]ũµũ⌫ + p̃g̃µ⌫ + F̃µ�F̃⌫�
�

1
4

F̃�F̃�g̃
µ⌫ (5)

and p̃ is the pressure. Given that the scalar field does not enter S̃ p,
the equations describing the behaviour of the physical quantities
are una↵ected by the presence of the scalar field. Introducing
the Hodge dual of the Faraday tensor F̃?µ⌫ = 1

2 ✏̃
µ⌫�F̃�, where

✏̃µ⌫� = �(�g̃)1/2[µ⌫�] is the Levi-Civita pseudo-tensor and
[µ⌫�] is the alternating Levi-Civita symbol, one can write the
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energy momentum tensor of ideal MHD in terms of the comov-
ing magnetic field b̃µ = ũ⌫F̃?µ⌫ as

T̃ µ⌫p =
⇣
⇢̃h̃ + b̃2

⌘
ũµũ⌫ � b̃µb̃⌫ +

 
p̃ +

1
2

b̃2
!
g̃µ⌫, (6)

where b̃2 = b̃µb̃µ and h̃ = 1 + ("̃ + p̃)/⇢̃ is the specific enthalpy.
On the other hand, variations of the action with respect to the
metric lead to the generalisation of Einstein’s field equations:

�S J/�g̃µ⌫ = 0 ) G̃µ⌫ + G̃µ⌫s = 8⇡T̃ µ⌫p , (7)

where G̃µ⌫ is the standard Einstein tensor, while G̃µ⌫s contains the
contribution from the non-minimally coupled scalar field. Tensor
G̃µ⌫s contains higher-order derivatives of the scalar field, and its
associated energy density is not positively defined (Santiago &
Silbergleit 2000). As a consequence, in the J-frame the general-
isation of Einstein’s field equations has a di↵erent mathematical
structure than in GR, implying that standard solution techniques
and algorithms developed for GR cannot be naively applied.
However, it is possible to show (Santiago & Silbergleit 2000)
that, by performing a conformal transformation of the metric,

ḡµ⌫ := 'g̃µ⌫, (8)

and introducing a new scalar field � related to ' according to

d�
d ln'

:=

r
!(') + 3

4
, (9)

the gravitational part of the action becomes

S̄ g =
1

16⇡

Z
d4x

p
�ḡ

h
R̄ � 2r̄µ�r̄µ� � V(�)

i
, (10)

where ḡ is the determinant of the spacetime metric ḡµ⌫, r̄µ
its associated covariant derivative, R̄ its scalar curvature, and
V(�) = U(')/'2 the potential of the scalar field �. The frame
where the gravitational part of the action reads as in Eq. (10)
is known as the “Einstein frame” (E-frame). In the E-frame the
generalisation of Einstein’s field equations reads

Ḡµ⌫ = 8⇡
⇣
T̄ µ⌫s + T̄ µ⌫p

⌘
, (11)

where T̄ µ⌫p = T̃ µ⌫p /'
3 and the contribution from the scalar field

now has the form

T̄ µ⌫s =
1

4⇡

"
r̄
µ�r̄⌫� �

1
2
ḡµ⌫r̄��r̄

��

#
. (12)

It is evident that in the E-frame the metric field equations are
equivalent to those of GR, and the scalar field acts only as an
extra energy-momentum source term. However, this conformal
transformation a↵ects also the physical part of the action S̄ p,
redefining both the metric (and its covariant derivative) but also
the physical fields (e.g. the E-frame energy density is now a
function also of the scalar field �). As a result r̄µT̄ µ⌫ , 0,
and r̄µ(⇢̄ūµ) , 0. Interestingly Maxwell equations retain their
form, as expected from their pre-metric nature (Cartan 1986; van
Dantzig & Dirac 1934; Delphenich 2005). As a consequence,
in the E-frame standard methods, techniques, and algorithms
developed in MHD, based on the conserved nature of the var-
ious physical quantities, and the locality of the EoS, cannot be
naively applied.

In the E-frame one can also derive an equation for the scalar
field by varying the action with respect to �,

r̄µr̄
µ� = �4⇡↵sT̄p, (13)

where T̄p := ḡµ⌫T̄
µ⌫
p = 3p̄ � "̄ � ⇢̄ and

↵s(�) := �
d ln'(�)

2d�
· (14)

We note that the only direct sources of a massless scalar field
are those physical fields with a non-vanishing trace of the
energy-momentum tensor; as such, the EM field is not a direct
source of the scalar field, and for the same reason purely met-
ric black holes in STTs are undistinguishable from those in GR
(Hawking 1972; Berti et al. 2015). Analogously, in the ultra-
relativistic asymptotically free regime, " + ⇢ = 3p and the same
considerations apply.

This suggests that a simultaneous use of the E-frame, to
compute the metric and scalar field, and of the J-frame, to com-
pute the physical field, by performing the conformal transfor-
mations between the two whenever necessary, will enable us to
easily extend the standard techniques of GRMHD to the case of
STTs.

2.2. 3+1 decomposition

According to the 3+1 formalism (Alcubierre 2008; Gourgoulhon
2012), any globally hyperbolic spacetime admits a foliation with
a family of spacelike hypersurfaces ⌃t with normal timelike
vector nµ (which is, by definition, the velocity of the so-called
“Eulerian observer”, nµnµ = �1). The three-metric induced on ⌃t
is �µ⌫ = gµ⌫ + nµn⌫ (and the induced rank-3 Levi-Civita pseudo
tensor is ✏ i jk = ✏ i jkµnµ). Calling xµ = [t, xi] the coordinates
adapted to the foliation, the generic line element takes the form

ds2 = �↵2dt2 + �i j
⇣
dxi + �idt

⌘ ⇣
dx j + � jdt

⌘
, (15)

where ↵ is the lapse function and �i is the shift vector. If �i = 0,
the spacetimes is said to be static. nµ and �µ⌫ allow one to project
any tensor according to the foliation. The relation between the
E-frame Eulerian observer and J-frame one is: ñµ = An̄µ, �̃µ⌫ =
A

2�̄µ⌫, where we have introduced the conformal function A =
1/

p
'(�) coupling the two frames.

The standard 3+1 decomposition of any vector is

Uµ = Uknµ + Uµ
?
, (16)

where Uk = �nµUµ and nµU
µ
?
= 0, while any rank-2 symmetric

Xµ⌫ and antisymmetric Aµ⌫ tensor can be written as

Xµ⌫ = Yn⌫n⌫ + Zµn⌫ + Z⌫nµ +Wµ⌫, (17)

Aµ⌫ = Cµn⌫ +C⌫nµ + ✏µ⌫�D�n, (18)

where nµZµ = 0 = nµWµ⌫ and nµCµ = nµDµ = 0. Recalling that
the relations between the J-frame and E-frame physical energy-
momentum and Faraday tensors are A6T̃ µ⌫ = T̄ µ⌫ and A4F̃µ⌫ =
F̄µ⌫, one can easily recover the following relations among the
various projections:

�̃ = �ñµũµ = �n̄µūµ = �̄, (19)

Aṽ j = �̃ j
µAũµ = �̄ j

µūµ = v̄ j, (20)

A
4Ẽp = A

�2ñµñ⌫A6T̃ µ⌫p = n̄µn̄⌫T̄
µ⌫
p = Ēp, (21)

A
5S̃ j

p = �A
�1ñµ�̃

j
⌫A

6T̃ µ⌫p = �n̄µ�̄
j
⌫T̄
µ⌫
p = S̄ j

p, (22)

A
6W̃i j

p = �̃
i
µ�̃

j
⌫A

6T̃ µ⌫p = �̄
i
µ�̄

j
⌫T̄
µ⌫
p = W̄i j

p , (23)

A
3B̃µ = A4F̃?µ⌫ñ⌫A�1 = F̄?µ⌫n̄⌫ = B̄µ, (24)

A
3Ẽµ = A4F̃µ⌫ñ⌫A�1 = F̄µ⌫n̄⌫ = Ēµ, (25)
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showing, for example, that the Lorentz factor � is the same in the
two frames. The energy conservation law in J-frame, r̃µT̃ µ⌫ = 0,
together with the mass conservation r̃(⇢̃ũµ) = 0 and Maxwell
equations, can be cast into a system for the evolution of the
projected quantities Ẽp, S̃

j
p, B̃µ, Ẽµ, once an EoS and a closure

for the electromagnetic currents (e.g. the Ideal MHD conditions)
are provided, according for example to Del Zanna et al. (2007)
and Bucciantini & Del Zanna (2011). Then, the above equations
allow to rescale those quantities to the E-frame, where they are
used to solve the 3+1 evolutionary equations for the metric and
the scalar field. For this purpose one needs also the 3+1 projec-
tion of the latter. This is only done in the E-frame, given that it
is not needed in the J-frame, according to:

r̄
µ� = Pn̄µ + Qµ , (26)

Ēs = n̄µn̄⌫T̄
µ⌫
s = Q2 + P2 , (27)

S̄ j
s = �n̄µ�̄

j
⌫T̄
µ⌫
s = PQj , (28)

W̄i j
s = �̄

i
µ�̄

j
⌫T̄
µ⌫
s = QiQj + (Q2 + P2)�̄i j , (29)

where Qµ is purely spatial and Eq. (13) can also be cast into a set
of evolutionary equations for P and Qi (Salgado 2006; Salgado
et al. 2008).

From now on, for the sake of clarity, and for ease of reading,
we will drop the ·̄, ·̃ notation. All quantities referring either to
the metric or the scalar field are assumed to be taken in the E-
frame, while the MHD and fluid ones are to be considered in the
J-frame. Whenever necessary, in case of possible ambiguity, the
bar and tilde notation will be restored to specify the frame of
reference for the given quantity.

3. Static magnetised configurations

For the problem we are interested in, we chose spherical-like
coordinates xµ = [t, r, ✓, �] and considered only configurations
that are stationary and axisymmetric. This means that there exist
two commuting Killing vectors, the timelike tµ = (@t)µ and the
spacelike �µ = (@�)µ (Carter 1970, 2009, 2010). These two vec-
tors span a timelike two-plane ⇧ = Vect(tµ, �µ). Any vector
Vµ 2 ⇧ is said to be toroidal, and takes the form Vµ = cttµ+c��µ;
instead, it is said to be poloidal if it lies in the spacelike two-
plane orthogonal to ⇧. Given the generalised Einstein’s equa-
tions for the metric, Eq. (11), if both the scalar and physical
energy-momentum tensors obey the relations

tµT̄ µ[⌫t��] = 0,

�µT̄ µ[⌫t��] = 0,
(30)

where the square brackets mean anti-symmetrisation with
respect to the enclosed indices, then the spacetime has the addi-
tional property of being “circular” (Kundt & Trümper 1966;
Carter 1969). In this case, �r = �✓ = 0, �r� = �✓� = �r✓ = 0
and all the remaining metric components depend solely on r and
✓.

In case of circular spacetimes and spherical-like coordinates,
the line element simplifies to

ds2 = �↵2dt2 +  4
⇣
dr2 + r2d✓2

⌘
+ R2

qi

⇣
d� + ��dt

⌘2
, (31)

where Rqi := p��� is the quasi-isotropic radius and  is the con-
formal factor. A metric in the form of Eq. (31) is said to be
“quasi-isotropic”. Stationarity and axisymmetry are enough to
ensure that T̄ µ⌫s satisfies Eq. (30). However they are not enough to

ensure the same for the physical part T̄ µ⌫p . Given that the energy-
momentum tensor of the E and J-frame are related by a sim-
ple conformal transformation, and the same holds for the Killing
vectors and the metric, the conditions that ensure circularity in
one of them will also ensure it in the other. For an ideal plasma,
having an energy-momentum tensor as in Eq. (6), on top of sta-
tionarity and axisymmetry, circularity requires the four-velocity
to be toroidal, ur = u✓ = 0, and the magnetic field bµ to be either
purely toroidal or purely poloidal (in this latter case, rotation
must also be uniform). On the contrary, even if the configuration
is static and axisymmetric, for a magnetic field with a mixed
configuration, Eq. (30) does not hold, and in principle the metric
of Eq. (31) is no longer correct. However, even in this case it
has been shown in GR (Oron 2002; Shibata & Sekiguchi 2005;
Dimmelmeier et al. 2006; Ott et al. 2007; Bucciantini & Del
Zanna 2011; Pili et al. 2014, 2017) that Eq. (31) provides a good
approximation of the correct metric, and leads to small errors in
the structure of rotating stars, mostly in the outer layers close to
the surface, even in the extreme cases of a rotation at the mass-
shedding limit, and magnetic fields as strong as 1019G. Moreover
it can be also shown that in GR the di↵erence Rqi � 2r sin ✓ is at
most of order of 10�3 (Pili et al. 2017). Thus, to a good level of
accuracy, the metric can be further simplified to the conformally
flat (CFC) approximation (Wilson & Mathews 2003; Isenberg
2008), for which

ds2=�↵2dt2+ 4

dr2+r2d✓2+r2sin2 ✓

⇣
d� +��dt

⌘2
�
, (32)

where we have a common factor multiplying all flat-space metric
terms in spherical coordinates.

From now on we shall restrict our analysis to static con-
figurations alone, that is to the case of non-rotating stars, for
which vi = 0 and �i = 0 (see Appendix A for a discussion
on rotators). As a consequence, the ideal-MHD electric field
Ei = �✏̃i jkv jBk = �A�3✏̄i jkv jBk = 0 and S i = 0. Then, it can
be shown that the extrinsic curvature Ki j = 0, which means that
maximal slicing, K = 0, holds (see Gourgoulhon 2012 for a
discussion of the interesting properties of this kind of slicing).
Under these assumptions, Einstein’s equations reduce to a sys-
tem of two Poisson-like elliptic equations for  and ↵:

� =
h
�2⇡Ê

i
 �1 , (33)

� (↵ ) =
h
2⇡

⇣
Ê + 2Ŝ

⌘
 �2

i
(↵ ) , (34)

where � = f i j
r̂ir̂ j and r̂i are, respectively, the 3D Laplacian

and nabla operator of the flat space metric fi j. We note that the
two equations are decoupled, such that Eq. (33) can be solved
before Eq. (34). The source terms take the form

Ê =  6
(
A

4
"
e +

1
2

B2
#
+

1
8⇡

Q2
)
,

Ŝ =  6
(
A

4
"
3p +

1
2

B2
#
�

1
8⇡

Q2
)
· (35)

Under the same conditions, it can be shown that Eq. (13) reduces
to

�� = �4⇡ 4↵s(�)A4Tp � @ ln
⇣
↵ 2

⌘
@�, (36)

where @ f@g := @r f@rg + (@✓ f@✓g)/r2 and Tp = 3p � " � ⇢ is the
trace of the J-frame energy momentum tensor.

We note that the Poisson-like equations Eqs. (33) and (34)
for  and ↵ have the form �u = suq. In GR (A = 1, Qi = 0)
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they satisfy the criterion for local uniqueness, sq � 0. In STTs
(Qi , 0), this is no longer true; in fact, the source term in
Eq. (34), s = 2⇡ �2

{A
4[" + 6p + 3B2/2] � Q2/8⇡} includes an

additional factor �Q2/8⇡ such that it cannot be excluded that in
particular conditions, when the scalar field is extremely strong
one has s < 0. However we verified that this does not happen in
any of the many configurations we computed, not even the most
compact ones. Still, it remains to be verified that this holds also
in the case of collapse to BH. Concerning instead Eq. (36) at first
order in �, neglecting the higher order second term on the right,
it has the form �u = s f (u). It can be shown that the condition for
local uniqueness is s(d f /du) � 0. Now s = �4⇡ 4Tp > 0. This
implies that if ↵s(�)A4 is a decreasing function of �, as it hap-
pens to be for STTs with spontaneous scalarisation, Eq. (36) will
not satisfy local uniqueness, and multiple solutions are expected.
This will be further investigated and discussed in Sect. 5.1

3.1. Purely poloidal configuration

We begin by showing how the Grad-Shafranov formalism used
in GR (Del Zanna & Chiuderi 1996; Pili et al. 2017), for the
case of equilibrium configurations with a purely poloidal mag-
netic field, can be extended to the case of STTs. The solenoidal
condition of the magnetic field allows us to write it as a function
of the �-component of the vector potential, A�. In conformally-
flat metric

Br =
@✓A�

A3 6r2 sin ✓
, B✓ = �

@rA�

A3 6r2 sin ✓
, (37)

and we recall that all metric terms are in the E-frame. Func-
tion A� is also called the magnetic flux function, and its iso-
surfaces A� = const, called magnetic surfaces, contain the mag-
netic poloidal field lines.

The Euler equation describing the static MHD equilibrium is

@i p + (" + p) @i ln(A↵) = ✏i jk JiBk/A3 = Li, (38)

where Ji = A2↵�1✏ i jk@ j(A↵Bk) and Li is the Lorentz force.
NSs are often assumed to be well described by a barotropic

EoS, that is " = "(⇢) and p = p(⇢). Then, also h = h(⇢) and
Eq. (38) becomes (Pili et al. 2014) the “generalised Bernoulli
integral”1

ln
 

h
hc

!
+ ln

 
A↵

Ac↵c

!
�M = 0, (39)

where the magnetisation function M(A�) defines the Lorentz
force through

Li = ⇢h
dM
dA�

@iA�, (40)

and hc, ↵c, and Ac are the values of h, ↵ and A at the center of
the star, respectively (we have assumed Mc = 0). By working
out the derivatives of the poloidal components of the magnetic
field, one can find an equation for J�:

J� = �
1

A4 8r2 sin2 ✓

h
�⇤A� + @A�@ ln

⇣
↵ �2

⌘i
, (41)

1 In analogy with the non-relativistic case, the relativistic Bernoulli
integral can be defined, in hydrodynamics, from the conservation
law of hut along the trajectories of a stationary flow (see Friedman
& Stergioulas 2013). This is a special case of the global first integral
of Euler’s equation for iso-entropic flows which, for stationary cases,
reduces to Eq. (39). This is the reason why we refer to Eq. (39) as the
generalised Bernoulli integral.

where �⇤ = @2
r+r�2@2

✓�r�2(tan ✓)�1@✓. Given that, from Eq. (40),
J� = ⇢h(dM/dA�), we can obtain the Grad-Shafranov equation

�̌3Ǎ� +
@A�@ ln

⇣
↵ �2

⌘

r sin ✓
+A4 8r sin ✓

 
⇢h

dM
dA�

!
= 0, (42)

where Ǎ� := A�/(r sin ✓) and �̌3Ǎ� = �⇤A�/(r sin ✓). Equation 42
allows one to find the magnetic field and current components
once the metric (↵ and  ) is known and the free functionM has
been chosen. The simplest choice, found for example in Pili et al.
(2014), is

M = kpolA�, (43)

where kpol is the poloidal magnetisation constant. This leads to
dipolar magnetic field configurations and guarantees that the cur-
rents are confined within the star.

3.2. Purely toroidal configuration

For a purely toroidal magnetic field,M in Eq. (39) is no longer
a function of A� and Li = ⇢h@iM. Deriving the generalised
Bernoulli integral and writing the Lorentz force in terms of the
magnetic field components, we obtain

@i ln h + @i ln(A↵) +
A↵B�@i

⇣
A↵B�

⌘

⇢hA4R2 = 0, (44)

where R2 = ↵2 4r2 sin2 ✓. This equation becomes integrable if
we assume that the last term can be written as the gradient of a
scalar function. Defining

G = ⇢hA4
R

2, (45)

this becomes possible if

B� =
I(G)
A↵
, and M(G) = �

Z
I

G

dI
dG

dG· (46)

It is customary to assume a barotropic expression for I (Kiuchi
& Yoshida 2008; Frieben & Rezzolla 2012):

I = ktorG
m and M = �

mk2
tor

2m � 1
G

2m�1, (47)

where ktor is the toroidal magnetisation constant and m � 1 is
the toroidal magnetisation index. This form of I ensures that
the magnetic field is confined within the star and that its con-
figuration is symmetric with respect to the equatorial plane. The
generalised Bernoulli integral then becomes

ln
 

h
hc

!
+ ln

 
A↵

Ac↵c

!
+

mk2
tor

2m � 1

⇣
⇢hA4

R
2
⌘2m�1

= 0· (48)

4. The XNS code

The XNS code (Bucciantini & Del Zanna 2011; Pili et al. 2014,
2015, 2017) solves the coupled equations for the metric, scalar
field, and MHD structure of a NS under the assumptions of
stationarity and axisymmetry, adopting conformal flatness and
maximal slicing. It is based on an iterative scheme, which com-
putes the various quantities separately. It has been applied also
to the case of white dwarves (Das & Mukhopadhyay 2015) and
to non-barotropic NSs (Camelio et al. 2019).
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Given that the equations for the scalar quantities  ,↵ ,�
involve the � operator, and that the Grad-Shafranov equation can
be reduced to a non-linear vector Poisson equation for Ǎ�, the
solutions for u(r, ✓) =  ,↵ ,� are found as a sum of spherical
harmonics Yl(✓) with coe�cients Al(r) according to

u(r, ✓) =
1X

l=0

[Al(r)Yl(✓)] , (49)

and similarly for the vector potential,

Ǎ�(r, ✓) =
1X

l=0

[Cl(r)@✓Yl(✓)] . (50)

This choice leads to a series of radial, second order boundary val-
ues ODEs for the coe�cients Al(r) and Cl(r), which are solved
using a tridiagonal matrix inversion. The decomposition in terms
of spherical harmonics ensures the correct behaviour of the solu-
tions on the symmetry axis, and allows us to enforce the proper
boundary conditions at r = 0, where Al(r) and Cl(r) go to zero
with parity (�1)l, and at the outer radial boundary, where we
assume that Al(r) and Cl(r) go to zero as r�(l+1).

Given the non-linear nature of the various elliptic equations,
these are solved iteratively. If the source terms do not satisfy
local-uniqueness, iterative schemes might fail to converge. This
issue is particularly relevant for Eq. (36) for the scalar field. As
we discussed, the very nature of spontaneous scalarisation is tied
to the non-uniqueness of the solutions. In the iterative scheme
used to solve Eq. (36) we opted to keep fixed the trace of the
energy-momentum tensor in the J-frame, and not in the E-frame.
Fixing the trace in the E-frame leads to a source term of the form
�4⇡ 4↵sT̄p, which can be shown to violate local uniqueness for
all values of �. Fixing it in the J-frame instead leads to a source
term of the form �4⇡ 4↵sA

4Tp, and it can be shown that local
uniqueness is violated only in a finite range of values for �. This
ensures at least the boundedness of the solution.

In the following we briefly describe the flow structure of
XNS. The code computes at the beginning the solution for a
spherically symmetric non-rotating and un-magnetised NS in
isotropic coordinates, at the desired central density ⇢c, solving
the generalisation of the Tolman–Oppenheimer–Volko↵ (TOV)
equations (Tolman 1939; Oppenheimer & Volko↵ 1939) to STTs
(the “S-TOV” system, see Appendix B). This is achieved with a
nested shooting technique requiring that in the final solution the
ratio Qr/@r↵ is constant outside the NS, and that the conformal
factor  corresponds to the Just metric (Just 1959) in isotropic
coordinates. Then, starting with an initial guess, the XNS code
performs iteratively the following steps until a converged solu-
tion is found:
1. Given a distribution of the physical and scalar fields,

Eqs. (33) and (34) for a new space-time metric in the E-frame
are solved in sequence;

2. Using the new metric in the E-frame and the old physical
fields, scalar field Eq. (36) is solved, allowing one to define
a new metric in the J-frame;

3. If the magnetic field is purely toroidal, Eq. (48) is solved,
and new values of the physical fields, including the magnetic
field components through Eq. (46), are found in the J-frame.
If the magnetic field is purely poloidal, first the equation for
the vector potential Eq. (42) and then Eq. (39) are solved,
determining the new physical fields in the J-frame.

4. Convergence is checked and, if not reached, the new physi-
cal metric and scalar fields are used to define a new starting
model.

5. Results

In this section, we present various equilibrium configurations,
analysing how the global quantities that parametrise the result-
ing models depend on the strength and geometry of the magnetic
field. All our models, unless otherwise specified, have been com-
puted on a 2D grid in spherical coordinates extending over the
range r = [0, 100] in dimensionless units, corresponding to a
range of ⇠150 km, and ✓ = [0, ⇡]. The grid has 400 points in
the r-direction, with the first 200 points equally spaced, and cov-
ering the range r = [0, 20], and the remaining 200 points loga-
rithmically spaced (�ri/�ri�1 = const), and 200 equally spaced
point in the angular direction. For the reference models shown
in Sects. 5.2 and 5.3, the radial resolution was doubled. We have
verified that at these resolutions our results have an accuracy of
the order of 10�3, that the radius of the outer edge is far enough
not to a↵ect the solution, and the same holds for the choice of
a stretched grid. In all cases the elliptic solvers use 20 spheri-
cal harmonics. We found that in order to avoid strongly oscilla-
tory behaviours in the relaxation scheme of XNS, iterations over
the various quantities Q had to be under-relaxed according to:
Qnew = [Qnew + Qold]/2.

For the ease of comparison, and in line with previous litera-
ture in GR (Bocquet et al. 1995; Kiuchi & Yoshida 2008; Frieben
& Rezzolla 2012; Pili et al. 2014) we adopted a simple poly-
tropic EoS p = Ka⇢�a , with an adiabatic index �a = 2 and a poly-
tropic constant Ka = 110 (in dimensionless units). Concerning
the magnetic field structure, for purely toroidal magnetic fields
we chose a magnetic barotropic law, Eq. (47), with toroidal mag-
netisation index m = 1, while for purely poloidal magnetic fields
we opted for the simplest choice Eq. (43) (for more complex
choices see Pili et al. 2014).

The coupling function A(�) is the only free function of a
STT with zero potential. As introduced in Damour & Esposito-
Farèse (1993), and used in many subsequent works (Novak
1998b; Mendes & Ortiz 2016), we adopt the choice of an expo-
nential coupling function:

A (�) := exp

↵0� +

�0

2
�2

�
, (51)

where ↵0 and �0 are parameters whose values are constrained by
observations. It can be shown (Ramazanoğlu & Pretorius 2016)
that, if �0T̄p > 0, a tachyonic instability is triggered, and modes
with wavelength smaller than the NS radius grow exponentially,
leading to spontaneous scalarisation, which only depends on the
value of the parameter �0. Instead, ↵0 is constrained by weak-
field observations (Will 2014), and has no role in this instabil-
ity. It is customary (and we will follow this choice) to choose
STTs with �0 < 0, because for most EoSs of NSs in the liter-
ature T̄p < 0. We note that, in principle, spontaneous scalari-
sation can happen for positive values of �0 if the EoS predicts a
strongly interacting behaviour of matter in the NS core, such that
T̄p > 0 (Mendes & Ortiz 2016). The most stringent constraints
to this day require that, for massless scalar fields, |↵0| . 3⇥ 10�3

and �0 & �4.5. However, for a scalar field with mass, screen-
ing e↵ects come into play and much more negative values of
�0 are in principle allowed (Yazadjiev et al. 2016). We chose
↵0 = �2⇥ 10�4 and varied �0 in the range [�6,�4.5]. In order to
enhance and highlight the e↵ect of spontaneous scalarisation, a
particular focus will be devoted to the case �0 = �6.

The global quantities used in the following are defined in
Appendix C. It can be shown that in the E-frame the Komar
and ADM masses have the same value, while in the J-frame
they di↵er by an amount proportional to the scalar charge.
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M

�c

�b

�t

�1

�2

�3

Fig. 1. Qualitative behaviour of multiple solutions for NSs in STTs, in
terms of the relation of their mass to the central density ⇢c . The black,
orange and red sequences represent, respectively, the weakly scalarised
solutions Sw and the strongly scalarised solutions S+s and S�s . Green
diamonds mark the position with central densities ⇢c = ⇢1, ⇢2, ⇢3 where
two branches have the same mass; triangles select intermediate densities
(see e.g. the values in Table 1); ⇢b and ⇢t (magenta circles) represent
the lower and upper limits of the central density for which spontaneous
scalarisation happens.

For this reason, in the following, when referring generically to
the mass of the NS, we always mean the Komar mass in the
E-frame (M := M̄k). On the other hand, given that the circum-
ferential radius is a potentially measurable quantity, when refer-
ring to it we always mean its value in the J-frame. Moreover,
since the metric field equations in the E-frame have the same
mathematical structure as in GR, it is most natural to provide the
quadrupole deformations in the E-frame, as this is where GWs
should be studied.

5.1. Uniqueness of scalarised NSs

It can be shown that, given a central density ⇢c, NSs in STTs admit
multiple solutions. IfA is an even function of � then ↵s is an odd-
function (e.g. if ↵0 = 0 in Eq. (51)) and Eq. (36) is invariant under
the transformation � ! �� (the same holds for Eqs. (33), (34)
and Eqs. (39), (48)). This implies that there are three possible NS
solutions: one corresponding to � = 0, identical to GR, and two
with � , 0, that only di↵er by the sign of �. If ↵s is an arbitrary
function of �, this symmetry breaks. If ↵0 , 0 in Eq. (51), then
these three solutions, split into three branches: the GR solution
becomes a “weakly scalarised” solutionSw, where the total scalar
charge Qs is such that ↵0Qs > 0, while the other two scalarised
branches split into two “strongly scalarised” solutions: one, S+s ,
with ↵0Qs > 0, the other, S�s , with ↵0Qs < 0.

In Fig. 1, we illustrate qualitatively how these three branches
behave in terms of their mass M as a function of the central den-
sity ⇢c. The range of spontaneous scalarisation, ⇢b < ⇢c < ⇢t, can
be divided into 4 subregions depending on the relative values of
the masses of the branches:

– for ⇢b < ⇢c < ⇢1 we have M[S�s ] < M[S+s ] < M[Sw];
– for ⇢1 < ⇢c < ⇢2 we have M[S+s ] < M[S�s ] < M[Sw];
– for ⇢2 < ⇢c, < ⇢3 we have M[S+s ] < M[Sw] < M[S�s ];
– for ⇢3 < ⇢c, < ⇢t we have M[Sw] < M[S+s ] < M[S�s ].

The densities ⇢1,2,3 correspond to the points two branches have
the same mass. Almost always, the S�s branch is the one where

the mass shows the largest deviation from the GR (or from Sw)
and is also the one with the maximum mass. In Table 1, we
report the values of global quantities characterising solutions of
the three branches, for few selected values of the central density,
assuming ↵0 = �0.05 and �0 = �6, for spherically symmet-
ric un-magnetised and non-rotating NSs. Such a non-physical
high value of ↵0 was chosen in order to enhance the di↵erences
between the S�s and S+s branches. We found that, in terms of the
net scalar charge, Qs[Sw] < Qs[S+s ] < Qs[S�s ], and similarly
in terms of the NS circumferential radius Rc[Sw] < Rc[S+s ] <
Rc[S�s ]. In this sense the S�s solution is the one with the largest
deviation from GR. One can compare the three branches also
in terms of their compactness C := M/Rc, or in terms of their
gravitational binding energy, defined as the di↵erence between
the Komar and proper masses in the E-frame, W := M � Mp. We
find that S�s is the one with the smallest compactness and highest
gravitational binding energy.

If we interpret spontaneous scalarisation as an e↵ective
phase-transition (Damour & Esposito-Farèse 1996), then the dif-
ference in binding energy between the S±s and Sw branches can
be though of as an e↵ective latent heat that the appearance of a
scalar field releases into the system, inflating the star and reduc-
ing |W |. Within this interpretation, it is reasonable to expect that
NSs undergoing spontaneous scalarisation should settle in the
S
�
s branch, which is the one with the lowest |W |. Indeed we find

that our code always selects the S�s solution [we note that for
↵0 = 0, XNS always selects the GR solution, and that ↵0 , 0
is required to get a scalarised one; see Bucciantini et al. (2015)
for a discussion of this issue with relaxation schemes for elliptic
equations]. It remains to be understood, in a dynamical evolv-
ing system, which branch is selected and under what physical
conditions.

In the following, we will refer to strongly scalarised solu-
tions, in the regime where spontaneous scalarisation leads to
sizeable scalar charges, simply as “scalarised”, while weakly
scalarised solutions or in general solutions showing a negligible
scalar charge, will be referred to as “de-scalarised” or “GR-like”.

5.2. Toroidal field models with �0 =�6

To illustrate how a purely toroidal magnetic field a↵ects the
properties of scalarised NSs, and to allow a comparison with GR,
in Fig. 2 we show the distribution of the magnetic field strength
B =

p
B�B�, of the density ⇢, and of the scalar field �, for a ref-

erence model chosen in order to have the same central density,
⇢c = 8.440 ⇥ 1014g cm�3, and the same maximum value of the
magnetic field, Bmax = 6.134⇥1017 G, as in Pili et al. (2014), for
↵0 = �2 ⇥ 10�4 and �0 = �6. Comparing Fig. 2 to the GR solu-
tion (Pili et al. 2014, Fig. 1), we see that the overall distribution
of the magnetic field and of the density are very similar, both in
their shape and in their values: as expected for a toroidal field,
the magnetic field vanishes on the symmetry axis and reaches
a maximum deep inside the star, close to its center. Again, as
expected, the star displays a prolate shape in density, caused by
the magnetic field stress, and the outer layers are inflated to large
radii by the magnetic pressure. We note that this deformation is
much more pronounced in the inner parts of the star compared to
its outer layers, where the density isosurfaces show only a mild
deviation from a spherical shape. On the other hand, we see that
the e↵ect of the magnetic stress on the shape of the scalar field
is far less evident than on the density, and the scalar field isosur-
faces show the same level of prolateness throughout the star.

In Table 2, we give the values of various global quantities
characterising this model (T). Its mass M = 1.460 M� is lower
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Table 1. Values of various physical quantities describing the solutions Sw,S+s and S�s , for ↵0 = �0.05 and �0 = �6, and for selected values of the
central density ⇢c (in the J-frame), corresponding from top to bottom to: ⇢b < ⇢c < ⇢1, ⇢3 < ⇢c < ⇢t, ⇢c = ⇢1, ⇢2, ⇢3.

⇢c[1015g cm�3] M[M�] Qs[M�] Rc[km] |W |[M�]
Sw;S+s ;S�s Sw;S+s ;S�s Sw;S+s ;S�s Sw;S+s ;S�s

1.000 1.601; 1.402; 1.307 �0.154; �0.679; 0.815 13.46; 13.68; 13.83 0.2709; 0.1304; 0.0779
2.500 1.696; 1.986; 2.166 �0.149; �0.894; 1.190 10.60; 12.40; 13.68 0.4870; 0.3607; 0.3022
1.648 1.714; 1.683; 1.683 �0.113; �0.996; 1.150 11.90; 13.33; 13.89 0.4021; 0.1562; 0.1044
1.695 1.715; 1.708; 1.715 �0.112; �1.010; 1.170 11.81; 13.33; 13.93 0.4088; 0.1618; 0.1093
1.710 1.716; 1.716; 1.726 �0.112; �1.010; 1.180 11.78; 13.33; 13.93 0.4109; 0.1637; 0.1110

Notes. M is the Komar mass in the E-frame, Qs the scalar charge in the E-frame, Rc the circumferential radius in the J-frame, W the gravitational
binding energy in the E-frame. See Appendix C for their definition: Eqs. (C.2), (C.7), (C.8), and (C.11).

Fig. 2. From left to right: meridional distribution of the magnetic field strength B =
p

B�B�, of the density ⇢ and of the scalar field � for a model
with a toroidal magnetic field of maximum strength Bmax = 6.134⇥1017G and central density ⇢c = 8.440⇥1014 g cm�3. The white curve represents
the surface of the star. More quantitative details on this configuration can be found in Table 2, where it is named “model T”.

Table 2. Global quantities (see Appendix C) of the reference equilibrium models with a toroidal (T) and poloidal (P) magnetic field, displayed in
Figs. 2, 8 respectively, together with their un-magnetised counterparts, T0 and P0.

Model ⇢c Mk M0 Qs Rc rp/re e es � µ
[1014 g cm�3] [M�] [M�] [M�] [km] [10�1] [10�1] [1030 g cm�2] [1035 erg G�1]

T0 8.44 1.30 1.38 0.64 14.08 1.00 0.00 0.00 0.00 0.00
T 8.44 1.46 1.52 0.47 20.59 1.15 �8.71 1.91 1.48 0.00
P0 5.15 1.25 1.33 0.17 15.73 1.00 0.00 0.00 0.00 0.00
P 5.15 1.36 1.42 0.56 16.71 0.67 2.90 �1.52 0.00 2.20

than that of its GR counterpart, 1.596 M�, by roughly 10%. The
same holds for the baryonic mass which now is M0 = 1.520 M�,
lower than in the GR case where its value is 1.680 M�. With
reference to the regimes shown in Fig. 1, our reference model
sits between ⇢b and ⇢2, on the S�s sequence. Interestingly, the
circumferential radius Rc = 20.59 km is just 2% higher than in
GR. The “radius ratio” between the surface radial coordinate at
the pole, rp, and at the equator, re, is rp/re = 1.15, not much
higher than 1, and only marginally higher than the correspond-
ing GR value. The same holds for the quadrupole deformation
e (see Appendix C for its definition). This might seem counter-
intuitive, because the scalar field is known to make NSs more
spherical (Doneva et al. 2013), in part because the contribution
of the scalar field to the quadrupole deformation has the oppo-
site sign with respect to the matter, in part because the scalar
field pressure tends to counteract matter deformations. We also
provide an estimate of the quadrupolar deformation of the scalar

field through the quantity es, that corresponds to the quadrupolar
deformation of the trace of T̄ µ⌫p (see Appendix C).

It is meaningful to compare our reference model also to
an un-magnetised model in STT with the same central density,
which is characterised in Table 2 as T0. The main di↵erences
to note are the lower values of both the Komar and baryonic
mass, and of the circumferential radius with respect to the mag-
netised case. This gives a quantitative estimate of how strong the
e↵ects of the magnetic field are and, as in GR, it shows that the
magnetic field can provide extra pressure support to sustain a
larger total mass. On the other hand, the compactness is higher:
C = 0.09 without a magnetic field versus C = 0.07 in the mag-
netised model. This reflects in the fact the scalar charge Qs is
higher in the un-magnetised model, by about one third.

To provide a more accurate comparison of model T with
the corresponding GR one, in Fig. 3 we plot for both of them
the profiles of B and ⇢, normalised to their maximum value.
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In particular, we clearly see that the STT profiles are virtually
coincident with the GR ones: only the polar radius gets slightly
larger. This agrees with the fact that apart from integrated quan-
tities, that di↵er at most ⇠10%, all other quantities characterising
those models are very close, suggesting that it is not the dynam-
ical action of the scalar field that gives rise to the di↵erences in
mass, but more likely changes in the volume element, associ-
ated to small changes in the metric. In the same figure we also
compare model T to the un-magnetised model T0, clearly show-
ing the magnetic induced deformation on the density profile, that
a↵ects mostly the low-density outer part of the NS, nearly dou-
bling the star’s polar radius. We also compare the profiles of �,
normalised to its maximum value �max. While in the central part
of the star, r . 7 km, the equatorial and polar profiles are respec-
tively steeper and shallower than in the un-magnetised case, in
the outer part of the star and outside it they are both shallower
than in the un-magnetised case, as expected for a lower total
scalar charge.

In line with Pili et al. (2014), in order to characterize the
interplay of the scalar and magnetic field, in Fig. 4, for equilib-
rium models having all the same baryonic mass M0 = 1.68 M�,
we plot the deviations � of ⇢c, M, Rc and e with respect to the
un-magnetised case, as functions of the maximum value of the
magnetic field strength inside the star Bmax. The deviation of a
quantity f is defined as

� f :=
f (Bmax,M0) � f (0,M0)

f (0,M0)
, (52)

except for e, in which case we just plot its value, since e(0,M0) =
0. The results are compared with the GR sequence having the
same baryonic mass.

It is immediately evident that the qualitative trends are
unchanged. The sequence shows that at a fixed baryonic mass
there is a limit to the strength of the magnetic field that a
NS can host. We find that in out STT models this value is
1.05 ⇥ 1018 G, almost twice with respect to the one of the equiv-
alant GR sequence, 6.13 ⇥ 1017 G. As the magnetisation param-
eter km increases, so does at the beginning also Bmax, until it
reaches its limiting value. A further increase of km leads to a
reduction of the magnetic field. The central density first rises
with km, reaching a value about 10% larger at Bmax ' 9 ⇥ 1017 G
and then beginning to decrease. For weak magnetisations, we
find that, for the same Bmax, the deviation is about one fourth than
in GR. However, once the magnetisation parameter km increases
beyond the point where the limiting magnetic field is reached,
the deviation of our STT models becomes about a factor two
higher than GR. We also find that, as the magnetisation increases
even farther, solutions de-scalarise (cyan dotted line), becoming
equivalent to GR. When looking at �M or �Rc, one recovers
similar trends, with deviations that are smaller than in GR for
weak magnetic fields. Interestingly, along the scalarised part of
our sequence, there seems to be a maximum value of �M = 0.05
at Bmax = 8 ⇥ 1017 G, a behaviour not present in GR. Sim-
ilarly, the quadrupolar deformation e is about one fourth than
that of GR for weak magnetisations and, again, GR is recovered
at high magnetisations, when the NS de-scalarises. Just focus-
ing on the weakly magnetised part of the sequence, before the
limiting magnetic field is reached, we found that the same devia-
tions are usually achieved at twice the value of Bmax with respect
to GR. This indicates that NSs in STTs are far less deformable
than their GR counterparts of the same baryonic mass. The ori-
gin of this behaviour is to be looked for in the e↵ective pressure
support provided by the scalar field. A purely toroidal magnetic

Fig. 3. Upper panel: profile of the polar (solid blue lines) and equatorial
(solid orange lines) density, and of the magnetic field strength at the
equator (solid green lines), normalised to their maximum values, for the
equilibrium model T (with purely toroidal magnetic field) of Table 2.
These are to be compared to the corresponding GR model at the same
⇢c and Bmax (dashed lines), and with the density of the scalarised and un-
magnetised model at the same ⇢c, T0 (dotted purple line). Lower panel:
profile of the equatorial (orange line) and polar (blue line) scalar field,
normalised to the maximum value, for the equilibrium model T (solid),
compared to the un-magnetised model T0 (dotted purple).

field exerts a stress on the star that leads to a prolate matter distri-
bution. This, as a consequence, acting as a source for the scalar
field, leads to a prolate distribution of the scalar field itself. Given
that the e↵ective pressure of � depends on its gradient, a pro-
late distributions leads, with respect to a spherically symmetric
one, to an increased outward-pointing force along the equator
and a decreased one along the polar axis (see e.g. the scalar
field profiles on a prolate system shown in Fig. 3). This might
seem to contradict what was found before, where we showed
only marginal di↵erences between STT and GR. But while pre-
viously the comparison was done at the same central density,
here is instead done at the same baryonic mass.

In Fig. 5, we show how the magnetic energyH and the scalar
charge Qs change with Bmax. As the magnetisation parameter km
rises, the magnetic energy scales with good approximation as
H = 1.25 ⇥ 1039(Bmax/1018G)2erg up to Bmax ' 1018 G. As the
magnetisation rises beyond the point where Bmax = 1.03⇥1018 G,
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Fig. 4. Variation, with respect to the un-magnetised model, of various quantities along the equilibrium sequence with constant M0 = 1.68 M� for
purely toroidal magnetic field. From left to right, top to bottom: central density ⇢c, Komar mass Mk, circumferential radius Rc and quadrupole
deformation e. The blue lines represent our STT results, to be compared to the red lines, describing the GR models in Pili et al. (2014, Fig. 2).
The cyan dotted lines highlight the de-scalarised configurations; it is connected by the black dashed segments to the magenta dotted lines, which
represent the same STT deviations when calculated with respect to the un-magnetised model in GR. The arrows show the direction of increasing
magnetisation.

the magnetic field energy, in the scalarised part, reaches a maxi-
mum ofH = 1.65⇥1039 erg at Bmax = 9.7⇥1017 G, finally relax-
ing to the GR profile when the sequence de-scalarises around
Bmax = 0.58 ⇥ 1017 G. The scalar charge, instead, drops with
increasing magnetisation, being about 10% smaller at Bmax =
1.05 ⇥ 1018 G. Beyond this point, the scalar charge drops sub-
stantially until the NS completely de-scalarises.

In Fig. 6, we show how the Komar mass changes with central
density holding fixed the magnetic flux� (top panel) or the bary-
onic mass M0 (middle panel). The lower bound for scalarised
models, ⇢b, moves to higher densities from ⇢b = 5⇥ 1014 g cm�3

for � = 0 to ⇢b = 7.5 ⇥ 1014 g cm�3 for � = 2.55 ⇥ 1030 G cm2,
while the corresponding Komar (baryonic) mass changes from
1.25 M� (1.33 M�) to 1.75 M� (1.81 M�). We find no evidence
suggesting the existence of an upper bound to the mass of the
possible de-scalarised models. Analogously, the upper bound ⇢t
for scalarised models increases from ⇢t = 3.5 ⇥ 1015 g cm�3 for
� = 0 to ⇢t = 4 ⇥ 1015 g cm�3 for � = 1.46 ⇥ 1030 G cm2,
while the corresponding Komar (baryonic) mass changes from
1.60 M� (1.73 M�) to 1.62 M� (1.71 M�). Contrary to GR, where

it is found that the maximum mass of sequences at fixed �
increases with the magnetic flux while the central density of the
related models first rises and then drops (Pili et al. 2014, Fig. 4),
in our STT sequences we found that the behaviour is more com-
plex. At densities just above ⇢b, the mass of magnetised models
is found to be always larger than the un-magnetised one. How-
ever, as the density increases, the trend is reversed and we find
magnetised models having a lower mass than the un-magnetised
configuration at the same central density. This is reversed again
once the density exceeds 2.72 ⇥ 1015 g cm�3 as a consequence
of the shift of the position of the maximum mass. This trend is
also evident by looking at configurations at fixed baryonic mass
and when sequences are parametrised at fixed values of Bmax or
at fixed e, in Fig. 7. It is interesting to notice that close to ⇢c '
2.72 ⇥ 1015 g cm�3 the Komar mass is independent of the mag-
netisation. Quantitatively, the density at which the maximum is
reached always increases from ⇢c = 2.55⇥1015 g cm�3 for� = 0
to ⇢c = 2.95 ⇥ 1015 g cm�3 for � = 2.55 ⇥ 1030 G cm2, while
the value of the maximum mass drops initially from 2.08 M�
to 2.04 M� for � = 1.46 ⇥ 1030 G cm2 and then rises again to

A44, page 11 of 24

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037918&pdf_id=4


A&A 640, A44 (2020)

Fig. 5. Scalar charge Qs, normalised to its value for the un-magnetised model (left panel), and magnetic field energyH (right panel) as functions
of Bmax along the equilibrium sequence with constant M0 = 1.68 M� and purely toroidal magnetic field. The cyan dotted line highlights the
de-scalarised configurations. The arrows show the direction of increasing magnetisation.

2.08 M� for � = 2.55 ⇥ 1030 G cm2. The full characterisation of
the models at maximum mass is given in Table 3.

In a similar way, in Fig. 7, we have also analysed how the
scalar charge Qs changes with magnetisation. The maximum of
the scalar charge goes from Qs = 1.16 M� at � = 0, to Qs =
1.14 M� when� = 2.55⇥1030 G cm2, while the density at which
this maximum is reached increases from 2.09 ⇥ 1015 g cm�3 to
2.46 ⇥ 1015 g cm�3. Globally, this appears as a shift to higher
density of the sequences. The maximum of the scalar charge is
always reached before the maximum of the mass. Analogously
to the mass, we find that close to ⇢c ' 2.33 ⇥ 1015 g cm�3 the
scalar charge is independent of the magnetisation.

5.3. Poloidal field models with �0 = �6

As it was done in the toroidal case, also for purely poloidal mag-
netic fields, our reference model was chosen in order to have
the same central density ⇢c = 5.15 ⇥ 1014 g cm�3 and the same
maximum value of the magnetic field Bmax = 6.256 ⇥ 1017 G, as
in Pili et al. (2014). Analogously to the previous toroidal case,
this model sits in the part of Fig. 1 between ⇢b and ⇢2, on the
sequence S�s . In Fig. 8, we show the distribution of the magnetic
field strength B =

p
BrBr + B✓B✓, of the density ⇢ and of the

scalar field � for this model. Comparing them to the GR ones in
Pili et al. (2014, Fig. 5), we see that, even for a purely poloidal
magnetic field, the overall distributions of the various quantities
are very similar to GR, both in their shape and in their values.
As expected for a poloidal field, the magnetic field reaches a
maximum at the center of the star, and vanishes in an equatorial
ring located at r ' 12 km. The star displays an oblate shape in
density, caused by the magnetic field stress, with an equatorial
density profile which is almost flat close to the center. As in GR,
increasing farther the magnetic field strength produces config-
urations where the density maximum is no longer at the center
(analogously to Pili et al. 2014, Fig. 6). Again, we see that the
e↵ect of the magnetic stress on the shape of the scalar field is far
less pronouced than on the density.

In Table 2, we give the values of various global quantities
characterizing this model (P). The Komar mass M = 1.360 M�,
is lower than the GR mass, 1.597 M� by roughly 15%, and the
same holds for the baryonic mass which is M0 = 1.42 M�,

compared to the value of the GR counterpart, 1.680 M�. The
radius ratio rp/re = 0.67 is instead marginally smaller than the
GR value of 0.69. On the other hand, its circumferential radius
Rc = 16.71 km is less than 1% smaller than the GR one. The
quadrupole deformation e is the same as in GR. As before, it
seems that the presence of a scalar field, at the same central
density and for the same maximum magnetic field, does not
a↵ect the distribution of fluid quantities. Moreover, we provide
an estimate of the quadrupolar deformation of the scalar field
through the quantity es, which is comparable in strength to the
quadrupole deformation e.

We can also make a comparison to the un-magnetised model
with the same central density, characterised in Table 2 under the
name P0. The main di↵erences are the values of the masses and
of the circumferential radius, that are smaller for B = 0. Also the
compactness is slightly lower: C = 0.0795 without a magnetic
field versus C = 0.0814 in the magnetised model. Di↵erently
than in the toroidal case, the scalar charge Qs is much higher in
the magnetised model.

In Fig. 9, we show the profiles of the magnetic field B and
density⇢, normalised to their maximum value, for the model P
(solid lines) and for the corresponding GR model (dashed lines)
with the same Bmax and ⇢c together with the un-magnetised
model P0. We also plot the profiles of �, normalised to its max-
imum value �max, for the models P and P0. Again, the STT pro-
files are almost coincident with the GR ones: only the equatorial
radius gets marginally increased. This is slightly di↵erent than
the e↵ect of the magnetic field, which changes the density pro-
file and decreases the star’s polar radius and increases the equa-
torial one. The profile of the scalar field reflects the oblateness
of the matter distribution, showing deviations that are somewhat
smaller than the toroidal case. The same conclusions drawn in
the toroidal case apply here too.

In Fig. 10, we show the deviations � as it was done in Fig. 4.
The qualitative trends are the same as in GR, and do not show the
complexity of the toroidal case. In GR there was some evidence
indicating that the maximum magnetic field for a NS of 1.68 M�
could not exceed ⇡6.2⇥1017 G. In STT we found instead that up
to values or order of 1 ⇥ 1018 G there is no evidence of a satura-
tion or limit of the maximum value of the magnetic field, which
does not rule out the possibility that it might exist above 1018 G.
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Fig. 6. Mass-density sequences for models with purely toroidal mag-
netic field and �0 = �6. Upper panel: sequences computed at fixed
values of the magnetic flux � (blue lines), compared with the un-
magnetised case (red line). The dotted magenta lines represent the
limit for spontaneous scalarisation. Dots mark the position of the max-
imum mass models UM0 (red), TM1 (light blue) and TM2 (dark blue)
of Table 3. The yellow square represents model T of Fig. 2. Middle
panel: sequences computed at fixed baryonic mass (green lines). Lower
panel: mass di↵erence of sequences at fixed � with respect to the un-
magnetised one.

The behaviour of all quantities appears to be monotonic in Bmax:
the central density decreases, while the mass, the circumferential
radius and the quadrupole deformation rise. As in the toroidal
case, for a given value of Bmax the deviation appears to be about
one fourth than in GR, while the same deviation is reached for
values of Bmax about twice higher than in GR. There is no evi-
dence that the sequence would de-scalarise. As in the poloidal
case, this trend can again be understood based on the e↵ective
pressure support provided by the scalar field. A purely poloidal
magnetic field exerts a stress on the star that leads to an oblate
matter distribution. This leads to an oblate distribution of the
scalar field itself which, in turn, increases the outward-pointing
force along the pole and decreases the one along the equator with

respect to a spherically symmetric model. We found that, up to
Bmax ⇡ 1018 G, the total magnetic field energy H scales with a
good approximation as H = 0.55 ⇥ 1039(Bmax/1018G)2 erg, and
the scalar charge increases by about 2% with respect to the un-
magnetised case. We also found that the magnetic dipole scales
as µ = 1.5 ⇥ 1035(Bmax/1018G) erg G�1, about 30% less than in
GR. Given that the dipole moment is ultimately a measure of the
net toroidal current, this can be considered a kind of global mea-
sure of a quantity integrated throughout the NS; as such, even
in this case strongly a↵ected by variations in the value of the
volume element, related to the metric itself.

In Fig. 11, we show how the Komar mass changes with cen-
tral density holding fixed the magnetic dipole moment µ or the
baryonic mass M0 (top panel). The lower bound ⇢b for scalarised
models now moves to lower densities - from ⇢b = 5⇥1014 g cm�3

for µ = 0 to ⇢b = 4.3⇥ 1014 g cm�3 for µ = 1.57⇥ 1035 erg G�1 –
while the corresponding Komar (baryonic) mass rises, going to
1.31 M� (1.38 M�). Contrary to the toroidal case, we see from
Fig. 12 (left panel) that, for purely poloidal magnetic fields,
above a Komar mass of 1.34 M� there are no de-scalarised
models. Analogously, the upper bound ⇢t for scalarised mod-
els decreases - from ⇢t = 3.5 ⇥ 1015 g cm�3 for µ = 0 to
⇢t = 3.42 ⇥ 1015 g cm�3 for µ = 0.45 ⇥ 1035 erg G�1 – while the
Komar mass remains almost unchanged. As in GR, it is found
that the maximum mass of sequences at fixed µ increases with
the magnetic dipole moment, and the central density at which
the maximum is reached drops. The characterisation of the mod-
els at maximum mass is given in Table 3. Similarly to GR we
found that, at a given central density, the mass of equilibrium
configurations is always above the un-magnetised case (in the
stable part of the sequence). This same trend is also evident
when sequences are parametrised at fixed values of Bmax or at
fixed e, in Fig. 12. Again, close to ⇢c ' 2.72 ⇥ 1015 g cm�3

the Komar mass is independent on the magnetisation. We have
also analysed in Fig. 12 how the scalar charge changes with
magnetisation. The maximum of the scalar charge changes from
Qs = 1.16 M� to Qs = 1.21 M� when µ = 0.54 ⇥ 1035 erg G�1,
while the density at which the maximum is reached drops to
1.96⇥1015 g cm�3. Globally, this appears as a shift to lower den-
sity of the sequences. Analogously to the mass, we find that close
to ⇢c ' 2.33 ⇥ 1015 g cm�3 the scalar charge is independent on
the magnetisation.

5.4. Magnetised models with �0 =�5

In order to understand how our results depend on the specific
choice of the STT parameter �0, we have computed equilibrium
configurations also for �0 = �5 and �0 = �4.5, closer to the
limit for spontaneous scalarisation, both in the case of pure
toroidal and purely poloidal magnetic fields. For �0 = �5, the
un-magnetised model with baryonic mass Mo = 1.680 M� is
scalarised. It is then possible to compute deviations of various
quantities with respect to their un-magnetised values, at fixed
baryonic mass Mo = 1.680 M�, as was done for �0 = �6. In
Fig. 13, we show how the quadrupole deformation e changes
with the maximum strength of the magnetic field Bmax. Again,
we find that the scalarised part of the sequence shows a lower
quadrupole deformation than in GR, but now this di↵erence is
not as strong as for �0 = �6. In general e is about 2/3 of the value
of the corresponding GR counterpart at the same Bmax, both in
the toroidal and poloidal magnetic field case. For purely toroidal
magnetic fields, there is some indication that the scalarised
part reaches a maximum value Bmax ' 5.8 ⇥ 1017 G, before it
de-scalarises, and then reaches a new maximum corresponding
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Table 3. Global quantities (see Appendix C) of the maximum mass models with a purely toroidal (TM1,TM2) and purely poloidal (PM1,PM2)
magnetic field, displayed in Figs. 6, 11 respectively, together with their un-magnetised counterpart (UM0).

Model ⇢c Mk M0 Qs Rc Bmax � µ e es
[1015 g cm�3] [M�] [M�] [M�] [km] [1018] G [1030 g cm�2] [1035 erg G�1] [10�1] [10�1]

UM0 2.55 2.08 2.41 1.01 12.1 0.0 0.0 0.0 0.0 0.0
TM1 2.72 2.04 2.29 1.01 13.2 1.37 1.46 0.0 �0.236 0.107
TM2 2.95 2.08 2.26 1.04 15.8 1.99 2.55 0.0 �0.656 0.200
PM1 2.46 2.12 2.45 1.04 12.3 1.33 1.06 1.16 0.074 �0.048
PM2 2.42 2.15 2.49 1.04 12.5 1.76 1.40 1.57 0.118 �0.078

Fig. 7. Sequences for the models with purely toroidal magnetic field and �0 = �6. Left panel: mass-density relation computed at fixed Bmax (blue
lines) compared with the un-magnetised sequence (red line). Middle panel: mass-density relation computed at fixed e (green lines) compared with
the un-magnetised sequence (red line). Right panel: On top, scalar charge computed at fixed � (blue lines) compared with the un-magnetised
sequence (red line); on bottom, trace quadrupole deformation es. In all panels, the dotted magenta lines represent the limit for spontaneous
scalarisation and the yellow square represents model T of Fig. 2.

Fig. 8. From left to right: meridional distribution of the magnetic field strength B =
p

Br Br + B✓B✓, of the density ⇢ and of the scalar field � for a
model with a poloidal magnetic field of maximum strength Bmax = 6.256 ⇥ 1017 G and central density ⇢c = 5.15 ⇥ 1014 g cm�3. The white curve
represents the surface of the star. The light white lines on the left panel represent magnetic surfaces. More quantitative details on this configuration
can be found in Table 2, where it is named “model P”.

to the GR value of 6.13 ⇥ 1017 G. We can conclude that in STTs
with �0 > �5 the upper limit to Bmax is reached after the solution
de-scalarises, while for �0 < �5 it is reached for scalarised
configurations. On the other hand in models with a purely
poloidal magnetic field, we observe no evidence for
de-scalarisation with increasing kpol. However, there seems to
be an asymptote to a maximum value of Bmax of '7.5 ⇥ 1017 G,

slightly higher than in GR for �0 = �5. The same conclusions
can be found looking at the deviations of other variables. What
we see is that changes with respect to GR depend in a strongly
non-linear way on the values of �0.

In Fig. 14, we repeat the same analysis of Fig. 6, for purely
toroidal fields. We show how the Komar mass and scalar charge
change with central density holding fixed the magnetic flux �,
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Fig. 9. Top panel: profile of the polar (solid blue lines) and equa-
torial (solid orange lines) density, and of the magnetic field strength
(solid green lines) at the equator, normalised to their maximum values,
for the equilibrium model P (with purely poloidal magnetic field) of
Table 2. These are to be compared to the corresponding GR model at the
same ⇢c and Bmax (dashed), and with the density of the scalarised and
un-magnetised model at the same ⇢c, P0 (dotted purple line). Bottom
panel: profile of the equatorial (orange line) and polar (blue line) scalar
field, normalised to their maximum value, for the equilibrium model P
(solid), compared to the un-magnetised model P0 (dotted purple).

and the Komar mass for fixed values of the baryonic mass M0.
The region of de-scalarisation ⇢c = [⇢b, ⇢t] is smaller, but the
behaviour of the lower and upper bounds with magnetisation is
the same. The lower bound ⇢b moves to higher densities, from
⇢b = 7.07⇥ 1014 g cm�3 for � = 0 to ⇢c = 1.06⇥ 1015 g cm�3 for
� = 2 ⇥ 1030 G cm2, and the corresponding Komar (baryonic)
mass from 1.461 M� (1.57 M�) to 1.75 M� (1.84 M�). Again we
find no evidence suggesting the existence of an upper bound to
the mass of the possible de-scalarised models. Analogously, the
upper bound ⇢t for scalarised models increases, from ⇢b = 2.65⇥
1015 g cm�3 for � = 0 to ⇢c = 3.05 ⇥ 1015 g cm�3 for � = 2 ⇥
1030 G cm2, and the corresponding Komar (baryonic) mass from
1.67 M� (1.83 M�) to 1.77 M� (1.85 M�). Again, we find that
for toroidal magnetic fields the density at which the maximum
is reached increases, and the value of the maximum mass first
remains almost constant at 1.81 M�, and then rises to 1.86 M�
for� = 2⇥1030G cm2. In this case we also see that on sequences
with � � 1.64 ⇥ 1030 G cm2 the mass of equilibrium models is
always larger than the relative un-magnetised counterpart at the
same central density.

For poloidal magnetic fields, we observe in Fig. 15 a more
regular trend, similar to the case with �0 = �6, where the max-

imum mass initially seems to remain unchanged to then rises at
higher magnetisation. We find that, for poloidal fields, above a
Komar mass of 1.7 M� there are no de-scalarised models.

It is evident that now the magnetic field plays a more domi-
nant role that the scalar field, and the general trends of the vari-
ous sequences tend to approach what was found in GR. However,
in the region where the scalar charge reaches its maximum, the
trends are still in line with more scalarised configurations.

5.5. Magnetised models with �0 =�4.5

We consider here the case �0 = �4.5, which is close to the
upper limit on massless STTs set by binary pulsar constraints
(Freire et al. 2012; Shao et al. 2017; Anderson et al. 2019). In
Fig. 16, we show how the Komar mass changes holding fixed
the magnetic flux � for configurations with a purely toroidal
magnetic field. The scalarised range is now strongly reduced.
For the un-magnetised models, ⇢b = 9.3 ⇥ 1014 g cm�3 and
⇢t = 2.0 ⇥ 1015 g cm�3, with a Komar mass that changes from
1.58 M� to 1.71 M�. As the magnetic flux increases, the typi-
cal scalarised trend in the mass-density relation becomes pro-
gressively less evident: already at � = 0.9 ⇥ 1030 G cm2 the
seuqence is almost indistinguishable from GR. This is made even
more evident looking at the scalar charges in Fig. 16, where we
observe simultaneously both a reduction of Qs and of the scalar-
isation range.

In case of a purely poloidal magnetic field, the trend is
instead quite di↵erent, as can be seen in Fig. 16. Increasing the
magnetic flux �, both the scalar charge and the scalarisation
range increase, with ⇢b moving to lower values. The maximum
mass rises, and there is no evidence for the de-scalarisation.

This di↵erence, in part already present at lower �0, can be
understood if one recalls that spontaneous scalarisation can be
seen, from a dynamical point of view, as an instability (Damour
& Esposito-Farèse 1996), which can be excited only if the mini-
mum wavelength of unstable modes (a function of �0) is smaller
or of the order of the typical highscale of the matter distribu-
tion (roughly the size of the compact star). Detailed calculations
set this limit for NSs around �0 ⇡ �4.2,�4.0. It is obvious, that
close to this threshold limit, any process that modifies the dis-
tribution of matter in compact stars can have deep consequances
on their spontaneous scalarisability. A strong toroidal magnetic
field leads to a prolate distribution of density, that on average
corresponds to a reduction of the typical highscale of the matter
distribution, potentially pushing the NS below the threshold for
spontaneous scalarisation. On the other way a strong poloidal
magnetic field leads to an oblate distribution of density, corre-
sponding to an increase of the typical highscale of the matter
distribution, potentially pushing the NS above the threshold for
spontaneous scalarisation.

5.6. On the stability of magnetised equilibrium models

It is well known that NSs endowed with either a purely toroidal
or a purely poloidal magnetic field are unstable against non-
axisymmetric perturbations (Braithwaite & Nordlund 2006;
Braithwaite & Spruit 2006; Braithwaite 2009). This is due to
a magnetofluid instability that, on a typical Alfvénic timescale,
leads to a reconfiguration of the magnetic field geometry toward
a more tangled structure. Magnetic stability requires mixed con-
figurations, with comparable amount of energy in the poloidal
and toroidal components of the magnetic field.

With respect to axisymmetric perturbations, on the other
hand, it is found that, purely poloidal magnetic fields are
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Fig. 10. Variation, with respect to the un-magnetised model, of various quantities along the equilibrium sequence with constant M0 = 1.68 M�
for purely poloidal magnetic field. From left to right, top to bottom: central density ⇢c, Komar mass Mk, circumferential radius Rc and quadrupole
deformation e. The blue line represents our STT results, to be compared to the red line, describing the GR models of Pili et al. (2014, Fig. 7). The
arrows show the direction of increasing magnetisation.

stable, while the stability of purely toroidal magnetic fields,
against interchange modes, depends on their stratification.
Toroidal configurations with m = 1 are found to be stably strati-
fied (Schubert 1968; Fricke 1969).

Independently of their magnetofluid stability, we are going to
show that in STTs, NSs with purely toroidal magnetic fields, are
also gravitationally unstable against spontaneous scalarisation.
The criterion for gravitational instability for non-rotating and un-
magnetised NS is

@M0

@⇢c
 0, (53)

where the equality defines the maximum mass. We note that
in GR and STTs it is the baryonic mass that formally enters
the criterion, and not the Komar mass, given that the former
is the dynamically conserved quantity. However in GR and STTs
the Komar mass is always a monotonically increasing function

of the baryonic mass and one can safely use it to evaluate stabil-
ity. This criterion can be generalised to magnetic configurations.
Recalling that the flux-freezing condition of ideal MHD, ensures
that the magnetic flux � is conserved in axisymmetry, one has
that NSs with a purely toroidal magnetic field are unstable
when

@M0

@⇢c

�����
�
 0 . (54)

In Fig. 17, we plot how the baryonic mass of various equilib-
rium configurations change with density at fixed values of the
magnetic flux �. It is immediately evident that each sequence
shows four parts:

– a gravitationally stable de-scalarised GR part;
– a gravitationally unstable scalarised part;
– a gravitationally stable scalarised part (up to the density of

the model of maximum mass for the entire sequence);
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Fig. 11. Mass-density sequences for models with purely poloidal mag-
netic field and �0 = �6. Upper panel: sequences computed at fixed val-
ues of the magnetic dipole moment µ (blue lines) and at fixed baryonic
mass (green lines), compared with the un-magnetised case (red line).
The dotted magenta lines represent the limit for spontaneous scalarisa-
tion. Dots mark the position of the maximum mass models UM0 (red),
PM1 (light blue) and PM2 (dark blue) of Table 3. The yellow square rep-
resents the model of Fig. 8. Lower panel: mass di↵erence of sequences
at fixed µ with respect to the un-magnetised one.

– a gravitationally unstable scalarised part (beyond the density
of the model of maximum mass for the entire sequence).

This is in sharp contrast to GR, where only two parts are found
(stable and unstable), separated by the model with maximum
mass. In principle now we can have two maxima for the mass
of NSs with purely toroidal magnetic fields: one corresponding
to the de-scalarised part and one to the scalarised one. In the
mass-density diagram there is a region where models are gravi-
tationally unstable. Moreover, for any given value of �, there is
a range of masses where both de-scalarised and scalarised solu-
tions are possible. On the other hand, there is a lower limit to the
values of the magnetic flux that can support de-scalarised config-
urations of a given baryonic mass. Lowering the magnetic flux
beyond this limit could lead to a gravitational instability where
the star jumps from the de-scalarised branch to the scalarised
one. This is a gravitational instability, unrelated to rearrange-
ments of the magnetic field geometry, that will take place on a
typical scalarisation timescale, of the order of the light crossing
time of the NS. For example, with reference to Fig. 17, a de-
scalarised configuration with M0 = 1.68 M� can only exist for
� > 2.06 ⇥ 1030 G cm2 and ⇢c < 7.12 ⇥ 1014 g cm�3; below this

limiting value of the magnetic flux, the NS will jump at the same
baryonic mass but with a central density ⇢c > 1.32⇥1015 g cm�3,
and a scalar charge Qs = 0.8 M�. Interestingly, these two limit-
ing configurations have not just the same baryonic mass, and
magnetic flux, but also the same Komar mass Mk = 1.62 M�.
We have repeated this analysis also for higher values of �0 and
found that this e↵ect already disappears at �0 = �5. However,
for �0 = �4.5 we found that two configurations, one scalarised
and the other un-scalarised, with the same baryonic mass still
exist, but in this case they have the same central density.

Independently of the specific choice of magnetic field dis-
tribution, that in our case is dictated by the request of an inte-
grable form for the generalised Bernoulli equation, our results
have shown that a strong toroidal magnetic field can support de-
scalarised configurations, and that, in principle, if such magnetic
field drops below a limiting value (for example because of non
ideal processes or magnetic instabilities) such configuration can
undergo a rapid “magnetically-induced spontaneous scalarisa-
tion”. In the case of purely poloidal configurations, the quantity
that is dynamically conserved for axisymmetric perturbations is
the net flux of the toroidal current J�. This can be equivalently
parametrised by the magnetic dipole moment. If we repeat the
same analysis done in the toroidal case, considering sequences
at fixed magnetic dipole moment, we see no evidence for the
presence of an unstable part.

6. Conclusions

On the one hand, a proper understanding of the role of magnetic
fields is fundamental in the physics and phenomenology of NSs.
Magnetic fields a↵ect virtually all of their observational proper-
ties and can modify their structure to the point of a↵ecting also
their gravitational behaviour. On the other hand, several exist-
ing issues in our understanding of the physical Universe have
led many theorists to postulate extensions of GR, some of which
make interesting predictions on the structure of NSs. In partic-
ular, a class of theories known as scalar-tensor theories allow a
phenomenon called spontaneous scalarisation, that in principle
can lead to sizeable deviations in the structure of NSs from GR.
Here, for the first time, we modelled and investigated the prop-
erties of magnetised NSs in STTs subject to spontaneous scalar-
isation, in the full non-linear regime, assuming either purely
toroidal or purely poloidal magnetic fields. This is an extension
and improvement of our previous work on magnetised NSs in
GR.

We have shown how to develop a strategy, within the
framework of the 3+1 formalism, to extend standard tech-
niques developed for GRMHD to the case of STTs, by mak-
ing simultaneous use of the Einstein-frame (where the metric
equation have the same mathematical structure as in GR, and the
same numerical schemes can be applied) and the Jordan-frame
(where the magnetofluid equations retain their conservative,
quasi-hyperbolic form, and thus are amenable to be treated with
standard finite volume or finite di↵erence conservative schemes
for fluid dynamics). In particular, for simplicity and ease of dis-
cussion, we have focused on the case of static configurations,
illustrating how the equations that describe the density and mag-
netic field distribution change in the presence of a scalar field,
and how the e↵ects of a scalar field can be fully encapsulated in
the conformal scaling factorA.

Our formalism is based on the so called eXtended Confor-
mally Flat Approximation (XCFC), which has proved to be very
accurate in GR – even for strongly deformed NSs – and in the
fully dynamical regime, also for systems undergoing collapse to
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Fig. 12. Sequences for models with purely poloidal magnetic field and �0 = �6. Left panel: mass-density relation computed at fixed Bmax (blue
lines) compared with the un-magnetised sequence (red line). Middle panel: mass-density relation computed at fixed e (green lines) compared
with the un-magnetised sequence (red line). Right panel: on top, scalar charge-density relation computed at fixed µ (blue lines) compared with
the un-magnetised sequence (red line); on bottom, trace quadrupole deformation es. In all panels, the dotted magenta lines represent the limit for
spontaneous scalarisation and the yellow square represents model P of Fig. 8.

Fig. 13. Value of the quadrupole deformation e along the equilibrium sequence with constant M0 = 1.68 M�, as a function of Bmax, for �0 = �5
(blue lines) vs GR (red lines). The cyan dotted line highlights the un-scalarised configurations. Left panel: purely toroidal magnetic field; right
panel: purely poloidal magnetic field. The arrows show the direction of increasing magnetisation.

black hole, as long as one is not interested in the GW emission.
The XCFC approach has several advantages in GR: the source
terms of the metric equations are the same conserved variables
evolved by the conservative algorithm for the fluid dynamics; the
equations are decoupled and can be solved sequentially; local
uniqueness is satisfied. We have verified that in STTs, the XCFC
approach retains these properties. Even if, in principle, because
of the sign of the scalar field term in the equation for ↵ , local
uniqueness could be violated, we have checked that, practically,
this is never the case, even for the most scalarised of our config-
urations.

We have shown that spontaneous scalarisation leads to mul-
tiple solutions for NSs, either weakly or strongly scalarised,
and we have shown and characterised how the symmetry of
the strongly scalarised branch is broken if one chooses a value
↵0 , 0. In particular, we verified that our numerical algorithm
always selects the S�s branch. We also showed that the S�s solu-
tions are not always the ones with the largest deviation from GR

in the mass-density diagram, but are always the ones with the
largest scalar charge and smallest compactness.

In this paper, we carry out a detailed study of the properties
of magnetised NSs in STT with spontaneous scalarisation, trying
to characterise them as completely as possible, not just in term
of their masses or radii, but also considering how the interplay
of the magnetic and scalar fields a↵ect their internal structure
and deformation. We also tried to characterise the deformation
of the scalar field, and introduced the parameter es related to the
emission of quadrupolar scalar waves.

In general, we find that the action of di↵erent configurations
of the magnetic field on the overall structure of a NS leads to
qualitatively similar results: a toroidal magnetic field produced
prolate configurations, while a poloidal field leads to oblate one.
However, significative changes are found when we proceed to a
quantitative comparison.

When comparing STT to GR models, computed at the same
central density ⇢c and maximum value of the magnetic field
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Fig. 14. Models with purely toroidal magnetic field and �0 = �5. Left panel: on top, sequences computed at fixed values of the magnetic flux �
(blue lines) and at fixed baryonic mass (green lines), compared with the un-magnetised case (red line); on bottom, mass di↵erence with respect to
the un-magnetised case. Right panel: on top, scalar charge on sequences at fixed �; on bottom, trace quadrupole es on the same sequences. The
dotted magenta lines represent the limit for spontaneous scalarisation.

Fig. 15. Models with purely poloidal magnetic field and �0 = �5. Left panel: on top, sequences computed at fixed values of the magnetic dipole
moment µ (blue lines) and at fixed baryonic mass (green lines), compared with the un-magnetised case (red line); on bottom, mass di↵erence
with respect to the un-magnetised case. Right panel: on top, scalar charge on sequences at fixed µ; on bottom, trace quadrupole es on the same
sequences. The dotted magenta lines represent the limit for spontaneous scalarisation.

Bmax, we found that the distribution of density and magnetic
field vary less than few percent. This suggests that GR models
can be used as good proxy for the internal structure of mag-
netised NSs in STT. On the other hand, when for the same
models we compare global integrated quantities like the mass,
or the quadrupole deformation, we found deviations from GR
up to 10–20%. This di↵erence can be easily understood recall-
ing that while the distributions of density and magnetic field

depend on the ratio ↵/↵c (i.e. on relative changes of the met-
ric terms), the value of integrated quantities depends on the con-
formal factor  6 through the volume element (i.e. on the abso-
lute values of the metric terms). On top of this, the quadrupole
deformation e, used to estimate the possible emission of GWs
from deformed system, is properly computed in the E-frame,
where the metric equations have the same mathematical structure
of GR.
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Fig. 16. Left figure: models with purely toroidal magnetic field and �0 = �4.5. Upper panel: sequences computed at fixed values of the magnetic
flux � (blue lines) and at fixed baryonic mass (green lines), compared with the un-magnetised case (red line). Bottom panel: value of the scalar
charge on the same sequences at fixed �. Right figure: models with purely poloidal magnetic field and �0 = �4.5. Upper panel: sequences
computed at fixed values of the magnetic dipole moment µ (blue lines) and at fixed baryonic mass (green lines), compared with the un-magnetised
case (red line). Bottom panel: value of the scalar charge on the same sequences at fixed µ.

We have also investigated sequences at fixed baryonic mass,
which is the conserved quantity from a dynamical and evolu-
tionary perspective, and compared typical trends with those of
GR for the same baryonic mass. We found that, in general, the
presence of a scalar field reduces the deformability of NSs and
tends to reduce the typical deviations from the spherically sym-
metric un-magnetised configuration. This also implies that with
respect to GR, NSs at the same baryonic mass can host stronger
magnetic fields. For configurations with purely toroidal mag-
netic fields we also showed that as the magnetisation rises the
models de-scalarise. This e↵ect was evaluated for various values
of �0 showing that there is a strong dependency.

We have then shown, using various parametrisations, how
the mass-density relation changes with the magnetisation of the
system, revealing both how this a↵ects the region of sponta-
neous scalarisation and the location of the configuration with
maximum mass, together with its value. In particular, we have
shown that while for toroidal magnetic fields there is a de-
scalarised region, for purely poloidal magnetic fields there is a
limiting mass above which only scalarised solutions are possi-
ble. We have also shown that contrary to GR, where the max-
imum mass is always an increasing function of magnetisation,
in STTs, for purely toroidal magnetic fields, the maximum mass
decreases with increasing magnetisation for systems with Bmax
lower than a threshold magnetic field, and then rises. We verified
that the quadrupolar term arising from magnetic deformations in
the source of the scalar field equation is of the same order of
the one in Einstein’s equations, suggesting comparable levels of
gravitational losses in tensor and scalar waves.

In general, we found that for weakly magnetised models the
presence of a scalar field dominates the properties of NSs, and
its e↵ect is to counter-balance the magnetic stresses, either by
reducing the deformation, or leading to saturation of the values
of the maximum mass. We verified, by changing the value of �0,
that when scalarisation e↵ects become smaller the typical trends
of GR tend to be recovered, with the significative di↵erence that

while for purely toroidal fields a rise in magnetisation leads to
de-scalarisation, for purely poloidal magnetic fields, on the con-
trary, it increases the total scalar charge. Depending on its geom-
etry, the magnetic field can either favour or suppress spontaneous
scalarisation when �0 is close to the threshold limit on the range
of this e↵ect.

Finally, we have also shown that the mutual interplay of
a scalar and toroidal magnetic field, in the presence of strong
scalarisation e↵ects, leads to unstable configurations and poten-
tially to events of spontaneous scalarisation due to the loss
of magnetic support - a ‘magnetically-induced spontaneous
scalarisation’.

This paper is mostly devoted to a global study of the prop-
erties of magnetised NSs in STT, with a particular focus on the
comparison with their respective GR counterparts. For this rea-
son, we adopted a simple polytropic EoS and considered only
the two extreme cases of purely toroidal and purely poloidal
magnetic fields, focusing the discussion on the case �0 = �6
to enhance and highlight the main di↵erences. We plan to inves-
tigate in more detail, in a future work, how the deformability of
NSs in STT depends on the choice of �0, and on the EoS (Pili
et al. 2016), and how it scales with the mass, radius, and com-
pactness of NSs to see if it is possible to derive scaling laws that
can parametrise the magnetic deformability, in a similar way to
what has been previously done in GR (Pili et al. 2017).

We conclude by recalling that STTs are just a subset of a
more extended class of alternative theories of gravity, TeVeS
(Bekenstein 2004), which predict also the possible existence of
non-minimally coupled vector fields. As STTs, even theories
with vector fields can present phenomena of “spontaneous vec-
torisation” (Hellings & Nordtvedt 1973; Heisenberg 2014; Kase
et al. 2018, 2020). Interestingly the mathematics behind spon-
taneous vectorisation is not dissimilar to the one used to model
non-linear current terms in magnetised NSs (Pili et al. 2014), and
spontaneous magnetic-vectorisation has already been treated and
discussed within the framework of the standard techniques that
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Fig. 17. Sequences at fixed magnetic flux �, computed in the case �0 =
�6. The red curve is the un-magnetised solution. From bottom to top:
other curves are computed at � = [2.55, 2.06, 1.46, 0.91] ⇥ 1030 G cm2.
The various parts are: gravitationally stable de-scalarised branch (solid
magenta); gravitationally unstable scalarised branch (black dashed);
gravitationally stable scalarised branch (solid blue). The yellow region
corresponds to gravitationally unstable models. The black dot repre-
sents the de-scalarised configuration with M0 = 1.68 M� and � =
2.06⇥1030 G cm2, while the arrow points to the blue dot where the con-
figuration is expected to jump because of magnetically-induced sponta-
neous scalarisation.

we have illustrated here (Bucciantini et al. 2015). This shows
that the algorithms and approaches we have introduced, even if
developed in the context of the specific case of magnetic fields,
have a far larger applicability to vector fields in general.
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Appendix A: XCFC for a rotating NS

We show here how the standard techniques of XNS, based on
the XCFC approach to the solution of the metric functions, can
be adapted to take into account the presence of a scalar field.
For simplicity we are going to consider here only un-magnetised
rotators. The generalisation to magnetised ones is trivial and
strictly follows what was done in Pili et al. (2017). In the E-
frame the standard set of XCFC equations is:

�LWi = 8⇡ f i jŜ j, (A.1)

� = �2⇡Ê �1
�

1
8 fik f jlÂi jÂkl �7, (A.2)

�(↵ ) = [2⇡(Ê + 2Ŝ ) �2 + 7
8 fik f jlÂi jÂkl �8]↵ , (A.3)

�L�
i = 16⇡↵ �6 f i jŜ j + 2Âi j

r̂ j(↵ �6), (A.4)

where fi j is the flat 3-metric, r̂i is the flat covariant derivative
(r̂k fi j = 0), and � = r̂ir̂

i is the usual Laplacian operator in flat
3-space. �L is defined as:

�LXi = �Xi + 1
3 r̂

i(r̂ jX j) (A.5)

and

Âi j = r̂iW j + r̂ jWi
�

2
3 f i j(r̂kWk). (A.6)

The source terms come from the 3+1 decomposition of the
energy-momentum tensor in the E-frame:

Ê =  6n̄µn̄⌫(T̄
µ⌫
p + T̄ µ⌫s ), (A.7)

Ŝ j =  
6n̄µ�̄ j⌫(T̄

µ⌫
p + T̄ µ⌫s ), (A.8)

Ŝ =  6�̄ j
µ�̄ j⌫(T̄

µ⌫
p + T̄ µ⌫s ). (A.9)

For stationary (@t = 0) and axisymmetric (@� = 0) configura-
tions, for the metric given by Eq. (32) (where the only non van-
ishing component of the shift vector is ��), assuming that the
only non vanishing component of the velocity is v�, it can be
shown that

Ê =  6
n
A

4
h
�2(e + p) � p

i
+ 1

8⇡Q2
o
, (A.10)

Ŝ r = Ŝ ✓ = 0, (A.11)

Ŝ � =  
6
A

3(e + p)�v�, (A.12)

Ŝ =  6
n
A

4
h
�2(e + p)v2 + 3p

i
�

1
8⇡Q2

o
, (A.13)

where e, p, and v2 = �̃i jviv j are all in the J-frame and Q2 =

�̄i jQiQj is instead in the E-frame.
If on a time slice the values of the physical quantities are

provided as well as the scalar field, then the XCFC set of equa-
tions can be solved for the metric component in the E-frame. It is
evident that the XCFC scheme retains its main interesting prop-
erty of decoupling the various equations, allowing to solve them
separately, one after the other. This holds also in the more gen-
eral time dependent case. In fact 3+1 schemes for GRHD and
MHD evolve the conserved quantities in the J-frame  6

A
3Ẽp

and  6
A

3S̃ p
i . Combined with a scheme that evolves also the 3+1

components of the scalar field P and Qi, the XCFC equations
can then be used to solve for the metric.

Appendix B: The S-TOV system

The S-TOV system of equations can be derived setting Bi = 0 in
Eqs. (33), (34), (36), and (38):

4
 

d 
dr
= ⇠, (B.1)

d�
dr
= Qr, (B.2)

d⇠
dr
= �

⇠2

4
�

2
r
⇠ � 8⇡ 4

A
4 (⇢h � p) � Q2

r , (B.3)

d↵
dr
=

↵

4 + 2r⇠

✓
�

r
2
⇠2
� 2⇠ + 16⇡rA4 p 4

� 2rQ2
r

◆
, (B.4)

d
dr

⇣
A

4 p
⌘
= �
A

4⇢h
↵

d↵
dr
+ ↵s(�)A4 (4p � ⇢h) Qr, (B.5)

dQr

dr
= �Qr

"
1
↵

d↵
dr
+
⇠

2
+

2
r

#
� 4⇡ 4↵s(�)A4 (4p � ⇢h) . (B.6)

These must be supplemented by a barotropic EoS p = p(⇢), " =
"(⇢). This system can be solved, given the value at r = 0 of
the density ⇢c, the conformal factor  c and the scalar field �c
(recalling that all radial derivatives of scalar quantities vanish
in r = 0). The value of the lapse function at the center, ↵c, is
irrelevant to the solution per se, since only its derivative appears
in Eqs. (B.1)–(B.6). This means that the lapse function is derived
minus an arbitrary constant, which is then chosen in order to
satisfy the correct asymptotic behaviour at r ! 1.

The correct STT solution satisfies the following require-
ments:

– the ratio C = ↵Qr/2@r↵ must be constant outside the NS,
because it can be shown that it is equal to the ratio Qs/2M
between the net scalar charge and twice the Komar mass in
the E-frame;

– in vacuum ↵ and  must behave like the Just metric (Just
1959) in isotropic coordinates.

Given that the Just metric in isotropic coordinates has no analyt-
ical form, we provide here an approximation that proves to be
accurate with a precision ⇠10�4, already at a couple of NS radii.
If one writes the metric terms  and ↵, outside of the NS surface,
as

 4(r) =
2
6666641 +

1
2r

1X

i=0

mi

ri

3
777775

4

, (B.7)

↵2(r) =
2
6666641 �

1
2r

1X

i=0

ni

ri

3
777775

2 2
6666641 +

1
2r

1X

i=0

mi

ri

3
777775
�2

, (B.8)

one finds that the first values of mi for i > 0 are:

m1 = �C2m2
0, (B.9)

m2 = �C2m3
0/6, (B.10)

m3 = �C2(1 + 3C2)m4
0/12, (B.11)

m4 = �C2(3 + 11C2)m5
0/120, (B.12)

m5 = �C2(9 + 58C2 + 90C4)m4
0/720, (B.13)

m6 = �C2(45 + 334C2 + 618C4)m5
0/10080, (B.14)

and ni = (�1)imi. When Qs = 0 one finds m0 = n0 and mi = ni =
0 for i > 0, recovering the GR solution.
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Appendix C: Global quantities

In this appendix we list the main global quantities used in the
paper. We give their general form, valid also in the case of a
non-static, but stationary, spacetime.

The Komar mass in the E-frame is

M̄k := 2
Z

⌃t

 
T̄µ⌫ �

1
2

T̄gµ⌫
!

nµ⇠⌫
p
�d3x =

= 2⇡
Z
A

4

2p + (" + ⇢ + p)�2

⇣
1 + vivi � 2↵�1

Avi�
i
⌘
+

+ EiEi + BiBi + ✏i jk↵
�1�i
A

2E jBk
�
p
�gdrd✓,

(C.1)

where ⌃t is a spacelike hypersurface of constant coordinate time
t and ⇠⌫ is the timelike Killing vector associated to the stationar-
ity of the spacetime. In our static case it reduces to

M̄k = 2⇡
Z
A

4
h
" + ⇢ + 3p + BiBi

i
↵ 6r2 sin ✓drd✓. (C.2)

The baryonic mass, which is the same in the E-frame and in the
J-frame, is

M0 =

Z

⌃t

A
3⇢�
p
�d3x, (C.3)

which in our case is

M0 = 2⇡
Z
A

3⇢ 6r2 sin ✓drd✓. (C.4)

The proper mass in the E-frame is

M̄p = 2⇡
Z
A

4 (" + ⇢) 6r2 sin ✓drd✓. (C.5)

The scalar charge of the star in the E-frame, Q̄s, is defined as the
monopole component of the scalar field at asymptotically large
radii:

lim
r!1

�(r) :=
Q̄s

r
· (C.6)

By integrating Eq. (13) over a spherical volume of asymptoti-
cally large radius, using Stokes’ theorem and using the fact that
T̄p = 0 outside the star’s surface, we obtain

Q̄s = 2⇡
Z

↵↵s(�)A4Tp 
6r2 sin ✓drd✓, (C.7)

where Tp = 3p�"�⇢. The circumferential radius in the J-frame
is

R̃c :=
h
A 2r

i
✓=⇡/2

(C.8)

The magnetic energy in the J-frame is

H̃ :=
Z

⌃t

1
2

⇣
BiBi + EiEi

⌘
A

3 p�d3x, (C.9)

which reduces to

H̃ = ⇡

Z
BiBi
A

3 6r2 sin ✓drd✓. (C.10)

The binding energy of the star in the E-frame is defined as

W̄ := Mp � Mk + H̄ . (C.11)

The flux of the toroidal magnetic field, which is the same in the
E-frame and in the J-frame, is

� =

Z
rA2

p
BiBi 

4drd✓. (C.12)

The magnetic dipole moment in the J-frame is

µ̃ = Ǎ�
4r3

4r + Mk

�����
r�Rc

. (C.13)

The value converges already for r ' 5�10Rc.
The quadrupole deformation of the star in the E-frame is

defined as

ē :=
Ī p
zz + Ī s

zz � Ī p
xx � Ī s

xx

Ī p
zz

, (C.14)

where the physical and scalar field moments of inertia around
the polar axis z and the x axis are, respectively,

Ī p
zz = 2⇡

Z
A

4 (" + ⇢) r4 sin3 ✓drd✓, (C.15)

Ī s
zz = �

1
4

Z
 4Q2r4 sin3 ✓drd✓, (C.16)

Ī p
xx = ⇡

Z
A

4 (" + ⇢) r4 sin ✓
⇣
1 + cos2 ✓

⌘
drd✓, (C.17)

Ī s
xx = �

1
8

Z
 4Q2r4 sin ✓

⇣
1 + cos2 ✓

⌘
drd✓. (C.18)

We note that we defined the moments of inertia of the scalar
field in the same way as the usual physical ones: as integrals of
the energy density T̄ 00

s .
The quadrupolar deformation of the trace ēs is related to the

quadrupolar and monopolar distributions of the scalar field at
asimptotically large radii, and is defined as

ēs :=

R
↵s(�)A4Tp

⇣
2 � 3 sin2 ✓

⌘
r4 sin ✓drd✓

r2
e
R
↵s(�)A4Tpr2 sin ✓drd✓

· (C.19)

We note that the denominator is the Newtonian equivalent of
Q̄sR̄2

c .

A44, page 24 of 24


