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ABSTRACT
The recent imaging of the M87 black hole at millimetre wavelengths by the Event Horizon
Telescope (EHT) collaboration has triggered a renewed interest in numerical models for the
accretion of magnetized plasma in the regime of general relativistic magnetohydrodynamics.
Here, non-ideal simulations, including both the resistive effects and, above all, the mean-field
dynamo action due to sub-scale, unresolved turbulence, are applied for the first time to such
systems in the fully non-linear regime. Combined with the differential rotation of the disc, the
dynamo process is able to produce an exponential growth of any initial seed magnetic field up to
the values required to explain the observations, when the instability tends to saturate even in the
absence of artificial quenching effects. Before reaching the final saturation stage we observe a
secondary regime of exponential growing, where the magnetic field increases more slowly due
to accretion, which is modifying the underlying equilibrium. By varying the dynamo coefficient
we obtain different growth rates, though the field seems to saturate at approximately the same
level, at least for the limited range of parameters explored here, providing substantial values
for the Magnetically Arrested Disk parameter for magnetized accretion. For reasonable values
of the central mass density and the commonly employed recipes for synchrotron emission by
relativistically hot electrons, our model is able to reproduce naturally the observed flux of
Sgr A∗, the next target for EHT.

Key words: accretion, accretion discs – black hole physics – dynamo – magnetic fields –
MHD – relativistic processes.

1 IN T RO D U C T I O N

Large-scale magnetic fields are well known to play a fundamental
role in high-energy astrophysics, hence a natural question one
needs to answer is how fields in sources such as compact stars or
accretion discs are amplified from initial seed values. Battery-like
mechanisms are needed to create primordial extragalactic fields
(Kronberg 1994), which may be amplified to higher values by
plasma advection, rotation and collapse to values appropriate for
stellar magnetism (Mestel 1999), up to B ∼ 1012 G, the field of a
standard neutron star, a value required to power the surrounding
young supernova remnant, when present, as recognized even before
the actual discovery of pulsars (Pacini 1967).

In most cases a further amplification may occur by instabilities
capable of converting kinetic energy into magnetic energy. Under
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certain conditions, within the ideal magnetohydrodynamical regime
(MHD), both Kelvin–Helmoltz and Rayleigh–Taylor instabilities
are able to provide such effect, and these have been studied also in
the relativistic environment of Pulsar Wind Nebulae (Bucciantini
et al. 2004; Bucciantini & Del Zanna 2006). A very efficient and
ideal process, operating in differentially rotating systems when seed
fields are already present, is the magnetorotational instability (MRI;
Balbus & Hawley 1998), known to be able to amplify the fields on
ideal time-scales and to trigger MHD turbulence.

However, the main process believed to be responsible for
magnetic field amplification is a non-ideal one, thus requiring
a modification of the MHD equations. In typical astrophysical
plasmas, this effect is due to the non-linear coupling of small-scale
velocity and magnetic field fluctuations, possibly caused by the
instabilities mentioned above. The result of this correlation leads
to the creation of an electromotive force capable of amplifying
magnetic fields. This process is known as mean-field dynamo (e.g.
Moffatt 1978; Krause & Raedler 1980; Cowling 1981; Roberts &
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Soward 1992; Brandenburg & Subramanian 2005) and has been
applied to a large number of astrophysical contexts, from the Sun
(Parker 1955) to cosmological fields (Kulsrud et al. 1997).

Descending into deeper details, the new electromotive term due to
the correlated turbulent fluctuations, to be plugged into the MHD in-
duction equation for the magnetic field evolution, can be written as

<δv × δB> = αdyn B − βdyn J, (1)

where the two coefficients would be tensors in the most general case,
but are usually assumed to be scalars for simplicity (e.g. Krause &
Raedler 1980). In axisymmetric, differentially rotating systems,
the first term describes the so-called α-effect, responsible for the
creation of poloidal fields starting from toroidal fields (prohibited
in any ideal MHD axisymmetric configuration); the second one is
an additional resistive term, enhancing the dissipation of the current
density J = ∇ × B. The combined action allows one to close the
dynamo cycle, that supports the amplification of magnetic fields ac-
cording to the mechanism known as α−% dynamo. The same result
can be achieved by employing a non-ideal, modified Ohm’s law
with a novel term proportional to the mean magnetic field, that is

E′ = ξ B + η J, (2)

where E′ = E + v × B is the comoving electric field, ξ = −αdyn

is the proper dynamo action term, and η the combined Ohmic and
turbulent resistivity coefficient.

As far as compact objects are concerned, the α−% dynamo may
be responsible for the amplification of fields up to B ∼ 1014−15 G
in magnetars during the proto-neutron star phase. If the initial
rotation period is less than 1 ms, the field can be amplified either
by differential rotation, magnetic instabilities, and the dynamo
effects described above (Duncan & Thompson 1992; Bonanno,
Rezzolla & Urpin 2003; Burrows et al. 2007; Obergaulinger,
Janka & Aloy 2014; Guilet & Müller 2015; Mösta et al. 2015).
The intense magnetic fields that form can be so strong to cause
quadrupolar deformations in the star, that in some cases are able
to radiate gravitational waves (Dall’Osso, Shore & Stella 2009;
Pili, Bucciantini & Del Zanna 2017) and guide relativistic outflows
capable of powering gamma-ray bursts (Usov 1992; Bucciantini
et al. 2009; Metzger et al. 2011; Bucciantini et al. 2012; Pili et al.
2016).

Certainly the amplification of the magnetic field plays a key role
in the accretion around the black holes of active galactic nuclei
(AGNs; e.g. Pariev, Colgate & Finn 2007). From a theoretical point
of view it is believed that discs are threaded by magnetic fields
allowing MRI to operate, leading to a redistribution of angular
momentum and to MHD turbulence. MRI works for both ordered
and disordered fields, though this mechanism alone is inefficient in
compensating the turbulent decay if the initial fields are too weak or
too incoherent (Bhat et al. 2017). In these cases a genuine dynamo
process would be actually needed to amplify the initial fields to
higher values.

The MRI-induced turbulence triggers in turn the accretion of
mass and magnetic flux towards the black hole. If the latter is
rotating, Poynting-dominated relativistic jets may be launched due
to rotational energy extraction inside the ergosphere (Blandford &
Znajek 1977; McKinney & Gammie 2004), though even the rotation
of the disc itself is known to be able to drive centrifugally
driven polar outflows (Blandford & Payne 1982). Amplification
of magnetic fields due to dynamo and/or MRI is also important
in other scenarios of high-energy astrophysics, like neutron star
mergers (Rezzolla et al. 2011; Giacomazzo et al. 2015) and

tidal disruption events (Sadowski et al. 2016; Bonnerot et al.
2017).

The importance of MRI has been recently highlighted in Bugli
et al. (2018), where the interaction between MRI and the fluid, non-
axisymmetric Papaloizou-Pringle instability (PPI; Papaloizou &
Pringle 1984) has been investigated. Three-dimensional general
relativistic magnetohydrodynamics (GRMHD) simulations show
that in a magnetized torus around a Schwarzschild black hole,
PPI large-scale modes are suppressed by the development of MRI,
which is then to be considered the main driver for accretion on to
supermassive black holes.

GRMHD simulations of MRI-induced accretion on to rotating
black holes is being receiving considerable attention due to the
success of the Event Horizon Telescope (EHT) collaboration,
capable of imaging the emission and the shadow around the event
horizon of a black hole for the very first time (EHT Collaboration
2019a). The comparison between data and numerical models has
allowed to infer the main physical quantities of the compact object
(EHT Collaboration 2019b). The observed source has been the
nucleus of the elliptical galaxy M87, but research is ongoing for
the main target Sgr A∗, the compact radio source located at the
centre of our Milky Way, whose emission is believed to be due to
(inefficient) accretion on to a black hole of a few 106 M' (Narayan
et al. 1998; Mościbrodzka et al. 2014).

A thick torus with a weak magnetic field is typically chosen as
initial equilibrium for GRMHD simulations of the accretion on to
black holes (De Villiers, Hawley & Krolik 2003; McKinney &
Gammie 2004; Hawley & Krolik 2006; McKinney 2006). Two
configurations are mainly considered for the initial magnetic field:
one leading to SANE, Standard and Normal Evolution (Narayan
et al. 2012), or to a MAD one, Magnetically Arrested Disk (Narayan,
Igumenshchev & Abramowicz 2003). The latter is characterized by
a higher advected magnetic flux with respect to the SANE case,
capable of lowering the mass accretion rate down to ∼ 10−6ṀEdd,
a factor up to 50 times lower than for SANE accretion (EHT
Collaboration 2019b). The results of the simulations are then post-
processed by general relativistic ray-tracing codes solving radiative-
transfer in curved space–times (e.g. Mościbrodzka & Gammie
2018), so that synthetic images can finally be created.

In this context it is important to underline the capabilities of
a GRMHD code in dealing with accretion on to a rotating black
hole in Kerr metric, a problem with many numerical difficulties
and subtleties (e.g. the use of horizon-penetrating coordinates,
the treatment of low-density polar funnel where Poynting jets are
launched, and so on). An extensive comparison has been recently
pursued among the codes available worldwide, including the one
from our group, Eulerian Conservative High-Order (ECHO; Del
Zanna et al. 2007), employed for the simulations in this paper. The
good agreement between the results on a standard test on SANE-
type accretion reveals that the community of GRMHD codes is
able to provide consistent solutions to address these problems and
meaningful comparison with the observations (see Porth & EHT
Collaboration 2019, and references therein).

However, it must be noticed that the simulations employed by the
EHT community and for the code comparison tests all rely on initial
magnetic fields with pressure which is one hundredth of the kinetic
pressure. This value corresponds to a subdominant field, but it is not
far from the value needed to reproduce both the dynamics needed
to launch the polar jets and the non-thermal synchrotron emission
(once a model for the distribution for the emitting electrons has been
established). A more natural scenario would be the one in which
a very low initial field is evolved and amplified by some kind of
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dynamo process, so to reach self-consistently the correct threshold
for MRI to induce accretion and to reproduce the correct dynamical
and emission properties.

The first relativistic models for mean-field α−% dynamo effects
in thick discs around Kerr black holes were proposed more than
two decades ago (Khanna & Camenzind 1996; Brandenburg 1996),
whereas the first implementation within a full GRMHD scheme
(even including radiation) is due to Sadowski et al. (2015), where
the dynamo action in accretion discs was parametrized using the
results of local shearing box simulations of MRI, leading to the
addition of both poloidal and toroidal magnetic field components.
Interestingly, the 2D axisymmetric simulations with the mentioned
dynamo recipes were able to produce the same kind of fields
obtained in 3D simulations without artificial terms, where the
turbulent dynamo is fully operative.

The first rigorous treatment of the dynamo effects within (resis-
tive) GRMHD was presented by Bucciantini & Del Zanna (2013),
later applied to the physics of accretion discs by Bugli, Del Zanna &
Bucciantini (2014). There the evolution of magnetic fields was
studied by in axisymmetry and in the kinematic regime, that is
by solving Maxwell equations alone not considering the feedback
on the disc’s plasma. While the α-effect is supposed to be given by
the coupling between unresolved velocity and field fluctuations, the
%-effect is due to the differential rotation of the disc. The magnetic
field threading the disc is indeed amplified exponentially (the growth
is unbounded in the kinematic case), not related to the period of
rotation (thus on gravity or on the fluid properties), but rather on the
microphysics of turbulence, providing the ξ dynamo coefficient in
equation (2). When an odd function of the latitude with respect to
the equator is chosen for ξ , the model is even capable of reproducing
the counterpart of butterfly diagrams as observed for the solar cycle
(Charbonneau 2010).

The dynamo in relativistic plasmas is characterized by additional
difficulties compared to the classical MHD, since as for the resistive
case, the electric field must be also evolved and stiff terms in the
equations appear, requiring some sort of implicit treatment (e.g.
Palenzuela et al. 2009; Dionysopoulou et al. 2013; Del Zanna et al.
2016; Mignone et al. 2019). The theory and the best numerical
strategies are outlined in Bucciantini & Del Zanna (2013), where a
fully covariant generalization of equation (2) was first proposed for
relativistic plasmas, the GRMHD equations with both resistive and
dynamo terms were first written in the so-called 3+1 formalism as
needed for numerical integration (see also Del Zanna & Bucciantini
2018), and where a robust method for the solution of the implicit step
coupled to the inversion procedure from conservative to primitive
variables, using a 3D Newton–Raphson scheme, was suggested.

In this paper, we generalize our previous work on the mean-field
dynamo in accreting discs (Bugli et al. 2014) by investigating the
completely self-consistent and non-linear regime (dynamic regime)
during the accretion phase. The linear growth of the fields cannot
reasonably continue for an arbitrarily long time, and it is expected
to be quenched naturally by the feedback on the disc. Our goal is to
see how the transition to the non-linear phase occurs, to investigate
the interplay with MRI, and the effect of accretion on the dynamo
process itself, for a given disc model and a variety of dynamo
parameters.

Finally, on top of our GRMHD model based on the dynamo
action, we compute the local emissivity and integrated flux in the
radio band (in the approximation of an optically thin plasma), and
we propose a comparison with observational data for Sgr A∗, in
view of the long-awaited analysis by the EHT collaboration.

2 EQUAT I O N S A N D N U M E R I C A L M E T H O D S

2.1 The ECHO code for non-ideal GRMHD

The ECHO code is an efficient finite-difference shock-capturing
scheme for the GRMHD system of conservation laws, based on
the 3+1 formalism of numerical relativity and working in any
space–time metric (Del Zanna et al. 2007). Here, we describe the
implementation of the non-ideal effects, namely the inclusion of
the resistive and dynamo terms, following Bucciantini & Del Zanna
(2013), Del Zanna & Bucciantini (2018).

In the 3+1 formalism, any four-dimensional space–time must be
split according to the metric

ds2 = −α2dt2 + γij (dxi + β idt)(dxj + βj dt), (3)

where α is the lapse function, β i the shift vector and γ ij is the
3-metric, used to raise/lower the indexes of any spatial three-
dimensional vector or tensor. Within this formalism, the system
of dynamo-resistive GRMHD equations in conservative form is

∂t (
√

γD) + ∂k[
√

γ (αvk − βk)D] = 0,

∂t (
√

γSi) + ∂k[
√

γ (αSk
i − βkSi)]

= √
γ

[
1
2
αSlm∂iγlm + Sk∂iβ

k − (E + D)∂iα

]
,

∂t (
√

γE) + ∂k[
√

γ (αSk − βkE − αvkD)]

= √
γ

[
1
2
Slm(βk∂kγlm − ∂tγlm) + Sl

m∂lβ
m − Sk∂kα

]
,

∂t (
√

γEi) − √
γ εijk∂j (αBk − εklmβ lEm) + √

γ q(αvi − β i)

= −√
γα+ η−1[ Ei + εijkvjBk − Ejvj vi

− ξ (Bi − εijkvjEk − Bjvj vi) ],

∂t (
√

γBi) + √
γ εijk∂j (αEk + εklmβ lBm) = 0, (4)

with the additional non-evolutionary constraints

∂k(
√

γEk) = √
γ q, ∂k(

√
γBk) = 0. (5)

In the above expressions, D = ρ+ is the mass density in the
laboratory frame, Si = w+2vi + εijkEjBk the momentum density,
Sij = w+2vivj + pγ ij − EiEj − BiBj + uemγ ij the stress tensor,
E + D = w+2 − p + uem the total energy density, ρ the mass
density in the comoving frame, w the enthalpy per unit volume,
p the thermal pressure, vi the fluid 3-velocity and + its correspond-
ing Lorentz factor, uem = 1

2 (E2 + B2) the electromagnetic energy
density, Ei and Bi the electric and magnetic fields, q the charge
density, whereas γ and εijk are, respectively, the determinant and
the Levi–Civita pseudo-tensor of the 3-metric. Notice that in the
Cowling approximation employed in the remainder of this work,
that is for a non-evolving metric,

√
γ may be extracted from all

time derivatives and the term − 1
2 Slm∂tγlm vanishes in the equation

for E . In order to close the system, an equation of state must be
also specified. Here, we assume the equation of state for a perfect
fluid, p = (γ̂ − 1)ρε, where ε is the thermal energy per unit mass,
or equivalently

w = ρ + γ̂

γ̂ − 1
p = ρ + γ̂1 p, (6)

and γ̂ is the adiabatic index (γ̂ = 4/3 and γ̂1 = 4 for a relativistic
fluid).

The evolution equation for the electric field is the one that
takes into account the dynamo and resistive effects, through the
coefficients ξ and η. This can be made to descend from the natural
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and fully covariant generalization of equation (2) (see Bucciantini &
Del Zanna 2013; Del Zanna & Bucciantini 2018):

eµ = ξbµ + ηjµ, (7)

where the 4-vectors eµ, bµ, and jµ are, respectively, the electric field,
magnetic field, and current density in the frame comoving with the
fluid. Starting from this expression one derives the new Ohm’s law
expressed in 3+1 form as

+
(
Ei + εijkvjBk − Ejvj vi

)

= η(J i − qvi) + ξ+
(
Bi − εijkvjEk − Bjvj vi

)
, (8)

where Ji is the usual conduction current, which has been plugged
into the Ampère–Maxwell equation for Ei in the system (4). When
ξ = 0 one recovers the purely resistive version, while the ideal
MHD limit for η → 0 is obtained by neglecting this equation and
by replacing Ei = −εijkvjBk in fluxes.

The ECHO code is designed to solve numerically the system
of equation (4), for any technical detail the reader is referred to
Del Zanna et al. (2007). The code is based on high-order spatial
reconstruction and derivation algorithms and a simple two-wave
solver. In particular, in this work, we employ the MP5 algorithm,
Monotonicity Preserving (Suresh & Huynh 1997), to reconstruct
variables at cell interfaces, combined to a sixth-order fixed-stencil
derivation routine for numerical fluxes, allowing to reach an overall
fifth order of spatial accuracy in smooth regions. The solenoidal
constraint for the magnetic field is enforced through the Upwind
Constrained Transport method based on a staggered representation
of magnetic field components (Londrillo & Del Zanna 2000, 2004),
allowing the preservation of the solenoidal condition to machine
accuracy for a second-order scheme, or up to its nominal spatial
accuracy when higher order methods are employed. The ECHO code
for GRMHD has been also extended to dynamical space–times in
the asymptotically flat approximation (Bucciantini & Del Zanna
2011).

2.2 The implicit step and the inversion from conservative to
primitive variables

Here, we focus on the implementation of the IMEX (IMplicit
EXplicit) Runge–Kutta scheme to perform the temporal evolution of
the equations, needed to properly treat the stiff terms in the equation
for the electric field, proportional to η−1 * 1 (Palenzuela et al.
2009), regardless of the presence of dynamo action. Let us rewrite
the resistive GRMHD equations in the form

∂tU = −∂kF k + S = Q + R, (9)

where (we recall that the metric can be time-dependent)

U = √
γ [D, Si, E, Ei, Bi]T, (10)

are the conserved variables, F the corresponding fluxes, S the
source terms, and where we have then merged all non-stiff terms
in Q (including flux derivatives), while R contains only terms
proportional to η−1 * 1 , precisely those requiring an implicit
treatment. We now split the variables into two subsets, U = {X , Y},
where X = √

γ E (whose source terms are stiff) and Y refers to the
remaining ones, with vanishing stiff terms RY = 0. The system is
then conveniently written as

∂tX = QX [U ] + RX [U ], ∂tY = QY [U ]. (11)

Consider now the update number n of the conservative variables,
from Un to Un+1, of a time interval -t. Let s be the number of

IMEX Runge–Kutta substeps, where each step is labelled with i =
1, 2, . . . s. For any substep i, the update is achieved in two distinct
phases:

(i) First, intermediate values of the conservative variables are
obtained as sums of i − 1 purely explicit terms as follows :

X (i)
! = X n + -t

i−1∑

j=1

[
ãijQX [U (j )] + aijRX [U (j )]

]
(12)

and

Y (i)
! = Yn + -t

i−1∑

j=1

ãijQY [U (j )], (13)

where the two (lower triangular) matrices with coefficients ãij and
aij have dimensions s × s.

(ii) Secondly, variables X (i), those with stiff source terms,
undergo an extra implicit evolution step for j = i, with ãii = 0
and aii += 0 by definition, so that one must solve

X (i) = X (i)
! + aii-t RX

[
X (i), Y (i)

!

]
, Y (i) = Y (i)

! . (14)

Notice that at the first substep, for i = 1, only the implicit step
is needed. Once all s implicit and s − 1 explicit contributions are
calculated, the final update Un+1 is given by

Un+1 = Un + -t

s∑

i=1

[
ω̃iQ[U (i)] + ωi R[U (i)]

]
, (15)

where ω̃i and ωi, for i = 1, 2, . . . s, are additional coefficients
required by the IMEX scheme. Here, we use the IMEX Strong
Stability Preserving scheme SSP3(4,3,3) (Pareschi & Russo 2005),
with s = 4 implicit substeps, ω̃i = ωi (and ω̃1 = ω1 = 0), and with
a third-order accuracy in time (for numerical tests see Del Zanna,
Bugli & Bucciantini 2014).

We now show how the implicit step is carried out in ECHO. From
the inversion of the relation (14), an explicit expression for the
electric field as a function of the velocity and known quantities can
be derived as shown in Bucciantini & Del Zanna (2013).1 Here, we
choose to write it in the form

A0E
i = η̃Ei

! + A1
(
E!kũ

k
)
ũi + A2ε

ilmũlE!m

+A3B
i + A4

(
Bkũ

k
)
ũi + A5ε

ilmũlBm, (16)

where all coefficients are function of the Lorentz factor + (hence of
the velocity) alone. See the Appendix for a derivation of the above
equation and for the expressions of the coefficients. It is convenient
to work with the new spatial vector ũi = +vi (not coincident with
the spatial component of the 4-velocity, unless β i += 0 as in the
Minkowski or Schwarzschild metrics), and ũi = +vi , so that +2 =
1 + ũi ũi . Above we have also defined Ek

! = X k
! /

√
γ , where X k

! are
the electric field components, multiplied by

√
γ , computed thanks

to the previous explicit substeps j < i of the IMEX scheme, or at
the previous time-step when i = 1. Moreover

η̃ = η/α

aii-t
, (17)

with j = i referring to the last, implicit substep. Notice that when
η = 0 and ξ = 0 we recover the ideal GRMHD case.

1Equation 35 in Bucciantini & Del Zanna (2013) contains an error in the
purely resistive term, fortunately not in the corresponding part of the code.
The correct version can also be found in Del Zanna et al. (2016).
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The relation (16) allows one to calculate the electric field as a
function of the velocity and of the magnetic field at the end of each
substep. However, since the numerical scheme evolves in time the
conserved variables in equation (10), primitives variables such as
the velocity are not readily available and the implicit step must be
nested in the non-linear iterative procedure which recovers primitive
variables from the above set of conservative ones. Starting with a
straightforward guess for ũj (0), that is the value corresponding to
the set of conserved variables at the previous time-step, we proceed
by adopting the following Newton–Raphson scheme:

(i) at any iteration (k), with a value ũj (k) for the velocity, work
out the electric field given by solving equation (16);

(ii) evaluate the function

fi(ũj ) = w̃γij ũ
j + εilmElBm − Si, (18)

where the modified enthalpy is

w̃ = w+ = +[E + D − uem] − D/γ̂1

+2 − 1/γ̂1
, (19)

obtained using equation (6), is also given in terms of conservative
variables and velocity components alone;

(iii) evaluate the Jacobian

Jij = ∂fi

∂ũj
= w̃γij + ũi

∂w̃

∂ũj
+ εilm

∂El

∂ũj
Bm, (20)

where

∂w̃

∂ũj
= [E + D − uem]ũj /+ − 2w̃ũj − +Ei(∂Ei/∂ũj )

+2 − 1/γ̂1
, (21)

and where we have used ∂+/∂ũj = ũj /+. The expression for the
Jacobian of the electric field is more involved. Recalling that for
any function f(+) we have ∂f /∂uj = ḟ uj /+, one can write

A0+(∂Ei/∂ũj ) = −Ȧ0E
iuj + A1+uiE!j + Ȧ3B

iuj + A4+uiBj

+ (A1+γ i
j + Ȧ1u

iuj )(E!ku
k)

+ εilm(A2+γlj + Ȧ2uluj )E!m

+ (A4+γ i
j + Ȧ4u

iuj )(Bku
k)

+ εilm(A5+γlj + Ȧ5uluj )Bm

(22)

and the expressions for the derivative of the coefficients are reported
in the Appendix. Once the full Jacobian is known, we can finally
update the velocity as

ũj (k+1) = ũj (k) −
[
J

(k)
ij

]−1
f

(k)
i . (23)

The iterations are repeated until the desired accuracy is reached,
so that the primitive variables at every substep j can be computed
for the IMEX scheme.

The above 3D Newton–Raphson scheme based on the vanishing
of momentum equations and using the ũm variables, first introduced
by Bucciantini & Del Zanna (2013), has proved to be the most robust
one and has been recently adopted in other resistive relativistic
MHD codes (Mignone et al. 2019; Ripperda et al. 2019). The
novel feature introduced here is the analytical calculation of the
Jacobian in equation (20), that appears to be more robust in critical
situations and to require 10–20 per cent less iterations compared
to the approach in Bucciantini & Del Zanna (2013), where the
Jacobian was computed numerically, by evaluating the momenta
twice for nearby values of ũj .

3 D I S C M O D E L A N D N U M E R I C A L S E T-U P

Our simulations are initialized with the hydrodynamical equilibrium
solution for a differentially rotating thick disc, also known as
Polish daughnut (Kozlowski, Jaroszynski & Abramowicz 1978;
Abramowicz & Fragile 2013). The general relativistic Euler equa-
tion for a rotating fluid in a stationary and axisymmetric gravita-
tional field admits the integral

W − Win +
∫

dp

w
= 0, (24)

where the potential W is defined in terms of the fluid 4-velocity uµ

as

W = ln |ut | +
∫ ∞

0

%d/

1 − /%
, (25)

where / = −uφ /ut is the specific angular momentum, % = uφ /ut the
angular velocity, and Win the potential evaluated at the inner edge of
the disc, rin. The simplest model is a barotropic disc with constant
/, that is

p = Kwγ̂ , / = /0, (26)

for which

W − Win + K γ̂1w
γ̂−1 = 0, (27)

with the potential given expressed in terms of the metric as

W = ln |ut | = 1
2

ln

(
g2

tφ − gttgφφ

gφφ + 2gtφ/0 + gtt/
2
0

)
. (28)

Once the angular moment has been assigned, the potential is
defined at each point in the domain as a function of spherical-
like coordinates (r, θ ). The matter can fill every closed equipotential
surface, that is the surfaces characterized by the condition W(r, θ ) −
Win < 0. Equivalently it is possible to define the potential assigning
the position of the cusp, rin, and of the centre of the disc, rc (Del
Zanna et al. 2007), the innermost and outermost points where the
angular momentum assumes the Keplerian value. In this way /0 is
defined by simply evaluating the expression

/0 = ± r2
c ∓ 2aBH r1/2

c + a2
BH

r
3/2
c − 2r

1/2
c ± aBH

, (29)

where the upper (lower) sign is for co-rotating (counter-rotating)
orbits and aBH is the spin parameter of the black hole. Fluid
quantities can now be evaluated as

w = wc

(
Win − W

Win − Wc

) 1
γ̂−1

, p = pc

(
w

wc

)γ̂

, (30)

where pc = Kwγ̂
c , and the density is derived from equation (6).

We have considered a disc with hydrodynamical equilibrium
so far. In order to study the dynamo amplification mechanism, a
small magnetic field must be introduced in such a way that the
initial equilibrium is not affected by its presence (B2 . w). In our
simulations a large poloidal loop has been superimposed over the
hydrodynamical torus, described by the vector potential (Liska et al.
2018)

Aφ = A0ρ
2r3, (31)

where A0 is a constant.
Finally, outside the disc, that is in the region where W − Win > 0,

we introduce a static, unmagnetized and tenuous atmosphere, with
density and pressure radial profiles given by (Porth et al. 2017)

ρatm = ρminr
−3/2, patm = pminr

−5/2. (32)
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GRMHD dynamo in thick accretion discs 2351

Table 1. Parameters of the initial equilibrium model.

aBH rin rc wc A0 ρmin pmin

0.9375 6 12 1 10−8 10−4 10−6

The above values are also used to reset density and pressure,
respectively, when the numerical inversion from conservative to
primitive variables fails in providing physical results.

In Table 1, the parameters used to characterize the disc con-
figuration are shown. Lengths and times are expressed in units
of rg = GMBH/c2 (the gravitational radius) and rg/c, respectively.
The mass density is normalized against ρ0 = n0mp, where n0 is a
reference peak number density in the disc, whereas enthalpy, energy
density, and fluid and magnetic pressure are normalized against
ρ0c2. The spin parameter aBH must also be provided in order to
characterize the Kerr-type metric, and here we choose the same
value used in the aforementioned code comparison project (Porth &
EHT Collaboration 2019).

In order to quantify the dynamo action, we can introduce the two
characteristic numbers (Bugli et al. 2014):

C% = -%R2

η
, Cξ = ξR

η
, (33)

where -% = %in(t = 0) − %c(t = 0) is a typical angular velocity
difference and R ∼ rc is a typical high scale of the torus. These
numbers describe the importance of α dynamo and rotation with
respect to the dissipation of magnetic fields. The η and ξ profiles
are chosen so that the diffusion and dynamo processes occur only
within the disc. Starting from the maximum values ξmax and ηmax,
those actually entering the definition of the dynamo numbers, at
each point of the domain we impose

η(r, θ ) = ηmaxSη(r, θ ), (34)

with

Sη(r, θ ) = ρ − ρatm

ρmax
, (35)

and

ξ (r, θ ) =
{

ξmaxSξ (r, θ ), inside the disc,
0 in the atmosphere,

(36)

with

Sξ (r, θ ) = ρ cos θ

[ρ cos θ ]max
, (37)

where the presence of an odd function with respect to the equator
will lead to a symmetric dynamo action. In Table 2, we show the
models we have considered for our simulations. We have explored
different dynamo numbers Cξ , starting from a reference value
(Run1), in order to cover a significant range in the parameter space.
In the present analysis, we have chosen to leave the hydrodynamical
equilibrium, hence the %(r) profile, unchanged as well as a fixed
ηmax, so that Cη has also been kept constant.

We adopt here the horizon-penetrating Kerr–Schild metric and 2D
axisymmetric spherical coordinates (see Komissarov 2004; Bugli
et al. 2018, for additional details). The two-dimensional numerical
domain extends in the regions delimited by rmin = rh − 0.3, inside
the horizon rh = 1 + (1 − a2

BH)1/2, and rmax = 100 in the radial
direction, and by 0.06 and π − 0.06 in the θ direction. The grid
(512 × 256) employed is uniform in θ but not along the radial

direction, where points are defined by the non-linear function

ri = rmin + rmax − rmin

3
tan(mi arctan 3), (38)

with mi covering uniformly the range [0, 1] and 3 a stretching
factor fixed to 10 as in Bugli et al. (2014). This choice allows to
have a higher resolution in the inner region where larger gradients
are expected.

4 N U M E R I C A L R E S U LTS

In this section, we show the results of α−% dynamo simulations.
We start by defining the average on the disc of any quantity f = f(r,
θ ) as

〈f 〉 =
∫ r2

r1
dr

∫ θ2
θ1

dθ α
√

γ f
∫ r2

r1
dr

∫ θ2
θ1

dθ α
√

γ
, (39)

where r1 = 4, r2 = 30, θ1 = π /3, and θ2 = 2π /3. The assumption
of limiting the average in this range is arbitrary, the reason behind
this choice is to define a region of the disc in which the quantities
of interest are significantly appreciable. Note that because of the
presence of the lapse function α this is not a proper 3+1 spatial
averaging, though the above formula is the one most commonly
adopted within the GRMHD community (Porth & EHT Collabora-
tion 2019). The time range of the simulations goes from 0 to 13Pc,
where Pc = 268 is the initial central period.

Fig. 1 shows the time evolution of the average poloidal and
toroidal components of the magnetic field in the Run1. We can see
that a toroidal field immediately arises due to the % effect and, after
a transient, the mean-field α-dynamo starts as well and supports the
exponential amplification of the two components up to ∼4.5 t/Pc.
This phase coincides with the kinematic regime studied by Bugli
et al. (2014), as there is no noticeable feedback on the disc and the
field grows following the normal modes of the dynamo, propagating
towards the outer edge of the disc. During this linear phase the
toroidal fields remain always stronger than the poloidal component.
The new interesting aspect is represented by the situation around
t 1 4.5Pc, where the linear dynamo action saturates. As shown in
Fig. 2, the transition occurs when there are regions where the gas
pressure locally equals the magnetic one

pmag = 1
2
b2 = 1

2
(B2 − E2), (40)

and the sharp jump means that the most magnetized regions are
no longer within the disc but start to form in the low-density
atmosphere, where accretion is taking place. This corresponds to
a change of slope in the growth of the magnetic field displayed
in Fig. 1: the dynamo action is less strong, though a secondary
linear phase can still be recognized, and the values for the two
magnetic field components are basically the same. After t 1 8Pc a
second and definitive saturation stage has been reached, the dynamo
amplification slowly begins to decrease, and the magnetic field
approaches more or less to a constant value.

The three phases are more clearly apparent in Fig. 3, where spatial
maps of the (poloidal) magnetic field are presented (in logarithmic
scale) at three different times. In the upper panel we are clearly still
in the kinematic, linear phase of the dynamo. The magnetic field
does not affect the disc shape, magnetic islands corresponding to
the linear dynamo modes migrate towards the outer edge of the disc
while growing in amplitude. In the middle panel, the disc starts to
be affected by the presence of the growing field and dynamo waves
are dragged towards the black hole by the accretion. The accretion
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2352 N. Tomei et al.

Table 2. Initialization parameters for the various runs and growth rates in the two phases. The reported dynamo numbers refer to their
maximum value. The initial plasma beta is β = 109 for all runs.

ηmax ξmax Cξ C% γ1(BP ) γ1(BT ) γ2(BP ) γ2(BT )

Run1 1.0 ×
10−3

3.0 ×
10−2

3.6 × 102 8.3 × 102 3.76 ± 0.010 3.57 ± 0.01 0.720 ± 0.010 0.634 ± 0.008

Run2 1.0 ×
10−3

3.5 ×
10−2

4.2 × 102 8.3 × 102 4.190 ± 0.030 3.960 ± 0.030 0.220 ± 0.009 0.225 ± 0.008

Run3 1.0 ×
10−3

4.0 ×
10−2

4.8 × 102 8.3 × 102 4.930 ± 0.030 4.660 ± 0.040 0.460 ± 0.010 0.490 ± 0.020

Run4 1.0 ×
10−3

2.5 ×
10−2

3.0 × 102 8.3 × 102 2.980 ± 0.010 2.800 ± 0.002 0.597 ± 0.008 0.476 ± 0.004

Run5 1.0 ×
10−3

2.0 ×
10−2

2.4 × 102 8.3 × 102 2.460 ± 0.010 2.267 ± 0.009 0.436 ± 0.002 0.412 ± 0.005

Run1q 1.0 ×
10−3

3.0 ×
10−2

3.6 × 102 8.3 × 102 3.450 ± 0.010 3.200 ± 0.020 0.486 ± 0.005 0.396 ± 0.003

Run2q 1.0 ×
10−3

3.5 ×
10−2

4.2 × 102 8.3 × 102 3.990 ± 0.020 3.820 ± 0.030 0.513 ± 0.006 0.449 ± 0.004

Run3q 1.0 ×
10−3

4.0 ×
10−2

4.8 × 102 8.3 × 102 4.760 ± 0.020 4.540 ± 0.040 0.570 ± 0.003 0.526 ± 0.003

Run4q 1.0 ×
10−3

2.5 ×
10−2

3.0 × 102 8.3 × 102 2.850 ± 0.010 2.760 ± 0.010 0.408 ± 0.006 0.352 ± 0.004

Run5q 1.0 ×
10−3

2.0 ×
10−2

2.4 × 102 8.3 × 102 2.336 ± 0.007 2.220 ± 0.010 0.354 ± 0.005 0.318 ± 0.003

Figure 1. The time evolution of the average values of the toroidal BT =
√

BφBφ and poloidal BP =
√

B2 − B2
T components of the magnetic field.

Figure 2. Time evolution of pmag = 1
2 b2 and pgas ≡ p, both evaluated

where pmag takes its maximum value.

process is most probably triggered by MRI (see the discussion
below), that also drives turbulent motions. In this dynamic regime,
magnetic structures tend to form low-pressure vortices that drag
matter away (bottom panel), that for high values of the magnetic
field can even evacuate the plasma locally (and safety floor density
values can be required numerically, in order to limit this effect). The
dynamo modes are barely visible during the phase of the secondary
growth (third panel), and they seem to be localized only at the
external boundary of the disc, where density and the dynamo term
ξ are lower (this point will be addressed in the next section).

4.1 Dependence on the α-dynamo number and on the
quenching effect

We now investigate the dependence of the results on the α-dynamo
number Cξ and on the employment of an explicit quenching effect
(see below). The list of runs with the corresponding parameters is
reported in Table 2. In particular, Run2 and Run3 are characterized
by increasing values of ξ and Cξ with respect to our reference Run1
values, whereas Run4 and Run5 by decreasing values of the same
parameters. Fig. 4 shows the dependence of the exponential growth
rates of the kinematic (γ 1) and dynamic (γ 2) phases, respectively,
with the dynamo number Cξ . Growth rates are measured for
both the poloidal field component (blue triangles) and for the
toroidal one (blue circles), values also reported in Table 2. The
red symbols indicate the corresponding quantities for simulations
where quenching is active (labelled with a ‘q’ in the table of runs).

We observe that the rates γ 1 corresponding to the kinematic
phase follow a linear trend, as expected, whereas the rates γ 2,
corresponding to the phase where accretion affects the dynamo
modes, show an unexpected drop at high values of ξ (blue symbols).
This may be due to the rapid growth of the magnetic field, leading
to values able to modify the fluid equilibrium itself. This seems
to prevent, or at least to lower, a subsequent amplification, as if a
saturated state has been reached.

In order to limit the dynamo action and to obtain a more regular
growth it is possible to adopt a technique, used in purely kinematic
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GRMHD dynamo in thick accretion discs 2353

Figure 3. Colour maps of the poloidal magnetic field BP in logarithmic
scale, for three different times t/Pc. Black lines near the origin are the
contours of the black hole’s ergosphere (dashed line) and horizon rh (solid
line).

dynamo models to simulate dynamic effects, that is to impose an
explicit quenching in the dynamo term in situations when the field
becomes comparable to the equipartition value (e.g. Brandenburg &
Subramanian 2005). This is obtained by introducing, locally at any
point, the replacement

ξ → ξ

1 + B2/B2
eq

, (41)

where we have considered an equipartition turbulent field defined
as a given fraction of the thermal pressure (Shakura & Sunyaev

Figure 4. Dependence of growth rates γ 1 and γ 2 on the dynamo number
Cξ . Triangles (circles) for the poloidal (toroidal) field components, blue
(red) colour for runs without (with) quenching.

1973), B2
eq = ᾱdiscp, with ᾱ = 0.1. This value is the one most

commonly used to model the turbulent magnetic stresses in discs
(King, Pringle & Livio 2007).

Here, we want to check whether our GRMHD simulations
without quenching lead to a turbulent state with fluctuations of the
required intensity. We thus compare this value with the coefficient
αdisc defined by the averages

αdisc = 〈W 〉
〈p + pmag〉

, (42)

where, for rotating discs in GRMHD (e.g. Bugli et al. 2018)

W = [(w + p + b2)δurδuφ − brbφ]
√

γφφ

√
γrr (43)

is the r, φ component of the stress tensor of fluctuations, based on
the variations of the relevant 4-velocity components (compared to
the equilibrium state at t = 0) and on the growing fluctuations of
the magnetic 4-vector components (negligible at t = 0). As shown
in Fig. 5, the choice of the value ᾱ = 0.1 for the quenching is
reasonable, since all runs saturate towards average values of αdisc

with this value, or slightly lower. This means that the introduction of
the quenching effect is not expected to affect the overall dynamics,
but just to limit the growth of the field in localized, critical zones.
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2354 N. Tomei et al.

Figure 5. The quantity αdisc defined in equation (42) as a function of time,
for three runs with different dynamo number Cξ .

The five runs have been repeated with identical parameters and
the addition of the quenching effect, labelled as Run1q–Run5q
in Table 2. As expected, the dynamo growth rates are basically
unchanged in the quasi-kinematic phase. However, now the rates γ 2

appear to grow linearly with Cξ , exactly as rates γ 1, even in the phase
where turbulence and accretion are present (see the red symbols in
Fig. 4, for both γ 1 and γ 2). Notice that below Cξ = 400 the γ 2

values are lower than the corresponding cases without quenching,
as expected, but higher above that value, where however the blue
data looked pathological since no regular trend was followed. Four
additional runs with Cξ increasing from 1750 up to 11800 have
also been performed, again in presence of the quenching term. The
linear trend for γ 2 is less evident than what shown in Fig. 4, though
we find a final value γ 2 1 1.5, that is more or less what one would
expect from a linear extrapolation.

These results show that the dynamo appears to be the main
mechanism for amplifying magnetic fields even during the phase
in which the disc starts to lose mass, which is accreting on to the
black hole. Furthermore, when quenching is activated, since a lower
magnetic field is present, the formation of vortices evacuating the
plasma is inhibited and the dynamo structures evolve more smoothly
even in a turbulent environment, as clearly shown in Fig. 6.

In order to better clarify why the secondary growth rate γ 2 is
lower than the corresponding γ 1, we plot in Fig. 7 the time series
of the spatial averages of the Cξ dynamo number. We clearly see
that, when the accretion begins and the first saturation phase starts,
the quantity decreases for all runs without the quenching term and
for Run3q as well. This is due to the fact that during accretion
the density can be modified substantially, and 〈Cξ 〉 as well, and
this effect is stronger for higher magnetization levels. When the
quenching term is present both magnetization and turbulence are
generally lower, the presence of the low-density vortices is avoided,
and the overall dynamics is certainly more regular. In any case,
especially for runs with quenching, the lower values of γ 2 cannot
be attributed to correspondingly smaller values of 〈Cξ 〉, while
migration of the plasma near the border of the disc, where Cξ

is reduced, appears to be more important. In addition, when the
density is low, the other dynamo term, C%, gets larger values, and
for a constant Cξ the overall growth rates are expected to be reduced
(see table 1 in Bugli et al. 2014).

A very interesting result is that the value of Cξ and the presence
of quenching do not affect too much the value of the quantities

Figure 6. Map of the poloidal field (in logarithmic scale) for t = 6Pc

(Run1q, with quenching), to be compared with the third panel of Fig. 3
(Run1, without quenching).

Figure 7. Time series of the dynamo number Cξ averaged over the whole
disc.

in the final saturation stage, as can be seen in Fig. 8, where the
growth of the average strength of the magnetic field is plotted for
our six reference runs. The initial kinematic growth and also the
first saturation phase clearly depend on Cξ , as the fastest growing
mode occurs at a wavenumber ∼ξ /η (Brandenburg & Subramanian
2005), with smaller scales triggered by MRI leading to a turbulent
cascade towards the dissipative scales. However, the second and
final saturation phase looks approximately independent on the Cξ

value and on the presence of quenching (all curves tend to the same
value of 〈B〉 within a factor of 13), hence we deem that the accretion
dynamics and the reached equipartition with the fluid component
play a major role at this final stage (see the similar behaviour of
αdisc).

For completeness, the magnetic flux threading one hemisphere
of the black hole horizon, 4BH, has been evaluated, a quantity
which is very important because the rotational energy extracted, the
Blandford–Znajek power, is proportional to its square (Blandford &
Znajek 1977; Tchekhovskoy, Narayan & McKinney 2011). This is
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GRMHD dynamo in thick accretion discs 2355

Figure 8. Time evolution of the averaged intensity of the magnetic field,
for three runs without and with quenching.

Figure 9. Time evolution of the magnetic flux 4BH penetrating the horizon,
divided by the accretion rate, for the same six runs as in Fig. 8.

defined as

4BH = 1
2

2π

∫ π

0
|Br |√γ dθ, (44)

to be evaluated at the outer event horizon rh. Note that throughout
the literature there are two different definitions of the magnetic
field components in terms of the dual of the Faraday tensor: one
as Bi = F!i0 (e.g. McKinney & Gammie 2004), the other as Bi =
−nµF!µi = αF!0i (e.g. Del Zanna et al. 2007), where nµ is the
Eulerian observer unit vector (only this second one is a proper
spatial projection according to the 3+1 splitting). Fig. 9 describes,
for our six reference runs, the time evolution of the so-called MAD
parameter φ = 4BH/

√
Ṁ , that is the above quantity normalized to

the square root of the mass accretion rate. This quantity is commonly
used to discriminate SANE evolution models from MAD ones (e.g.
Porth & EHT Collaboration 2019), depending whether its maximum
value is below or above the threshold of ∼15. In our runs, in order
to reach the typical SANE values we have of course to wait for
the saturation of the first magnetic field growth, for which we find
φ ∼ 1. At later times we observe a persistent slow growth, due
to the secondary dynamo action, and for Run1 and Run3 even the

Figure 10. Time dependence of the averaged MRI quality factor Qθ , for
Run1 parameters. The two horizontal lines are the thresholds for resolving
the linear (dashed line) and non-linear (dotted line) phases.

MAD phase seems to be reached, with final values in the range φ

∼ 50−100.

4.2 On the magnetorotational instability

In the non-linear regime it is interesting to investigate whether MRI
is capable of affecting the dynamo action or, more generally, of
changing substantially the structure of the magnetic field.

It is custom to define the so-called MRI quality factor, a parameter
that allows to establish if a given simulation is able to resolve the
characteristic MRI wavelength λMRI, precisely by measuring the
number of cells contained in λMRI, for a given direction. In our
axisymmetric case the important quality factor is the one along the
direction θ , hence here we define

Qθ = λMRI,θ√
γθθ-θ

= 2π |vθ
A|

%
√

γθθ-θ
, (45)

where vθ
A = Bθ/

√
w + B2 is the θ -component of the relativistic

Alfvén velocity (here neglecting the contribution by the electric
fields). Values of Qθ > 6−8 have been shown to be necessary to
capture locally the linear growth of MRI, while a threshold of Qθ >

10 can capture its non-linear growth (Noble, Krolik & Hawley 2010;
McKinney, Tchekhovskoy & Blandford 2012; Hogg & Reynolds
2018).

Fig. 10 shows the time evolution of the factor Qθ , averaged over
the whole disc, in the case of Run1. Apparently the MRI instability
could be resolved during the dynamical phase and therefore, if
present, it would be expected to play a role in the growth of the
magnetic field, competing with the ongoing dynamo process.

To investigate this aspect we have re-executed Run1 twice, the
first time by setting ξ = 0 for t/Pc > 4.5, at the end of the first
linear stage, and the second one for t/Pc > 8.0, just before the final
saturation after the second linear phase. As we can see in Fig. 11,
the magnetic field components immediately start to decrease after
the dynamo has been switched off, in both cases. Notice that the
poloidal component is the one suffering the fastest decrease, the
toroidal one is probably still supported by a residual amplification
due to rotation (a purely % effect).

This result means that the dynamo action is the main driver for
magnetic field enhancement in all phases, whereas MRI, which is
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2356 N. Tomei et al.

Figure 11. Growth of the magnetic field components for Run1 and for two
additional runs with the same parameters but switching off the dynamo (ξ =
0) for t/Pc > 4.5 (dashed lines) and for t/Pc > 8.0 (dot–dashed lines).

surely present and resolved numerically in our simulations, seems
to be responsible mainly for triggering turbulence and driving the
accretion. Amplification of magnetic fields by MRI is instead less
strong than the one due to the mean-field dynamo (we recall that our
simulations are 2D axisymmetric), and its effect is only visible in
the final saturation stage, where a faster decrease due to dissipation
is inhibited. We conclude by saying that the adopted resistivity value
of η = 10−3 is still above the level of numerical dissipation, which
is estimated to be η ∼ 10−4 for the resolution employed.

4.3 Comparison with Sgr A∗ radio emission

Our GRMHD models based on the dynamo action will be used
here to infer the synthetic emission by the magnetized plasma of
the accreting matter and to compare it with observational data. The
most straightforward targets are obviously the two sources observed
by EHT, Sgr A∗ and M87∗, i.e. the cores containing the supermassive
black holes of our Galactic Centre and of the elliptical galaxy M87.
In the latter case, the very first image of the emission from the
regions around a black hole’s event horizon has been recently taken
(EHT Collaboration 2019a), whereas at the moment work is in
progress to reduce data in the case of Sgr A∗.

Since our simulations are more focused on the plasma dynamics
occurring inside the disc, with the magnetic field growing from
initial seed values, we choose here to compare our model with Sgr
A∗ data, as in the case of M87∗ a substantial fraction of the emission
is known to come from the polar jet. The structure of Sgr A∗ is rather
uncertain because the source is hidden by optically thick interstellar
medium that surrounds it. For this reason models with or without
a jet have been built over the years to infer its emission properties
(Mościbrodzka et al. 2009, 2014; Mościbrodzka & Falcke 2013).

The radio emission in the mm band of the Sgr A∗ spectrum can
be modelled by the radiation produced by thermal synchrotron-
emitting relativistic electrons in an ADAF/RIAF (Advection-
Dominated Accretion Flow and Radiatively Inefficient Accretion
Flow) model. According to the theory, most of the energy is stored
in the thick pressure-supported disc and advected inwards with
high speed and efficiency. The large scale height and accretion
velocity makes the density low, the gas cooling time long compared
to advection times (the temperature of proton remains high, Tp ∼

1011−1012 K), and the plasma is optically thin (Narayan, Yi &
Mahadevan 1995; Narayan & McClintock 2008).

The total emissivity per unit frequency jν is given by (Leung,
Gammie & Noble 2011)

jν = ne

√
2πe2νs

672
ec

X exp(−X1/3), (46)

where X = ν/νs (with ν * νs in the above approximation), νs =
(2/9)νc7

2
e sin θ is a characteristic frequency threshold (θ is the

pitch angle of the particle), and νc = eB/2πmec is the cyclotron
frequency. Moreover, 7e = kTe/mec2 is the normalized electron
temperature, and me and ne are, respectively, the electron mass and
numerical density. For an optically thin source, like Sgr A∗, the
spectral luminosity is simply defined by

Lν = 2π

∫ r2

rh

dr

∫ θ2

θ1

dθ
√

γ jν, (47)

and the observed flux would be Fν = Lν /4πd2, where d = 7.86 kpc
is the estimated distance of the Galactic Centre (Boehle et al. 2016).

In RIAF systems, electrons are cooled by synchrotron, inverse-
Compton, and bremsstrahlung emission losses, but ions maintain
their high temperatures due to inefficient thermalization, thus a
two-temperature plasma where the electron temperature is much
lower than that of protons, Te . Tp, is usually assumed (Narayan &
Yi 1995). The ratio between proton and electron temperatures is
assumed to be given by the expression (EHT Collaboration 2019b)

Tp

Te

≡ R = Rhigh
β2

1 + β2
+ 1

1 + β2
, (48)

where β = p/pmag and Rhigh is a parameter that takes into account
the electron-to-proton coupling in the regions of the disc where β

is high, R → Rhigh for β * 1 (Mościbrodzka, Falcke & Shiokawa
2016).

In order to compute the above emission quantities it is necessary
to appropriately convert all quantities from code units to the CGS
system, hence

ne = np = (ρ/ρ0)n0, (49)

where we recall that n0 is a free parameter providing the number
density at the disc centre, the magnetic field in expressed in units
B0 =

√
4πρ0c2, the normalized proton temperature is defined as

7p = kTp

mpc2
= p/p0

ρ/ρ0
, (50)

whereas 7e can be inferred from equation (48). Reference units for
length and time are determined once the mass of the black hole
has been assigned, for Sgr A∗ we assume MBH = 4.02 × 106 M'
(Boehle et al. 2016).

In the following, we show that our model (we choose Run1
and Run1q parameters) can predict that the initial magnetic field
(∼10−4 G) is amplified by the mean-field dynamo up to a level
able to explain the observed flux in the millimetric wavelengths.
The three free parameters left, namely ν, Rhigh, and n0, are chosen
as follows: ν is set to 230 GHz, the same used for M87∗, Rhigh is
fixed to 20, a reasonable value in the disc and n0 is chosen as the
value that best reproduces the observed flux of 2.64 ± 0.14 Jy at
230 GHz (Mościbrodzka & Falcke 2013; Mościbrodzka et al. 2014;
EHT Collaboration 2019a). Let us look at Fig. 12. The predicted
synthetic flux follows the average magnetic field trend, increasing
until it reaches a quasi-stationary value. We perform a time average
in the range t/Pc = [7−13], obtaining a flux of 2.59 Jy consistent
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GRMHD dynamo in thick accretion discs 2357

Figure 12. Time evolution of the synthetic flux Fν computed on top of
Run1 (solid line), and of Run1q (dashed line). The horizontal dashed lines
represent the observed value at for the reference frequency ν = 230 GHz.

with the observations when assuming n0 = 6.5 × 107 cm−3 for
Run1 and n0 = 5.5 × 107 cm−3 for Run1q.

In Fig. 13 (upper panel), we show the time evolution of the
maximum value of the magnetic field in the disc, reaching Bmax 1
3−4 kG at the saturation of the dynamo process. At the same time,
the average electron temperature reaches 〈Te〉 just below 1011 K
(lower panel). Overall these quantities result in agreement with the
values obtained in the simulations of Mościbrodzka et al. (2009)
and Mościbrodzka & Falcke (2013).

5 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have investigated, for the first time by means
of non-ideal axisymmetric GRMHD simulations, the mean-field
dynamo process operating in thick accretion discs around black
holes, in the fully non-linear regime. This work can be seen as a
follow-up of our previous analysis in the purely kinematical regime
(Bugli et al. 2014).

Similar GRMHD simulations have been recently employed to
model the dynamics and emission of the central core of the galaxy
M87 (EHT Collaboration 2019b), comparing with observational
data including the very first image of the shadow of a black hole’s
event horizon (EHT Collaboration 2019a). Contrary to the standard
numerical initial set-up, where a subdominant but non-negligible
magnetic field (pmag/p ∼ 10−2) is present in the disc right from the
start (e.g. Porth & EHT Collaboration 2019), here we initialize the
simulation with an extremely small magnetic field (pmag/p ∼ 10−9),
which is later self-consistently amplified during the evolution by
the α−% dynamo process.

A linear kinematic exponential growth, followed by an other one
with reduced rate when accretion becomes important, is observed
for a variety of dynamo parameters. Both rates increase linearly
with the dynamo parameter at least for the limited range explored
here. The dynamo is clearly the main driver, with the second,
reduced stage due to the fact that due to accretion the density in
the disc is modified and the non-dimensional dynamo number Cξ

reduces in time, especially for runs with a stronger dynamo. At
later times the accretion process and the stronger field are capable
of affecting the overall structure of the disc itself and the growth
of the magnetic field ceases, reaching a saturation phase where the
magnetic field is approximately constant in time. The presence of an

Figure 13. Time evolution of the maximum value of the magnetic field
strength (upper panel) and of the average electron temperature (lower panel)
for Run1 (solid line) and of Run1q (dashed line).

explicit quenching term in the α-dynamo shortens the linear phase
but seems not to affect the final saturation stage, occurring roughly
for similar values of the magnetic field strength (within a factor of
three). The quenching also helps in avoiding the formation of a few
pathological structures with highly magnetized vortices evacuating
the plasma in the outer disc regions, and the overall dynamics is
more regular.

In spite of the widely recognized importance of MRI for global
simulation of discs around black holes (e.g. Bugli et al. 2018,
and references therein), and in spite of our simulations having
the sufficient spatial accuracy to resolve such instability (the MRI
quality factor Q exceeds 10 after a few rotational periods), this
does not seem to play a major role here, if not as an initial trigger
for the turbulent cascade and accretion on to the black hole. We
have tested this hypothesis by switching off the dynamo term at
the end of each growth phase (in different runs with otherwise the
same parameters): the field starts to decrease immediately, and MRI
seems to be just capable of balancing dissipation at small scales,
reaching a steady (turbulent) state at late times.

By assuming the approximation of an optically thin plasma,
as expected for Sgr A∗, the accreting supermassive black hole
of our Galaxy, we have computed on top of our simulations the
expected emission, at millimetre wavelengths, for such source. A
two-temperature plasma and all the recipes commonly employed for
ADAF/RIAF systems have been used, obtaining very reasonable
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results, compared to previous works (Mościbrodzka et al. 2009,
2014). This confirms that the dynamo action, believed to occur
in these systems due to small-scale turbulence, is capable of
amplifying the magnetic fields, in a self-consistent way, up to the
values required to reproduce the observations.

All simulations have been performed with our ECHO code (Del
Zanna et al. 2007), which has recently successfully participated to
a code comparison project by the EHT collaboration (Porth & EHT
Collaboration 2019), in the upgraded version to include non-ideal
resistive and dynamo effects in the Ohm’s law (Bucciantini & Del
Zanna 2013; Del Zanna & Bucciantini 2018). From a computational
point of view, we have here improved the implicit version of the
conservative-to-primitive inversion step, by providing for the first
time the analytical Jacobian matrix needed in the 3D Newton–
Raphson scheme. A similar approach has been recently employed
for purely resistive schemes (Mignone et al. 2019; Ripperda et al.
2019).

To conclude, we believe that non-ideal resistive-dynamo models
of accreting discs around black holes represent a necessary upgrade
to the existing ideal ones. However, for a detailed comparison
against the revolutionary images by the EHT collaboration, fully
3D simulations and ray-tracing techniques in curved space–times
are certainly required.
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A P P E N D I X A : T H E C O E F F I C I E N T S F O R T H E
ELECTRIC FIELD AND FOR ITS JACOBI AN

In the present Appendix, we show how equation (16) has been
derived and we provide the expressions for the required coefficients
of + and of their derivatives, to be used in equation (22). Since
we are working with spatial vectors alone, involving the 3D metric
tensor γ ij (not diagonal in Kerr–Schild coordinates), we use here
for simplicity the standard vector notation, for which v is employed
rather than vi.

The implicit step of the IMEX scheme for the electric field can
be written as

E = E! − η̃−1+{E + v × B − (E · v)v

− ξ [B − v × E − (B · v)v]} (A1)

and after the introduction of ũ = +v, for which +2 = 1 + ũ2, we
can rewrite the above expression as

(+ + η̃)E = η̃E! − ũ × B + (E · ũ)ũ/+

+ ξ+B − ξ (ũ × E) − ξ (B · ũ)ũ/+. (A2)

The dot product with ũ allows one to write

(1 + η̃+)(E · ũ) = η̃+(E! · ũ) + ξ (B · ũ), (A3)

whereas the curl with ũ (necessary when ξ += 0) leads to

(+ + η̃)(ũ × E) = η̃(ũ × E!) + (+2 − 1)B

− (B · ũ)ũ + ξ+(ũ × B)

+ ξ [(+2 − 1)E − (E · ũ)ũ]. (A4)

Equations (A3) and (A4) can be plugged into equation (A2) to
derive an explicit expression for E. In a compact form the required
expression is

A0 E = η̃E! + A1 (E! · ũ)ũ + A2 ũ × E!

+A3 B + A4 (B · ũ)ũ + A5 ũ × B, (A5)

that is precisely equation (16), where we have defined six new
coefficients, functions of + alone, namely

A0(+) = + + η̃ + ξ 2 +2 − 1
+ + η̃

, (A6)

A1(+) = η̃

1 + η̃+
+ ξ 2 η̃+

(+ + η̃)(1 + η̃+)
, (A7)

A2(+) = −ξ
η̃

+ + η̃
, (A8)

A3(+) = ξ
1 + η̃+

+ + η̃
, (A9)

A4(+) = ξ
1 − η̃2 + ξ 2

(+ + η̃)(1 + η̃+)
, (A10)

A5(+) = −1 − ξ 2 +

+ + η̃
. (A11)

The derivatives of the above coefficients, to be plugged into
equation (22), are

Ȧ0(+) = 1 + ξ 2 1 + +2 + 2η̃+

(+ + η̃)2
, (A12)

Ȧ1(+) = − η̃2

(1 + η̃+)2
− ξ 2 η̃2(+2 − 1)

(1 + η̃+)2(+ + η̃)2
, (A13)

Ȧ2(+) = ξ
η̃

(+ + η̃)2
, (A14)

Ȧ3(+) = ξ
η̃2 − 1

(+ + η̃)2
, (A15)

Ȧ4(+) = −ξ
(1 − η̃2 + ξ 2)(1 + η̃2 + 2η̃+)

(+ + η̃)2(1 + η̃+)2
, (A16)

Ȧ5(+) = −ξ 2 η̃

(+ + η̃)2
, (A17)

and thanks to the above expressions the Jacobian of the electric field
can be computed.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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