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ABSTRACT

Scalar-tensor theories are among the most promising alternatives to general relativity that have been developed to account for some
long-standing issues in our understanding of gravity. Some of these theories predict the existence of a non-linear phenomenon that
is spontaneous scalarisation, which can lead to the appearance of sizable modifications to general relativity in the presence of com-
pact matter distributions, namely neutron stars. On the one hand, one of the e↵ects of the scalar field is to modify the emission of
gravitational waves that are due to both variations in the quadrupolar deformation of the star and the presence of additional modes of
emission. On the other hand, neutron stars are known to harbour extremely powerful magnetic fields which can a↵ect their structure
and shape, leading, in turn, to the emission of gravitational waves – in this case due to a magnetic quadrupolar deformation. In this
work, we investigate how the presence of spontaneous scalarisation can a↵ect the magnetic deformation of neutron stars and their
emission of quadrupolar gravitational waves, both of tensor and scalar nature. We show that it is possible to provide simple parametri-
sations of the magnetic deformation and gravitational wave power of neutron stars in terms of their baryonic mass, circumferential
radius, and scalar charge, while also demonstrating that a universal scaling exists independently of the magnetic field geometry and
of the parameters of the scalar-tensor theory. Finally, we comment on the observability of the deviations in the strain of gravitational
waves from general relativity by current and future observatories.

Key words. gravitation – stars: magnetic field – stars: neutron – gravitational waves – magnetohydrodynamics (MHD) –
relativistic processes

1. Introduction

Scalar-tensor theories (STTs) are among the most studied alter-
natives to general relativity (GR). Since the pioneering paper
by Brans & Dicke (1961), much work has been devoted to
study STTs and their phenomenology (Matsuda & Nariai 1973;
Novak 1998; Fujii & Maeda 2003; Zhang et al. 2019). The main
premise is taking a scalar field, which is non-minimally coupled
to the metric and which plays the role of an e↵ective space-time
dependent gravitational “constant”, and adding it to the grav-
itational action. The e↵ects of the scalar field manifest them-
selves in the presence of matter, which acts as a source for the
scalar field. They range from cosmological scales, where the
non-minimal coupling can account for cosmological observa-
tions without needing to resort to the existence of a dark sec-
tor (see e.g. Capozziello & de Laurentis 2011), up to the small
scales of compact objects. Unfortunately, black holes are not
useful in constraining STTs because the no-hair theorem also
holds in such theories, preventing them from developing a scalar
charge (Hawking 1972; Berti et al. 2015). This means that neu-
tron stars (NSs) hold a special importance in testing GR – and
even more so given that their compactness allows the scalar field
to manifest its e↵ects in a non-perturbative fashion through spon-
taneous scalarisation (Damour & Esposito-Farèse 1993), while
allowing the tight observational constraints in the weak-gravity
regime to be fullfilled (Shao et al. 2017). These e↵ects are of
a varied nature, including the emission of additional modes of
gravitational waves (GWs; Pang et al. 2020), a modified rela-
tion between the NS mass and radius and its central density, a

modification of NS merger dynamics (Shibata et al. 2014), as
well as a variation in the frequency of normal modes of NSs
(Sotani & Kokkotas 2005) in their tidal and rotational deforma-
tion (Pani & Berti 2014; Doneva et al. 2014) and their light prop-
agation (Bucciantini & Soldateschi 2020).

There are various e↵ects that can induce quadrupolar mod-
ifications in the shape of NSs. For example, crustal deforma-
tions could lead to the formation of mountains on the surface
of the NS (Haskell et al. 2006), which would then cause the
emission of continuous GWs (CGWs; Ushomirsky et al. 2000).
Mountains are also expected to form during accretion in a pro-
cess called magnetic burial (Melatos & Payne 2005). GWs are
expected to be also released during starquakes, following a rear-
rangement of the magnetic field of the star, which may excite
some of its oscillation modes (Keer & Jones 2015). Moreover,
oscillation modes such as the axial r-mode are unstable due to
the emission of GWs (Andersson 1998). Finally, if the mag-
netic axis of a NS is not aligned to its rotation axis, the star
acquires a time-varying quadrupolar deformation which leads to
the emission of CGWs, and it is believed that a NS endowed
with a strong toroidal magnetic field will develop an instabil-
ity which flips the star to an orthogonal rotator, maximising
its emission of CGWs (Cutler 2002). This is particularly rele-
vant in the context of newly born and rapidly rotating magne-
tars, which have been invoked as possible engines for long and
short gamma-ray bursts (Dall’Osso et al. 2009; Metzger et al.
2011; Rowlinson et al. 2013), where GWs can compete with
electromagnetic losses and substantially modify the energetic
budget and evolution of these systems. It is clear that the intense
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magnetic fields stored in NSs have a great importance in deter-
mining their GW phenomenology.

Neutron stars are known to harbour extremely power-
ful magnetic fields, in the range 108�12 G for normal pul-
sars and up to 1016 G for magnetars (while newly born proto-
NSs are thought to contain magnetic fields as high as 1017�18 G,
see e.g. Del Zanna & Bucciantini 2018; Ciolfi et al. 2019;
Franceschetti & Del Zanna 2020). It is important in this sense
to study the interplay between the magnetic and the scalar field
in shaping the quadrupolar deformation of the NS, even more
so because of its connection to the emission of GWs. More-
over, this is relevant to the study of how the presence of an
additional channel for the emission of quadrupolar waves – that
of “scalar waves” – a↵ects the overall emission of quadrupo-
lar GWs, establishing the extent to which the emission of scalar
waves competes with the tensor one. In this paper, we build upon
(Soldateschi et al. 2020; hereafter SBD20), where we studied the
general problem of axisymmetric models of NSs in STTs in the
presence of spontaneous scalarisation to investigate the magnetic
deformation of NSs in a class of STTs containing spontaneous
scalarisation in light of GW emissions. In SBD20, we showed
that the scalar field is expected to modify the magnetic deforma-
tion of NSs, but we investigated just a few select configurations
for a single STT. Here we investigate the full parameter space.
We refer to SBD20 for the details of the code and formalism we
used and for the definition of the main physical quantities.

In Sect. 2, we briefly introduce the problem of magne-
tohydrodynamics (MHD) in STTs. In Sect. 3, we show our
results regarding the magnetic deformation of NSs in STTs,
also describing the consequences for the emission of gravita-
tional and scalar radiation. Finally, we present our conclusions
in Sect. 4.

2. Scalar-tensor theories in a nutshell

In the following, we assume a signature {�,+,+,+} for the
spacetime metric and use Greek letters µ, ⌫, �,. . . (running from
0 to 3) for 4D spacetime tensor components, while Latin let-
ters i, j, k,. . . (running from 1 to 3) are employed for 3D spatial
tensor components. Moreover, we use the dimensionless units
where c = G = M� = 1, and we absorb the

p
4⇡ factors in the

definition of the electromagnetic quantities. All quantities calcu-
lated in the Einstein frame (E-frame) are denoted with a bar (·̄)
while all quantities calculated in the Jordan frame (J-frame) are
denoted with a tilde (·̃).

The action of STTs in the J-frame, according to the
“Bergmann-Wagoner formulation” (Bergmann 1968; Wagoner
1970; Santiago & Silbergleit 2000), is

S̃ =
1

16⇡

Z
d4x

p
�g̃

"
'R̃ � !(')

'
r̃µ'r̃µ' � U(')

#

+ S̃ p
h
 ̃, g̃µ⌫

i
, (1)

where g̃ is the determinant of the spacetime metric g̃µ⌫, r̃µ its
associated covariant derivative, R̃ its Ricci scalar, while!(') and
U(') are, respectively, the coupling function and the potential of
the scalar field ', and S̃ p is the action of the physical fields  ̃.
In the E-frame, the action is obtained by making the conformal
transformation ḡµ⌫ = A�2(�)g̃µ⌫, where A�2(�) = '(�) and � is
a redefinition of the scalar field in the E-frame, related to ' by

d�
d ln'

=

r
!(') + 3

4
. (2)

In the following, we narrow the focus down to the simpler case
of a massless scalar field, thus, U(') = 0. In the E-frame, the
scalar field is minimally coupled to the metric. This means that
Einstein’s field equations retain their usual form in the E-frame,
taking into account the fact that the energy-momentum tensor
is now the sum of the physical one and of the scalar field one.
Instead, Eq. (1) shows that the scalar field is minimally cou-
pled to the physical fields in the J-frame. This implies that MHD
equations in the J-frame have the same expression as in GR. In
addition to the metric and MHD equations, in STTs we have an
additional equation to solve for the scalar field. In the Einstein
frame, it reads:

r̄µr̄µ� = �4⇡↵sT̄p, (3)

where r̄µ is the covariant derivative associated to the E-frame
metric ḡµ⌫, T̄p = ḡµ⌫T̄

µ⌫
p , T̄ µ⌫p is the physical energy-momentum

tensor in the E-frame and ↵s(�) = d lnA(�)/d�.

3. Results

In the following, we focus on the case of static NSs in the
weak magnetic field regime, meaning that the e↵ects induced
by the magnetic field on the deformation of the star are well-
approximated by a perturbative approach; this was shown to be
the case for B̃max . 1017 G (Pili et al. 2015; Bucciantini et al.
2015). This is much less than the critical field strength, of the
order of 1019 G, set by the energy associated to the characteris-
tic NS density (Lattimer & Prakash 2007). Moreover, we focus
only on the mass range of stable configurations.

The Newtonian quadrupole deformation ē of a NS in STTs
is formally defined as

ē =
Īzz � Īxx

Īzz
, (4)

where Īzz and Īxx are the Newtonian moments of inertia in the E-
frame, accounting for both the physical and scalar fields energy
density (see Appendix C of SBD20). This definition has the
advantage that it is given as an integral over the star. As is already
known in Newtonian gravity (Wentzel 1960; Ostriker & Gunn
1969) and in GR (Frieben & Rezzolla 2012; Pili et al. 2017), in
the limit of weak magnetic fields and slow rotation rates, the
quadrupole deformation can be expressed as a bilinear combina-
tion of B2

max, where Bmax = max[
p

BiBi], with B as the NS mag-
netic field, and its rotation rate (Pili et al. 2017). Equivalently,
instead of using B2

max one can parametrise the quadrupole defor-
mation also in terms of H/W, where H is the magnetic energy
of the NS, defined in the J-frame as

H̃ = ⇡
Z
A3B̃i B̃i p�̄drd✓, (5)

and with W as its binding energy (which in STTs is prop-
erly defined in the E-frame). The true gravitational quadrupole
moment is properly defined from the asymptotic structure of the
metric terms (Bonazzola & Gourgoulhon 1996; Gourgoulhon
2010; Doneva et al. 2014), while the moment of inertia is only
properly defined for rotators; however, it has been found that
the Netwonian approximation is quite reliable (Pili et al. 2015).
We note here that Eq. (A2) in Pili et al. (2015) is not formally
correct, because it neglects frame dragging, while it can be
shown that, for compact systems like NSs, this contributes about
10–15% to the moment of inertia.
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In our STT scenario, we found that ē still follows a linear
trend with B̃2

max (or H̃/W̄), although with coe�cients that bear a
potentially much stronger dependence on the baryonic mass M0
(defined as in Eq. (C.4) in SBD20) than in GR, depending on the
value of the parameter regulating spontaneous scalarisation, �0
(see below for its definition). In particular, in the limit B̃max ! 0,
keeping fixed M0 and �0:

|ē| = cBB̃2
max + O

⇣
B̃4

max

⌘
, |ē| = cH

H̃
W̄
+ O

 
H̃2

W̄2

!
, (6)

where cB = cB(M0, �0) and cH = cH(M0, �0) are the “distortion
coe�cients”, and B̃max is normalised to 1018 G.

In order to compute the distortion coe�cients of NSs in the
low magnetic field regime, we computed several numerical mod-
els of magnetised NSs with stronger magnetic fields, and then
we interpolated the results according to the functional form of
Eq. (6). We studied only configurations belonging to the stable
branch of the mass-density diagram, that is with masses and cen-
tral densities lower than that of the configuration with maximum
mass. Following SBD20, in the 3+1 formalism for spacetime
splitting we used the XNS code (Bucciantini & Del Zanna 2011;
Pili et al. 2014) to solve numerically the equations for static and
axisymmetric equilibrium configurations with a magnetic field,
in the XCFC (eXtended Conformally Flat Condition) approxi-
mation (Cordero-Carrión et al. 2009). By assuming that the spa-
tial metric is conformally flat, this approximation allows us to
cast the Einstein equations in a simplified, decoupled and numer-
ically stable form that can be solved hierarchically. Even if it
is not formally exact, the XCFC approximation has proved to
be highly accurate for rotating NSs (Iosif & Stergioulas 2014;
Camelio et al. 2019). We used a 2D grid in spherical coordinates
extending over the range r = [0, 100] in dimensionless units, cor-
responding to a range of ⇠150 km, and ✓ = [0, ⇡]. The grid has
400 points in the r-direction, with the first 200 points equally
spaced and covering the range r = [0, 20], and the remain-
ing 200 points logarithmically spaced (�ri/�ri�1 = const.), and
200 equally spaced point in the angular direction. We adopted
a polytropic equation of state (EoS) p̃ = Ka⇢̃�a , where p̃ and
⇢̃ are the pressure and rest mass density of the fluid, respec-
tively, with �a = 2 and Ka = 110 in dimensionless units. This
has already been used by several authors (Bocquet et al. 1995;
Kiuchi & Yoshida 2008; Frieben & Rezzolla 2012; Pili et al.
2014; Soldateschi et al. 2020) as an approximation of more com-
plex and physically motivated EoSs (Lattimer & Prakash 2007;
Baym et al. 2018), above nuclear densities. We chose to solve
the metric and scalar field equations in the E-frame and the
MHD equations in the J-frame, converting quantities from one
frame to the other when needed. We used an exponential cou-
pling function, A (�) = exp

h
↵0� + �0�2/2

i
, first introduced in

Damour & Esposito-Farèse (1993), in which the ↵0 parameter
controls the weak field e↵ects of the scalar field and �0 regu-
lates spontaneous scalarisation. The most stringent observational
constraints, based on pulsar binaries, require that for massless
scalar fields, |↵0| . 1.3⇥ 10�3 and �0 & �4.3 (Voisin et al. 2020;
see also Will 2014 for a comprehensive review on tests of GR).
For massive ones or for scalar fields endowed with a screen-
ing potential, lower values are still allowed (Doneva & Yazadjiev
2016) as long as the screening radius is smaller than the binary
separation. However, results found in a massless STT for the
structure of NSs are also valid for screened STTs as long as
the screening radius is larger than the NS radius. This leaves
open a large parameter space in terms of screening proper-
ties. We chose ↵0 = �2 ⇥ 10�4 and �0 2 [�6,�4.5]. By

choosing this range of values, we want to highlight the e↵ects
of scalarisation while also showing its e↵ects for values at
the edge of the permitted parameter space for massless fields.
For simplicity, purely toroidal magnetic fields are computed
assuming a magnetic barotropic law with a toroidal magneti-
sation index of m = 1 (see SBD20 Eq. (47)); whereas for
purely poloidal magnetic fields, we opted for the simplest choice
of a magnetisation function linearly dependent on the vector
potential (see SBD20 Eq. (43)). We briefly recall here that the
only known formalism to compute equilibria (even magnetised
ones) in the full non-linear regime, beyond the first order lin-
ear perturbation theory and beyond the Cowling approxima-
tion, is through the use of the generalised Bernoulli integral,
including the case of di↵erentially rotating stars, where the
rotation rate is taken to be a function of the specific angu-
lar momentum (Bocquet et al. 1995; Kiuchi & Yoshida 2008;
Frieben & Rezzolla 2012; Iosif & Stergioulas 2014; Pili et al.
2017), or through mathematically equivalent approaches. This
sets severe constraints on the possible distribution of currents
and, thereby, on the possible geometry of the magnetic field (the
full functional dependence of the current density distribution can
be found in SBD20). For example, in the case of poloidal fields,
the configuration is always dominated by the dipole term, but
also contains higher order multipoles. Our models have no sur-
face currents. Typically, models with surface currents are not
in true equilibria because they neglect the associated surface
Lorentz force.

We decided to parametrise the solution as a function of the
baryonic mass M0, which is the same in the E and J-frames. The
relation with the E-frame Komar mass M̄ is M̄ ⇡ M0 � cM2

0,
with c = 0.04 (0.05) for purely toroidal (poloidal) magnetic
fields, and is the same in STT and GR. The behaviour of cB and
cH as functions of M0, for various �0, are shown in Fig. 1, for
NSs endowed with a purely toroidal or a purely poloidal mag-
netic field. The red line represents GR. The other lines repre-
sent the cases with a decreasing �0, starting with �0 = �4.5 and
going down to �0 = �6. We note that more scalarised sequences
reach higher masses than less scalarised ones, because one of
the e↵ects of scalarisation is to increase the maximum possible
mass of a stable NS, so that only heavily scalarised sequences
are able to reach a baryonic mass as high as ⇡2.4 M� with our
equation of state. The e↵ect of scalarisation is clearly visible due
to the distinctive rapid variation in the slope as the scalarised
sequences depart from the GR one. Decreasing the value of �0
has the e↵ect of enhancing the modifications with respect to GR
and enlarging the scalarisation range. At a fixed M0, scalarised
NSs have a lower distortion coe�cient – and a lower quadrupole
deformation – than the corresponding GR models for most of the
scalarisation range. In moving towards masses close to the maxi-
mum, the di↵erence becomes increasingly small until it changes
sign at the very end of the GR sequence.

From a more quantitative point of view, the maximum rel-
ative di↵erence between cB in GR and in STT in the purely
toroidal case is roughly 63% for �0 = �6 and M0 ⇡ 1.5 M�. This
di↵erence decreases approaching 0 as �0 increases. Moreover,
as the baryonic mass increases, we can see that all sequences
tend to coincide and reconnect to the GR one as the scalarisation
range ends. As for cH, its maximum di↵erence in STT relative
to GR is roughly 72% at M0 ⇡ 1.8 M�, for �0 = �6. Again,
this di↵erence decreases as �0 increases. We note, however, that
the various sequences of cH do not seem to be reconnecting as
the scalarisation range ends. This behaviour is to be attributed to
the fact that the ratio H̃/W̄ depends on M0, and, as such, it too
exhibits the e↵ect of scalarisation. In other words W̄, at a fixed
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Fig. 1. Distortion coe�cients cB (top panels) and cH (bottom panels) as functions of the baryonic mass M0 of models with a purely toroidal
magnetic field (left panels) and with a purely poloidal magnetic field (right panels), for various value of �0: from �0=�6 (blue curve) to �0 = �4.5
(light red curve) increasing by 0.25 with every line. The red curve corresponds to GR.

M0, depends on �0, which implies that in STTs cH as defined in
Eq. (6) is not directly comparable to GR at the same H : first, it
is needed to factor out the dependence of H̃/W̄ on M0 and add
it to cH. The same holds for purely poloidal magnetic fields. The
maximum relative di↵erence of cB with respect to GR is 70% for
�0 = �6 at M0 ⇡ 1.5 M�, while for cH it is 72% at M0 ⇡ 1.8 M�
for �0 = �6.

As we have seen, the distortion coe�cients in STTs depart
from the GR ones in a non-trivial way. Interestingly it looks
like, apart from a scaling factor, both cH and cB have the same
trend for toroidal and poloidal magnetic fields. In the case of
cB, as can be seen from Fig. 1, for M0 < 1.6 M�, the values for
toroidal magnetic fields are about a factor 1.5 higher than the
cases with poloidal magnetic field. However, at higher masses,
the trends are no longer similar between the two cases. Nonethe-
less, we have found that in the full range 1.2  M0/M� . 2.4
and �6  �0  �4.5, they are well approximated (to a few per-
cents precision everywhere, except for the small range of masses
in which scalarisation is triggered, where the error can reach a
few tens of percents) by a combination of power laws of three
global quantities defined for the corresponding unmagnetised
model: the baryonic mass M0, the J-frame circumferential radius
R̃c (see Eq. (C.8) in SBD20) and the E-frame scalar charge Q̄s
(see Eq. (C.7) in SBD20). We note that these are not indepen-
dent (for GR there is a one to one relation between mass and
radius), but treating them as independent allows us to use simple
power-law scalings in terms of global quantities. In particular:

cB ⇡ c1M↵1.6R�10

h
1 � c2Q�1 M�1.6R⇢10

i
, (7)

where the parameters are listed in Table 1, M1.6 is M0 in units
of 1.6 M�, R10 is R̃c in units of 10 km, and Q1 is Q̄s in units of
1 M�. The first term of Eq. (7) describes the distortion coe�cient

Table 1. Values of the parameters for the approximations of cB in Eq. (7)
for purely toroidal and purely poloidal magnetic fields.

Parameter Toroidal Poloidal

c1 0.16 0.077
↵ �2.22 �1.99
� 4.86 5.80
c2 0.87 1.38
� 1.32 1.22
� �1.27 �0.86
⇢ �2.21 �3.49

in GR, while the second term describes the deviation due to the
presence of a scalar charge. First, for the GR term, we note that
the coe�cient c1 of the models with toroidal field is about twice
that of those with a poloidal one. The mass dependence is sim-
ilar, while the exponent of the radius is higher by one for the
poloidal field (this is likely due to the di↵erent geometry, pro-
late and oblate, of the configurations). From the coe�cients in
Table 1, we see that the second term of Eq. (7) has a more com-
plex behaviour: the dependence on the scalar charge is simi-
lar, there is a weaker dependence on the mass for the poloidal
field, while again the dependence on the radius is stronger by
one power of R10 in the poloidal case. The similarity between
NSs with poloidal and toroidal magnetic fields is much stronger
for cH, to the point that it is possible to derive a universal func-
tional form over the entire mass range with an accuracy of few
percents:

cH ⇡ 0.5 + F (M0)T (M0, Q̄s, R̃c) ⇥
(

0.65 for toroidal
1.02 for poloidal,

(8)
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where F (M0) represents the GR part and encodes the role of the
equation of state, T (M0, Q̄s, R̃c) represents the correction due to
scalarisation, and the oblate versus prolate geometry induced by
the di↵erent magnetic field is encoded in the last factor. We find
that:

F (M0) = 4.98 � 1.95M1.6, (9)

T (M0, Q̄s, R̃c) = 1 � 1.90
R2.45

10

 
Q1

M1.6

!1.3

. (10)

It is well known that in GR, the coe�cient cH is only weakly
dependent on the mass, to the point that it can almost be taken as
a constant. This is because the specific properties of the NS can-
cel out if the deformation is given as a function of H/W. What
we found here is that the same holds in STTs. The deformation
is smaller than in GR, but the functional form of the correction is
independent of the specific STT. Moreover, the geometry of the
magnetic field is completely encoded in a constant coe�cient
that likely traces the oblate or prolate geometry of the star.

Since a quadrupolar deformation of the NS results in the
emission of quadrupolar waves, both tensor and scalar, it is inter-
esting to analyse what fraction of the energy contained in them
is due to the quadrupole moment of the scalar field. For this pur-
pose, we define the following ratios:

S =
�����
qs

qg

�����, G =
�����
qg

q0
g

�����, (11)

where

qs = 2⇡
Z
↵sA4T̃p

⇣
3 sin2 ✓ � 2

⌘
r4 sin ✓drd✓, (12)

qg =

Z "
⇡A4("̃ + ⇢̃) � 1

8
(@�)2

#
r4 sin ✓

⇣
3 sin2 ✓ � 2

⌘
drd✓. (13)

These are, respectively, the Newtonian approximations of the
“trace quadrupole” and of the “mass quadrupole” of the NS.
The mass quadrupole qg is just Īzz � Īxx = ēĪzz (see Eq. (4)).
We found that, in the mass range we investigated, Īzz ranges
from 6 ⇥ 1044 g cm2 to 4 ⇥ 1044 g cm2. This is consistent with
GR, where the moment of inertia weakly depends on the mass
(Lattimer & Prakash 2001), showing that the quadrupole is pri-
marily encoded in the parameter ē. The quantities "̃ and ⇢̃ are
respectively the J-frame internal energy density and rest-mass
density, while (@�)2 = (@r�)2 + r�2(@✓�)2, and q0

g is qg calculated
in GR. The quadrupole qs is closely related to the “quadrupolar
deformation of the trace” (see SBD20, Eq. (C.19)), which acts as
the source of scalar waves. We note that these scalar waves are of
a quadrupolar nature and di↵er from standard scalar monopolar
GWs, which we do not consider here. In fact, a monopolar scalar
wave, being monopoles rotationally invariant, can only arise fol-
lowing time-dependent monopolar variations of the structure of
the NS (e.g. when the star collapses, Gerosa et al. 2016) and
is not triggered by the rotation of deformed NSs, to which our
present results apply. This does not mean that rotation plays
no role in monopolar waves emission since the vibrating eigen-
modes depend on the NS structure, which also reflects the under-
lying rotational profile. We note that the distinction between
monopolar and quadrupolar waves depends only on the energy
distribution of the waves (the multipolar pattern of the radiation),
while the distinction between scalar and tensor modes depends
on the nature of the waves (the spin of the wave carriers). The
quantity of S gives a measure of which fraction of the energy

lost in quadrupolar waves is contained in scalar modes, com-
pared against tensor modes, while G quantifies the ratio of the
energy of tensor modes in STTs versus GR. We note that the
tensor GW luminosity scales approximately with ē2, while it is
the strain amplitude that scales with ē, so S and G are actually a
measure of the variation in the strain, and it is their square to be
related to the variation in the energy loss. It is worth pointing out
that these ratios can be calculated by keeping fixed either B̃max
or H̃/W̄ and that unlike B̃max, H̃/W̄ depends on M0 through W̄
in di↵erent ways for di↵erent theories of gravity. Let’s call this
dependence f (M0, �0) in our case, where the di↵erence between
STT and GR is encoded only by a varying �0. This means that, in
general, computing the ratios keeping fixed these two quantities
does not yield the same result. In particular, ratios of quantities
calculated with respect to models with the same �0, like S, are
exactly the same in the two cases; instead, the ratio of a quan-
tity in STTs over a quantity in GR, like G, di↵er by a factor
f (M0, �0)/ f (M0, 0).

In Fig. 2, we show the ratios in Eq. (11) for NSs endowed
with a purely toroidal and a purely poloidal magnetic field,
respectively. The top panels show that, when scalarisation occurs
and S departs from zero, very rapidly qs > qg for �0 . �5,
while sequences with �0 & �5 do not reach S = 1. This means
that heavily scalarised NSs, once scalarisation kicks in, are dom-
inated by losses due to scalar radiation, while less scalarised
ones are always dominated by tensor radiation. Di↵erences in
S between the purely toroidal and the purely poloidal cases are
minimal, both in the scalarisation range and in the entity of its
e↵ect. The bottom panels of Fig. 2 show that once scalarisation
is triggered, G quickly falls down towards very low values; then,
for NSs with a higher baryonic mass, G rises again very steeply.
At a fixed M0 below a threshold mass, the more scalarised the
NS, the less energy is lost in tensor waves with respect to GR.
On the other hand, the more scalarised the NS, the more energy
is injected in the scalar mode channel, as shown before with the
S ratio, which increases almost monotonically with M0. How-
ever, more massive NSs have a quadrupole deformation that is
closer to GR than less massive stars, which reflects in the rise of
G at high M0. For masses close to the maximum, tensor waves
losses can be even higher than in GR. It is interesting to note that
all sequences intersect the line G = 1 at the same threshold mass
M0 ⇡ 1.85 M�. The reduction of the tensor GW strain is as high
as 70% (75%) for M0 = 1.50 M� (1.50 M�) for purely toroidal
(poloidal) magnetic fields, for �0 = �6, while it is roughly 10%
for M0 = 1.80 M� and �0 = �4.5, for either purely toroidal or
purely poloidal magnetic fields (see the blue and light red cir-
cles in Fig. 2). The same panels also show the ratio G computed
by keeping fixed H̃/W̄. We can see that, in this case, the drop
and especially the subsequent rise are less steep; in the case of
a purely poloidal magnetic field, G is almost saturated to a con-
stant value before slightly rising.

As was done before with the distortion coe�cient, we found
that S is well approximated (to a few percents precision every-
where but in the small range of masses where scalarisation
occurs and the steepening is too strong to be well described by a
simple power law) by

S ⇡ 1.7
0
BBBB@

R10

M2
1.6

1
CCCCA

0.2

Q1.2
1 (14)

for both the toroidal and the poloidal cases. This shows again
that it is possible to find a unifying functional dependence, even
for scalar modes. Also, the value of G looks very similar for the
poloidal and toroidal cases, except at the largest masses above
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Fig. 2. Ratios S (top panels) and G (bottom panels) as functions of the baryonic mass M0 of models with a purely toroidal magnetic field (left
panels) and with a purely poloidal magnetic field (right panels), for di↵erent value of �0: from �0 = �6 (blue curve) up to �0 = �4.5 (light red
curve) increasing by 0.25 with every line. The red line corresponds to GR, where S = 0 and G = 1. Solid lines are the ratios computed by keeping
B̃max fixed, while dashed lines are obtained by keeping H̃/W̄ fixed. Markers show the models with minimum G: circles for solid lines and squares
for dashed lines.

1.6 M� (we note that being a ratio with respect to GR it can
only be computed up to maximum GR mass). On the other hand,
due to its more complex behaviour, we did not find a satisfy-
ing approximation for G based on power laws of the quantities
M0, Q̄s, R̃c.

It is evident that the power emitted in tensor modes by
scalarised NSs is smaller, for masses below ⇡1.85 M�, than for
the model in GR of the same mass and same equation of state,
even if the minimum does not correspond to the configuration
with the strongest scalar charge. The trend changes for higher
masses, where the losses in tensor modes in STTs are higher
than for the corresponding GR models. Given that the scalar
modes also contribute to the total energy losses, we see that as
the mass rises, we first find a regime at the beginning of scalar-
isation,where the total GW emission is suppressed with respect
to GR, which is then followed by a regime that is closer to the
maximum mass where, due to the scalar channel, losses might
even be enhanced by a factor of between 2 and 3.

The minimum value of G (marked by the circles and squares
in Fig. 2) scales quadratically, with �0 at fixed B̃max and H̃/W̄:

min (G)
���
B̃max
⇡

(
7.79 + 2.36�0 + 0.185�2

0 for toro.
7.98 + 2.44�0 + 0.190�2

0 for polo.,
(15)

and

min (G)
���H̃/W̄ ⇡

(
6.91 + 2.0�0 + 0.150�2

0 for toro.
6.34 + 1.8�0 + 0.130�2

0 for polo.
(16)

Analogously, the mass at which the minimum of G occurs scales
linearly with �0:

M0,min
���
B̃max
⇡ 2.74 + 0.21�0 for toro. and polo., (17)

and

M0,min
���H̃/W̄ ⇡

(
2.45 + 0.143�0 for toro.
2.32 + 0.113�0 for polo.

(18)

4. Conclusions

In this work we explore how the addition of a scalar field
that is non-minimally coupled to the metric a↵ects the mag-
netic quadrupolar deformation of a NS in the weak field regime
(B̃max . 1017 G). We find, as in Newtonian gravity and in
GR, in this limit the quadrupolar deformation, ē, can be well-
approximated by a linear function of either B̃2

max or H̃/W̄, for
fixed baryonic mass, M0, and scalarisation parameter, �0. We
find that the coe�cients of the linear expansion strongly depart
from those of GR for su�ciently negative values of �0: for the
range of parameters investigated here, spontaneous scalarisation
can decrease the magnetic deformation of a NS by up to ⇡70%
of the GR value, for �0 = �6. For values of �0 & �4.3, we find
that the results in massless STTs without screening are indistin-
guishable from GR. This behaviour can be attributed to the inter-
play between various e↵ects. First, given a certain EoS, we find
that NSs in STTs have a di↵erent central density than those in
GR with the same mass. In particular, below a threshold mass in
the stable branch of the mass-central density diagram, scalarised
models have a higher central density than the GR models with
the same mass, which causes the inner region of the star to be less
prone to deformation; the opposite happens for masses above
the threshold, which are more susceptible to deformation than
the corresponding GR models with the same mass. This ten-
dency explains why G is higher than unity for M0 & 1.85 M�,
which is very close to the threshold mass, which we found to be
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M0 ⇡ 1.88 M� for low magnetisations. Moreover, NSs endowed
with a purely toroidal magnetic field have a prolate shape, with
a more pronounced density gradient at the equator than at the
pole, which, in turn, generates a steeper gradient of the scalar
field at the equator than at the pole. Given that the e↵ective pres-
sure of the scalar field depends on its spatial derivatives and has
the same sign as the fluid pressure, we see that its e↵ect is to
reduce the deformation of the star, making it more spherical. The
same qualitative behaviour is exhibited by a star endowed with
a purely poloidal magnetic field and which possesses an oblate
shape with a steeper density gradient at the pole, thus causing
the scalar field to apply more pressure in the polar direction than
in the equatorial one. As expected, a more pronounced scalar-
isation (i.e. a more negative �0) reflects in a stronger pressure
of the scalar field, rendering the star even more spherical, thus
reducing the distortion coe�cients further. It is known that the
scalar field can act as a “stabiliser” for NSs, rendering their shape
more spherical. Finally, the scalar field acts as an e↵ective cou-
pling term (it replaces the inverse of the gravitational constant
of GR) between matter and the metric. In more scalarised sys-
tems, or in the NS central region where the scalar field is larger,
this coupling is weaker, and this also holds for perturbations of
the energy momentum tensor. Thus, the same structural defor-
mation of the NS produces a weaker metric deformation. All
these e↵ects depend on where the deformation is located (centre
versus the outer layers).

It is interesting to note that unlike the quadrupolar defor-
mation of NSs caused by their rotation (see e.g. Doneva et al.
2014), the magnetic quadrupolar deformation, as we have seen,
decreases in STTs with respect to GR, except for masses close
to the maximum. This di↵erence can be explained by the fact
that rotation, unlike a magnetic field, a↵ects mostly the outer
layers of the NS, which in scalarised systems are less gravita-
tionally bound than in GR (scalarized NS have larger radii than
in GR), increasing their deformability with respect to GR. Mag-
netic deformation seems to be instead mostly regulated by the
density in the central region where the magnetic field strength
peaks.

Regarding GWs, STTs predict the existence of scalar waves,
which, as we show here, can have an amplitude comparable to
standard tensor waves and might even dominate the GW losses
for strongly scalarised NSs. This can lead to a point when the
total emission is even larger than in GR.

We find that a good approximation of the distortion coe�-
cients is given by a simple power-law dependence on M0, R̃c,
and Q̄s. More interestingly, we found that in terms of the ratio
of magnetic to binding energy the e↵ect of a scalar field on the
NS deformation and the ratio of scalar to tensor waves emission
can be parametrised by a unique function independently of the
magnetic field structure or of the STT parameters. It seems that
the presence of a scalar charge can easily be factorised. This is
a generalisation of what was already known for GR, that is, with
cH being almost a constant. As we described above, the magnetic
deformability of NSs heavily depends on their internal structure,
determined by the EoS. We leave to a future work to verify how
much the functional form and the coe�cients entering such func-
tion depend on the EoS.

Since the quadrupolar deformation of NSs, at a fixed M0
and for most of the scalarisation range, is reduced in STTs with
respect to GR, it is expected that the energy lost in tensor GWs
by deformed NSs is also reduced in STTs; on the other hand, it
is enhanced for masses close to the maximum mass for a stable
NS in GR. In fact, we found that strongly scalarised stars with a
baryonic mass around 1.5 M� have a tensor GW strain, h0, that is

up to 75% lower than for the corresponding stars in GR, while it
is roughly 10% lower, for �0 = �4.5, for masses of 1.8 M�. This
means that, for values of �0 currently allowed by observations, a
less than 10% variation in h0 is to be expected for massless scalar
fields. This is much smaller than the typical uncertainties over
the distances and the strength of magnetic fields, even for well-
constrained galactic objects. Higher values might hold for mas-
sive scalar fields and this could lead to serious underestimations
(or overestimations, depending on the mass) of the energetics of
the system and all that follows from that, such as its distance or
the strength of its magnetic field. If similar results on the role
of the scalar field in the modification of tensor modes hold as
well for other kinds of deformation (e.g. tidal deformations of
scalarised NSs in mergers), this could have a deep impact on our
understanding of binary NS merger events (Abbott et al. 2017).
More interestingly, we found that the scalar mode can be emit-
ted carrying an energy comparable to the tensor one. However,
its strain is suppressed by a factor ↵0 ⇠ 10�5�10�4, which weak-
ens the coupling of the scalar mode to the detector and renders
the possibility of it being detected even fainter.

Our results are computed in the full non-linear regime. We
also computed the quadrupole deformation, holding both the
metric and the scalar field fixed, which can be thought of as a
Cowling approximation in STTs. In this case we found that for
the mass range we investigated, the coe�cients cB and cH are
smaller by a factor ⇡0.5�0.65.

The current sensitivities of the LIGO-Virgo observatories
(Abbott et al. 2018) could be enough to detect tensor CGWs
emitted by galactic neutrons stars remnants form merger events,
with millisecond period (lasting few seconds), if the quadrupole
deformation is e & 10�5 (Lasky 2015; Abbott et al. 2020). Future
GW detector of the class of Einstein Telescope (Punturo et al.
2010) and Cosmic Explorer (Reitze et al. 2019) could detect
deformations as low as e & 10�6. This means that, for what con-
cerns continuous scalar waves, detectors with same sensitivity
could reveal them from millisecond NSs, spinning for few sec-
onds, only if the scalar quadrupole is ↵�1

0 time bigger, which
means magnetic field strength of the order of few 1017 G, at the
limit of the values that can be reached (Ciolfi et al. 2019). For
the same magnetic fields, tensor waves could be much more
easily detected. Instead, the detection of scalar CGWs from
slowly spinning magnetars with internal fields of few 1017 G
(Olausen & Kaspi 2014; Thompson et al. 2020) requires instru-
ments with a sensitivity at least one order of magnitude better
than DECIGO (Kawamura et al. 2008) and BBO (Harry et al.
2006).

We caution the reader that there is evidence that the mag-
netic field at the surface or in the magnetosphere of NSs can
have strong multipoles (Bignami et al. 2003; Bilous et al. 2019;
Parthasarathy et al. 2020; Raynaud et al. 2020). However, the
interpretation of the data is not unambiguous (e.g. the magnetic
field inferred from cyclotron lines changes if either electron or
proton cyclotron are assumed). It is even less clear how these
apply to the magnetic field in the interior, whose geometry is
totally unknown. From a theoretical point of view, it is reason-
able to expect a di↵erence between the interior and surface mag-
netic fields. The evolution of the latter is mostly dictated by the
Hall term associated to crustal impurities, which leads to the
formation of small-scale structures and higher order multipoles
(Pons & Viganò 2019; De Grandis et al. 2020), while the dissi-
pation of the former is mostly Ohmic, preferentially suppress-
ing small-scale structure and higher multipoles (Haensel et al.
1990). Given that here we are mostly interested in the devia-
tion with respect to GR, we can consider the purely toroidal and
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purely poloidal cases as two extrema of the much larger space of
possible magnetic configurations. Our results showing that the
deviations with respect to GR due to a scalar field are very simi-
lar in these two extrema lend us confidence to the consideration
that similar deviations with respect to GR will also apply in more
complex magnetic field geometries (Mastrano et al. 2013, 2015).
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