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ABSTRACT
The origin of cosmic rays in our Galaxy remains a subject of active debate. While supernova remnant (SNR) shocks are often
invoked as the sites of acceleration, it is now widely accepted that the difficulties of such sources in reaching PeV energies are
daunting and it seems likely that only a subclass of rare remnants can satisfy the necessary conditions. Moreover, the spectra of
cosmic rays escaping the remnants have a complex shape that is not obviously the same as the spectra observed at the Earth.
Here, we investigate the process of particle acceleration at the termination shock that develops in the bubble excavated by star
clusters’ winds in the interstellar medium. While the main limitation to the maximum energy in SNRs comes from the need
for effective wave excitation upstream so as to confine particles in the near-shock region and speed up the acceleration process,
at the termination shock of star clusters the confinement of particles upstream is guaranteed by the geometry of the problem.
We develop a theory of diffusive shock acceleration at such shock and we find that the maximum energy may reach the PeV
region for powerful clusters in the high end of the luminosity tail for these sources. A crucial role in this problem is played by
the dissipation of energy in the wind to magnetic perturbations. Under reasonable conditions, the spectrum of the accelerated
particles has a power-law shape with a slope 4/4.3, in agreement with what is required based upon standard models of cosmic
ray transport in the Galaxy.
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1 IN T RO D U C T I O N

The standard scenario for the acceleration of cosmic rays (CRs) in
the Galaxy is based upon the so-called supernova remnant (SNR)
paradigm: acceleration occurs through the mechanism of diffusive
shock acceleration (DSA) at the shock fronts produced as a result
of the supersonic motion of the supernova ejecta in the surrounding
medium (Blandford & Eichler 1987). Soon after the proposal of
DSA as the chief mechanism for particle energization in SNRs, it
became clear that the maximum energy of accelerated particles is
exceedingly low unless waves are effectively excited upstream of the
shock, due to the same particles that are being accelerated (Lagage &
Cesarsky 1983a, b). Even in the presence of this mechanism of self-
confinement, based on the excitation of a resonant streaming instabil-
ity (Kulsrud & Pearce 1969), the maximum energy in typical SNRs
can hardly exceed ∼100 TeV, more than one order of magnitude
below the energy of the knee. Recently two new pieces were added
to the puzzle: on the observational side, it was found that virtually
all young SNRs observed in the X-ray band are characterized by
the presence of bright non-thermal thin X-ray rims, coincident with
the position of the forward shock (see Ballet 2006; Vink 2012, for
reviews). The morphology of the rims allowed us to estimate the
strength of the magnetic field in the shock region, thereby showing
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that such field is about ∼100 times larger than the typical fields in
the interstellar medium (ISM). From the theoretical point of view,
Bell (2004) discovered the existence of a non-resonant quasi-purely
growing mode excited by CRs upstream of the shock, able to account
for the strong field observed in the X-rays. It was soon realized
that the growth of the instability would saturate when the magnetic
field energy density and the energy density in the form of escaping
particles become comparable (Schure & Bell 2013). This condition
would in principle lead to much larger values of the maximum energy
of accelerated particles than with resonant streaming instability
alone. However, since the initial excitement for this discovery, it
has become clear that when applied to conditions specific of SNRs
of type Ia and core collapse, although the instantaneous maximum
energy may exceed the energy of the knee, after integration over
the history of the SNR, the spectrum of CRs released into the ISM
would show an effective maximum energy typically in the 10–100
TeV range (Cristofari, Blasi & Amato 2020). The only possible
exception to this conclusion applies to powerful (!5 × 1051 erg),
rare (∼1/104 yr) core-collapse SNRs, with relatively small ejecta
mass (few solar masses), for which the maximum energy can indeed
reach PeV energies. The overall spectrum of CRs released in the
ISM by each of the classes of SN explosions mentioned above seems
bumpy and unlike the relatively smooth spectrum observed at the
Earth. Although these problems and difficulties might only suggest
that our theoretical approaches to the origin of CRs in SNRs are too
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simplistic, they have also stimulated the search for alternative sources
of CRs, with special care for those that produce a spectrum extending
to the knee energy. In this context, stellar clusters (Reimer, Pohl &
Reimer 2006), OB associations (Voelk & Forman 1982; Bykov &
Toptygin 2001), and supperbubbles (Bykov 2001; Parizot et al. 2004)
have for instance been proposed.

It has especially been speculated that the winds of massive stars
may be a suitable location for the acceleration of CRs (Cesarsky &
Montmerle 1983; Webb, Axford & Forman 1985; Gupta et al. 2018;
Bykov et al. 2020). Moreover, recently the gamma-ray emission from
the region around a few compact star clusters has been measured,
including Westerlund 1 (Abramowski et al. 2012), Westerlund 2
(Yang, de Oña Wilhelmi & Aharonian 2018), Cygnus cocoon
(Ackermann & et al. 2011; Aharonian, Yang & de Oña Wilhelmi
2019), NGC 3603 (Saha et al. 2020), BDS2003 (Albert et al. 2021),
W40 (Sun et al. 2020), and 30 Doradus in the LMC (H. E. S. S.
Collaboration 2015). These observations have been used to infer the
spatial distribution of CRs and their energy budget, supporting the
scenario in which a sizable fraction of the wind kinetic energy is
converted to non-thermal particles and, at the same time, maximum
energies >100 TeV are reached. These findings would, than, suggest
that stellar clusters can substantially contribute to the flux of Galactic
CRs.

Further support to such a conclusion comes from the analysis
of the 22Ne/20Ne abundance in CRs, which is a factor ∼5 larger
than for the solar wind (Binns et al. 2006). This result is not easy
to accommodate in the framework of particle acceleration at SNR
shocks alone (Prantzos 2012) while can be more easily accounted
for if CRs are at least partly accelerated out of material contained in
the winds of massive stars (Gupta et al. 2020).

Here, we show that the termination shock formed as a result of
the interaction of the intense collective wind of the star cluster with
the ISM is a potentially interesting site for particle acceleration up
to ∼PeV energies, for several reasons: (1) particle escape from the
upstream region (in the direction of the star cluster itself) is forbidden
because of the geometry of the problem; (2) if a relatively small
fraction (∼ 10 per cent) of the wind kinetic energy is dissipated
to magnetic energy, particle diffusion around the shock can be
reduced, thereby shortening the acceleration time; (3) if the kinetic
luminosity of the star cluster is large enough (!3 × 1038 erg s−1)
then the maximum energy is indeed in the ∼PeV range; (4) in rather
common situations around the termination shock, the spectrum of
accelerated particles may be somewhat steeper than E−2, as required
by observations of CRs on Galactic scale (Evoli, Aloisio & Blasi
2019; Evoli et al. 2020).

The article is organized as follows: in Section 2, we briefly
describe the structure of the environment around the star cluster and
the properties of the termination shock where particle acceleration
is expected to take place. In Section 3, we discuss the diffusion
properties of particles inside the wind bubble while in Section 4,
we describe in detail the solution of the diffusive shock acceleration
(DSA) problem at the termination shock and we derive an expression
for the maximum energy of accelerated particles. In Section 5, we
summarize our findings and we comment on the possibility that star
clusters may in fact be prominent contributors to the flux of CRs in
the Galaxy.

2 TH E BU B B L E ’ S ST RU C T U R E

The bubble excavated by the collective stellar wind launched by the
star cluster is schematically illustrated in Fig. 1: the central part is

Figure 1. Schematic structure of a wind bubble excavated by a star cluster
into the ISM: Rs marks the position of the termination shock, Rcd the contact
discontinuity, and Rfs the forward shock.

filled with the wind itself, expanding with a velocity vw and density

ρ(r) = Ṁ

4πr2vw
, r > Rc, (1)

where Rc is the radius of the core where the stars are concentrated,
and Ṁ is the rate of mass-loss due to the collective wind. The impact
of the supersonic wind with the ISM, assumed here to have a constant
density ρ0, produces a forward shock at position Rfs, while the
shocked wind is bound by a termination shock, at a location Rs.
The shocked ISM and the shocked wind are separated by a contact
discontinuity at Rcd. The typical cooling time-scale of the shocked
ISM is only ∼104 yr, while the cooling time for the shocked wind
is several 107 yr which is comparable with the typical age of these
systems (Koo & McKee 1992a, b). As a consequence, the wind-
blown bubble spends the largest part of its life in a quasi-adiabatic
phase, meaning that the shocked wind is adiabatic while the shocked
ISM is cold and dense and compressed in a very thin layer, such
that we can approximate Rcd % Rfs ≡ Rb. Hence most of the volume
of the bubble is filled with the wind and the shocked wind. Below,
following Weaver et al. (1977) and Gupta et al. (2018) we provide a
simple approximation for the position in time of the forward shock
(FS) and the termination shock (TS). The mass accumulated at the
FS while moving in the ISM is M(R) =

∫ R

0 4πr2ρ0dr , where ρ0 is
the external density. The momentum of the material accumulated in
the thin shell between Rcd and Rfs is M(R)Ṙ and changes because of
the work done by the pressure P in the hot bubble

d
dt

[
M(R)Ṙ

]
= 4πR2P . (2)

On the other hand, the energy in the bubble is ε = 4
3πR3 P

γg−1 , where
γ g is the adiabatic index, and it changes according to

d
dt

[
4
3
πR3 P

γg − 1

]
= Lw + 4πR2ṘP − Lcool, (3)

where Lw = 1
2 Ṁv2

w is the wind luminosity and Lcool is the cooling
rate. In the following, for the purpose of a simple estimate we
will neglect this cooling term which is only important at very
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late times (Koo & McKee 1992a; Stevens & Hartwell 2003). In
general, we can assume that Lcool ∼ ζLw, so that the results that
will be found below will rescale with Lw → (1 − ζ )Lw. If we
look for solutions in the form R(t) = Atα , it is easy to show,
using equation (2), that P = 1

3 A2αρ0(4α − 1)t2α−2. Replacing this
expression in equation (3) leads to

4π
9

A5αρ0(4α − 1)(5α − 2)t5α−3

γg − 1
= Lw − 4π

3
A5α2ρ0(4α − 1)t5α−3,

(4)

which readily implies that α = 3/5 and

A =
[

3 × 53(γg − 1)
4π(63γg − 28)

Lw

ρ0

]1/5

% 0.76
[

Lw

ρ0

]1/5

. (5)

In the last equality, we have used γ g = 5/3. Normalizing to typical
values of the parameters, we obtain:

Rb(t) = 174 ρ
−1/5
1 L

1/5
37 t

3/5
10 pc, (6)

where ρ1 is the ISM density in the region around the star cluster
in units of 1 proton per cm3, L37 = Lw/(1037erg s−1) and t10 is the
dynamical time in units of 10 million years. It is worth noticing that
the shell moves outwards with a velocity Ṙb that is only a few tens of
km s−1, thereby being at most transonic. To first approximation, the
position of the termination shock can be easily derived by imposing
balance between the pressure P and the ram pressure of the wind

Ṁvw

4πR2
s

= 7
25

A2ρ0t
−4/5, (7)

which leads to

Rs = 62 Ṁ
1/2
−4 v

1/2
8 ρ

−3/10
1 L

−1/5
37 t

2/5
10 pc, (8)

where v8 = vw/(1000 km s−1) and Ṁ−4 = Ṁ/(10−4M( yr−1). If we
use the definition of Lw and we neglect cooling, this expression can
be rewritten as

Rs = 48.6 Ṁ
3/10
−4 v

1/10
8 ρ

−3/10
1 t

2/5
10 pc. (9)

A more accurate calculation (Weaver et al. 1977) shows that the result
above is accurate within" 10 per cent. We stress again that the speed
of the TS in the laboratory frame is very low, so that the entire bubble
structure evolves slowly and can be considered as stationary to first
approximation. It is worth stressing that the formation of a collective
wind occurs only for compact clusters that have a typical cluster size
Rc ) Rs (see e.g. Gupta et al. 2020).

Typically, the core of a massive stellar cluster can contain up to
∼100–1000 stars whose winds interact strongly leading to partial
dissipation of kinetic energy of the winds, which may result in
generation of turbulent magnetic field in the free expanding wind.
This implies that the collective wind outside the core is not expected
to have a coherent, spiral-like structure. In the next section, we
discuss the properties of particle diffusion in such an environment.

3 D I F F U S I O N A RO U N D T H E T E R M I NAT I O N
S H O C K

While for the wind of an individual star, it is conceivable to think
that the magnetic field retains memory of its spiral structure, this
assumption would be untenable for the wind of a star cluster because
of the large number of winds that collide and interact in the core
region. On the other hand, the fact that winds of individual stars are
characterized by different mass-loss rates and different velocities
results in the interaction among different components which, to

some extent, should result in dissipation of the kinetic energy of
these winds to thermal and magnetic energy. Whether this process
of partial equipartition occurs only at the base of the wind region or
everywhere in the wind is not clear. Hence, below we will consider
a situation in which some fraction ηB of the kinetic energy of the
wind is transformed to magnetic energy at any radius (Section 3.1),
and we discuss the role of self-generated magnetic fields, due to CR
induced instabilities, when the fraction ηB is small (Section 3.2).

3.1 MHD turbulence

Let us assume that a fraction ηB of the wind kinetic energy is
converted to magnetic turbulence at any location, in such a way
that the strength of the turbulent magnetic field can be written as

B(r) ≈ 1
r

(
1
2
ηBṀvw

)1/2

. (10)

At the location of the termination shock, the strength of the magnetic
field reads

B(Rs) = 3.7 × 10−6η
1/2
B Ṁ

1/5
−4 v

2/5
8 ρ

3/10
1 t

−2/5
10 G. (11)

This dissipation of kinetic energy into magnetic energy likely results
in turbulence with a typical scale Lc that is expected to be of order
the size of the star cluster, Lc ∼ Rc ∼ 1/2 pc. If the turbulence
evolves following a Kolmogorov cascade, the diffusion coefficient
immediately upstream of the termination shock can be estimated as

D(E) ≈ 1
3
rL(p)v

(
rL(p)
Lc

)−2/3

= 2 × 1026
(

Lc

1pc

)2/3

× η
−1/6
B Ṁ

−1/15
−4 v

−2/15
8 ρ

−1/10
1 t

2/15
10 E

1/3
GeV cm2 s−1, (12)

where rL(p) = pc/eB(r) is the Larmor radius of particles of momen-
tum p in the magnetic field B(r). The diffusion coefficient decreases
inward as (r/Rs)1/3. One can see that the dependence of the diffusion
coefficient upon the efficiency of conversion of kinetic energy to
magnetic energy, ηB, is very weak. Downstream of the termination
shock, it is assumed that the magnetic field is only compressed by the
standard factor

√
11, typical of a strong shock, so that D2 ≈ 0.67D1.

Clearly the downstream diffusion coefficient can be smaller than
this estimate suggests, if other processes (such as the Richtmyer–
Meshkov instability (Giacalone & Jokipii 2007)) lead to enhanced
turbulence behind the shock.

An order of magnitude for the maximum energy that can be
achieved through DSA at the termination shock of the wind can be
easily obtained by requiring that the diffusion length of the particles
at the highest energy be equal to the radius of the termination shock,
D1(Emax )/vw ≈ Rs. This value should be taken with much caution, in
that the actual maximum energy can be somewhat smaller depending
on the diffusion coefficient downstream of the shock. We will discuss
these effects in the next section, where we develop a formal theory of
DSA at the termination shock, taking into account the geometry of
the problem and the escape of accelerated particles from the bubble.

The simple criterion discussed above, using Kolmogorov turbu-
lence, leads to

Emax ≈ 1014 η
1/2
B Ṁ

11/10
−4 v

37/10
8 ρ

−3/5
1 t

4/5
10

(
Lc

2pc

)−2

eV. (13)

The expression for the diffusion coefficient in equation (12) is valid
as long as the Larmor radius of particles is smaller than Lc. Using
equation (11) this constraint can also be written as

E " 6.8 × 1015 η
1/2
B Ṁ

1/5
−4 v

2/5
8 ρ

3/10
1 t

−2/5
10

(
Lc

2pc

)
eV. (14)
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For larger energies, D(E) ∝ E2, independent of the type of turbulent
cascading (see for instance, Dundovic et al. 2020), and acceleration
quickly becomes inefficient.

Imposing that Emax does not exceed the bound in equation (14)
one obtains the additional constraint

Ṁ
9/10
−4 v

33/10
8 ρ

−9/10
1 t

6/5
10

(
Lc

1pc

)−3

" 69 (15)

One can see from equation (13) that in order to reach PeV energies,
for the reference values of the parameters one needs wind speeds of
∼2500 km s−1 using ηB ∼ 0.1. The constraint in equation (15) implies
that the wind speed be !3600 km s−1 for the same reference values of
the other parameters (notice, however, the strong dependence upon
Lc). It follows that a typical star cluster may produce particles with
energy in the PeV energy region, but not much larger than that. The
dependence of this conclusion upon the spectrum of the turbulence
in the wind region is relatively weak: if the turbulence follows a
Kraichnan cascading process, such that D(E) = v/3 (rLLc)1/2, it can
be easily seen that the maximum energy imposed by the condition
D1(Emax )/u1 ≈ Rs reads

Emax ≈ 4 × 1014 η
1/2
B Ṁ

4/5
−4 v

13/5
8 ρ

−3/10
1 t

2/5
10

(
Lc

2pc

)−1

eV. (16)

In this case, in order to reach PeV energies one needs wind speeds
larger than ∼2000 km s−1 for ηB ∼ 0.1 and the other parameters
chosen at their reference values.

In both cases, it appears that massive star clusters characterized
by large wind speeds can account for CR acceleration in the knee
region, provided turbulence can be developed down to small enough
scales to ensure resonant scattering. The time required for such a
cascade process to take place can be estimated (at the termination
shock) as

τc % Lc

vA
= 2.9 v−1

8 η
−1/2
B

(
Lc

2pc

)
kyr, (17)

where vA = B0/
√

4πρ = η
1/2
B

√
2 vw is the Alfvén speed (spatially

constant in the cold wind). The time τ c is clearly much shorter than
the dynamical time-scale of a star cluster, but it is also required to be
shorter than the advection time of the wind across the region between
the star cluster and the termination shock, i.e. tw = Rs/vw. For our
standard parameters’ values, we have τ c/tw = Lcvw/(RsvA) % 0.1.

For both models of turbulent cascading the dependence of the
maximum energy upon wind speed is rather strong (∼ v3.7

8 for
Kolmogorov and ∼ v2.6

8 for Kraichnan). This strong dependence is
the reason why the maximum energy is in the PeV region only for
very fast winds, while rapidly dropping to lower values for slower,
most common star cluster winds.

A comment about the expected spectrum of accelerated particles
is in order. While DSA at a strong shock almost invariably leads to
a spectrum f(p) ∝ p−4, independent of the geometry of the shock,
multiwavelengths observations of young SNRs (like Tycho or Cas A)
require a proton spectrum ∝p−4.3 (Caprioli 2011). Interestingly, the
same spectral index is also inferred based upon gamma-ray spectra
measured from massive stellar clusters (Aharonian et al. 2019), and
inferred from CR transport in the Galaxy (Evoli et al. 2019, 2020).
From the theoretical point of view, some deviations from the standard
predicted spectra are expected when the Alfvénic Mach number is
finite and of order a few (Bell 1978). In the case discussed above,
the magnetic field at the shock is as given in equation (11) and the
Alfvén speed can be easily calculated to be vA,1 = vwη

1/2
B

√
2, for a

strong shock. This means that the Alfvénic Mach number is ∼4.5.
Because of the development of turbulence in the upstream plasma,

one can expect that the effective Alfvén speed, accounting for the
waves moving in all directions, is vanishingly small. On the other
hand, as shown by Caprioli, Haggerty & Blasi (2020) using hybrid
simulations, for self-generated perturbations, downstream of the
shock there seems to be a net velocity of these waves in the direction
away from the shock. In a parametric form, we can write the mean
velocity of the waves downstream as v̄A,2 = χ

√
11

2
√

2
η

1/2
B vw, where χ

= 0 for waves that are symmetrically moving in all directions.
On a very general ground, the slope of accelerated particles is

determined by the effective compression ratio which accounts for
the average speed of the scattering centres

σc = vw,1

vw,2 + v̄A,2
= 4

1 + 4.68χ η
1/2
B

. (18)

A spectral slope of 4.3 would require σ c = 3.3, which in turn would
imply χ η

1/2
B = 4.5 × 10−2. Using as a reference value ηB ≈ 0.1,

this condition translates to χ ≈ 14 per cent. Hence an asymmetry at
the level of ∼ 10 ÷ 15 per cent in the modes would be sufficient to
produce spectra of accelerated particles somewhat steeper than p−4.

3.2 Self-generated turbulence

On top of MHD turbulence, some level of magnetic field self-
generation is also expected due to the excitation of streaming
instability by accelerated particles in the proximity of the termination
shock. Below we briefly discuss the resonant and the non-resonant
branch of this instability. If the spectrum of accelerated particles is
∼p−4, then the resonant instability produces a flat turbulence power
spectrum (Amato & Blasi 2006)

Fres =
(

δB

B1

)2

= π

2
ξCR

-

vw

vA
= π

2
ξCR

-
(2ηB )−1/2, (19)

where we introduced - = ln (pmax /mpc) ∼ 13. Notice that here
we are assuming that the self-generated turbulence is produced on
top of a large-scale field (yet turbulent on smaller scales). This is
a rather risky procedure for a few reasons: first, the instability is
calculated assuming that there is a regular, well-defined field that
defines the unperturbed particle trajectories, not a turbulent field;
secondly, in the presence of pre-existing turbulence, the growth of
the instability is quenched, as discussed by Farmer & Goldreich
(2004). In conclusion, the power spectrum reported above should
be considered as an absolute upper limit to the strength of the
phenomenon. In any case, one can see that Fres becomes of order
unity only for ηB ! 10−4, a rather small value. In any case, the
turbulent quenching would make this phenomenon of little impact.

Contrary to resonant modes, the non-resonant streaming instability
(Bell 2004) is allowed to grow only if the energy density in the CR
current times vw/c is smaller than the energy density in the pre-
existing magnetic field. In terms of ηB, the condition for the growth
of this instability translates to requiring that

ηB " 6ξCR

-

vw

c
, (20)

where, as above, we assumed that the spectrum of accelerated
particles is ∝p−4. For an efficiency of particle acceleration ξCR

∼ 0.1, the non-resonant modes are excited provided that less than
∼10−4 of the ram pressure of the wind is converted to magnetic
turbulence at any given radius in the wind, especially at the location
of the termination shock. This implies that even when the instability
is allowed to grow, it cannot lead to magnetic fields in excess of
those obtained above for ηB ∼ 10−4. Such constraint would limit the
maximum energy of accelerated particles to exceedingly low values.
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Hence, even the growth of the non-resonant instability leads to a less
optimistic result that the one presented in the case in which a fraction
ηB > 10−4 of the ram pressure is converted to magnetic turbulence.

4 TH E O RY O F D S A AT T H E W I N D
T E R M I NAT I O N SH O C K

4.1 General solution

The peculiar geometry of the wind region requires a detailed
calculation of the spectrum and spatial distribution of the particles
accelerated at the termination shock. Given the quasi-stationary
evolution of the wind region, the CR transport is modelled using the
standard time independent transport equation in spherical symmetry

∂

∂r

[
r2D(r, p)

∂f

∂r

]
− r2u(r)

∂f

∂r
+

d
[
r2u(r)

]

dr

p

3
∂f

∂p

+ r2Q(z, p) = 0, (21)

where u(r) is the plasma speed and D(r, p) is the diffusion coefficient.
Particle acceleration takes place only at the termination shock,

located at r = Rs, where particles are injected according to

Q(r, p) = Q0(p)δ(r − Rs) = ηinjn1u1

4πp2
inj

δ(p − pinj)δ(r − Rs), (22)

where n1 is the density of the cold wind immediately upstream of the
termination shock and ηinj is the fraction of particle flux that takes
part in the acceleration process.

The solution of the transport equation is found by first solving
the equation upstream (unshocked wind) and downstream (shocked
wind) and then joining the two at the shock surface, where the
solution is fs(p) ≡ f(r = Rs, p). Because of the spatial dependence
of the plasma velocity and the spherical symmetry, the solution is
found adopting an iterative procedure, similar to that introduced to
treat non-linear DSA (Blasi 2002, 2004; Amato & Blasi 2005, 2006).

Let us first consider the upstream region, r < Rs. Integrating
equation (21) between 0 and r and using the boundary condition
that there is no net flux at r = 0, namely [r2D∂ rf − r2uf]r = 0 = 0, we
get

∂f

∂r
= u(r)

D(r, p)
f + G1(r, p)

r2D(r, p)
, (23)

where we introduced the function

G1(r, p) =
∫ r

0
f (r ′, p)

q̃(r ′, p)
3

d(r2u)
dr ′ dr ′, (24)

and we used the identity

f + p

3
∂f

∂p
= f

3
∂ ln(p3f )

∂ ln p
= −f

q̃

3
(25)

with q̃ ≡ − ∂ ln(p3f )
∂ ln p

. Equation (23) can be solved in an implicit way
and leads to

f1(r, p) = fs(p) exp
{

−
∫ Rs

r

u

D

[
1 + G1(r ′, p)

r ′2uf (r ′, p)

]
dr ′

}
. (26)

The second term in square brackets, containing the function G1, is
in an implicit form and accounts for adiabatic losses/gains. One can
recover the standard solution for the case of plane-parallel shocks by
imposing G1 = 0.

The solution in the downstream region, Rs < r < Rb, where Rb is
the radius of the bubble, can also be easily found by integrating the

transport equation between Rs and r < Rb:
[
r2D

∂f

∂r

]r

R+
s

− r2uf + R2
s u2fs + G2(r, p) − G2(Rs, p) = 0,

(27)

where u2 ≡ u(R+
s ) and we have defined

G2(r, p) =
∫ Rb

r

f (r, p)
q̃

3
d(r ′2u)

dr ′ dr ′. (28)

Using the definition of the escape flux, φesc ≡
−
[
r2D∂rf − r2u(r)f

]
r=Rb

, we can write the derivative of f
immediately downstream of the shock as
[
D

∂f

∂r

]

R+
s

= u2fs − φesc

R2
s

− G2(R+
s , p)

R2
s

. (29)

Using equation (29) into equation (27) we get the equation for f,
which reads
∂f

∂r
= u

D
f − G2(r, p)

r2D
− φesc

r2D
. (30)

The solution of this equation can be written as

f2(r, p) =
∫ Rb

r

dr ′ G2 + φesc

r ′2D
exp

[
−
∫ r ′

r

u

D
dr ′′

]
, (31)

or, if to write it in terms of the distribution function at the shock, fs:

f2(r, p) =
[
fs(p) −

∫ r

Rs

G2 + φesc

r ′2D
exp

{
−
∫ r ′

Rs

u

D
dr ′′

}]

× exp
{∫ r

Rs

u

D
dr ′

}
. (32)

In general, the escape flux φesc can be related to fs solving the
transport equation outside of the bubble, as we will show in the
next section, although a good approximation to the solution can be
obtained assuming free escape from the edge of the bubble.

At this point the two solutions, upstream and downstream can be
joined at the shock. Integrating equation (21) between R−

s and R+
s

and recalling that the plasma velocity is discontinuous, namely u(r)
% u2 + (u1 − u2)θ (Rs − r), the derivative at r = Rs is d(r2u)/dr =
−R2

s (u1 − u2)δ(r − Rs), hence one has
[
D

∂f

∂r

]

R+
s

−
[
D

∂f

∂r

]

R−
s

− (u1 − u2)
p

3
∂fs

∂p
+ Q0(p) = 0 (33)

The first two terms in square brackets can be obtained from
equations (29) and (23), respectively, giving

(u1 − u2)
p

3
∂fs

∂p
= − (u1 − u2) fs − φesc + G

R2
s

+ Q0 (34)

where G(p) ≡ G1(Rs, p) + G2(Rs, p). Equation (34) is a first-order
differential equation in p and can be solved in an implicit form once
φesc is written as a function of fs using equation (32).

4.2 The case of adiabatic bubble

In this section, we specialize the solution found above in the case of
a wind-bubble system to the semi-adiabatic phase, as described in
Section 4.1. We assume, as it is usually the case, a constant speed
for the cold wind, u(r < Rs) = u1 = vw, and a profile u(r > Rs)
= u2(Rs/r)2 inside the shocked wind region, where u2 = u1/σ is
the velocity immediately downstream of the termination shock and
σ is the compression ratio. Such a velocity profile implies that the

MNRAS 504, 6096–6105 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/4/6096/6171006 by Biblioteca di Scienze, U
niversità degli studi di Firenze user on 03 N

ovem
ber 2022
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function G2 = 0, meaning that there are no adiabatic losses in the
shocked wind region. Outside the bubble, the plasma is assumed to
be at rest, u(r > Rb) = 0. Following the discussion in Section 4.1, we
assume that the diffusion coefficient downstream, D2(p), is spatially
constant (because the shocked wind is subsonic) while upstream we
allow D1 to have a spatial dependence.

Now, we start simplifying the solution in the downstream from
equation (32). We first define the function

α2(r, p) ≡
∫ r

Rs

u(r)
D2(p)

dr ′ = u2Rs

D2(p)

(
1 − Rs

r

)
. (35)

At the boundary of the bubble we can assume fb ) fs (that will be
justified a posteriori), such that the escaping flux can be obtained
from equation (32) and reads

φesc(p) = R2
s

u2fs(p)
1 − e−α2(Rb)

, (36)

which, inserted back into equation (32), returns the solution in the
shocked wind region

f2(r, p) = fs(p)
1 − eα2(r)−α2(Rb)

1 − e−α2(Rb)
. (37)

The value of fb can be estimated by solving the transport equation out-
side the bubble. Under the assumption that the diffusion coefficient in
the ISM, D0, is constant, equation (21) reduces to r2D0∂rf = const.
Integrating this equation with the two boundary conditions f(Rb, p)
= fb(p) and f(r → ∞, p) = 0, we get

f (r > Rb, p) = fb(p)Rb/r. (38)

The escaping flux evaluated at Rs
+ is, then, φesc ≡ −r2D∂rf |r=Rb =

fbD0Rb. By equating this expression to equation (36), we obtain

fb(p) = R2
s

R2
b

Rb

D0

u2fs(p)
1 − e−α2(Rb)

. (39)

For small momenta, such that α2 ) 1, the assumption fb )
fs is verified when D2 ) D0Rs/Rb. Assuming that D0 is of the
order of the average galactic diffusion coefficient, i.e. Dgal %
3 × 1028(E/GeV)1/3cm2 s−1 and comparing such a value with D2

from equation (12), one can see that the above condition in easily
fulfilled. For larger momenta (α2 ! 1), the condition to be satisfied
is D0 / R2

s /Rbu2 which is also easily fulfilled for typical values of
the parameters.

The solution at the shock is obtained inserting φesc from equa-
tion (36) into equation (34) which gives

p
∂fs

∂p
= − 3u1

u1 − u2

[(
1 − u2/u1

1 − eα(Rb)
+ G(p)

u1R2
s fs

)
fs − Q0(p)

u1

]
.

(40)

The solution of equation (40) can be expressed in an implicit form
as

fs(p) = sk

(
p

pinj

)−s

e−11(p)e−12(p), (41)

where k = ηinjn1/(4πp3
inj) and s = 3u1/(u1 − u2). The solution,

equation (41), contains three terms. The first one is the usual power
law ∝ p−s that one finds in the plane-parallel shock case while the
two exponential terms are

11(p) = s

∫ p

pinj,

G(p′)
u1R2

s fs(p′)
dp′

p′ , (42)

12(p) = s

σ

∫ p

pinj,

1
eα2(p′,Rb) − 1

dp′

p′ (43)

and contain the information about the geometry of the system. The
former, e−11 , accounts for adiabatic losses/gains in the bubble and
contains the whole non-linearity of the solution, depending on both f
and fs. The effect of this term can be understood as follows: first, we
notice that the function G(p) contains only the contribution G1 from
the upstream because u(r > Rs) ∝ r−2, hence G2 = 0 (see equation 28)
because the radial expansion of the gas in the shocked wind region is
exactly compensated by the velocity decrease. In other words, there
are no adiabatic losses. Since the wind velocity is spatially constant
in the upstream region, we can write

G1(ξ, p)
u1R2

s
= 2

3

∫ ξ

0
f1(ξ, p)q̃(p)ξ ′dξ ′, (44)

where ξ = r/Rs. Now, if we adopt the solution suitable for a plane-
parallel shock as a zero-order approximation to the real solution, we
can estimate the first-order correction due to the system geometry.
To further simplify the calculation, we consider a spatially constant
diffusion coefficient, with a power-law dependence in momentum,
D1(p) = κ1p

δ1 . Hence, we assume that fs ∝ p−s and f1(ξ , p) =
fs(p)exp [ − (1 − ξ )α1] where α1 = u1Rs/D1. The condition α1

= 1 defines a characteristic momentum

pm1 =
(

u1Rs

κ1

)1/δ1

, (45)

that characterizes particles able to reach the centre of the bubble.
Under these simplifying assumptions the function 11 reduces to

11(p) = s

∫ p

pinj

dp′

p′
2
3

∫ 1

0

f1(ξ, p)
fs(p)

q̃(ξ, p) ξdξ

= 2s

3

∫ p

pinj

dp′

p′
e−α1

α2
1

{s − 3 − δ1(α1 + 2)+

+ eα1 [3 + s(α1 − 1) + 2δ1 − α1(3 + δ1)]} . (46)

The shape of 11 depends mainly on the value of δ1 and goes to zero
for p ) pm1. The function e−11(p) is plotted in Fig. 2 for the cases
of Kolmogorov (δ1 = 1/3) and Bohm (δ1 = 1) diffusion. One can
see that in both cases a transition occurs at p = pm1 but, while in the
Bohm case it is very sharp, in the Kolmogorov one it becomes much
broader.

The physical meaning of the suppression due to 11 can also
be understood in terms of particle energy gain. For plane-parallel
shocks, in the test particle limit, the energy gain per cycle is given by
3E/E = 4(u1 − u2)/(3c). In a more general approach u1 and u2 should
be replaced by the effective velocities felt by particles upstream, up1,
and downstream, up2. In a spherical geometry, the effective velocity
in the upstream can be written as (Berezhko & Völk 1997)

up1 = u1 −
∫ Rs

0
dr

∂(r2u)
∂r

f (r, p)
fs(p)R2

s
(47)

while up2 = u2 because in the downstream ∂ r(r2u) = 0. Using again
the approximate expression for the distribution function upstream,
f1(ξ , p) = fs(p)exp [ − (1 − ξ )α1], it is easy to see that for p /
pm1⇒up % u1α1/3, while for for p ) pm1⇒up % u1(1 − 2/α1).
Hence, the energy gain rapidly drops for p / pm1.

For smaller momenta, the asymptotic expression is the same as
for a standard shock, but the way that such asymptotic value is
approached depends on the spectrum of turbulence, being much
more gradual for a Kolmogorov spectrum than for the case of Bohm
diffusion.

While 11 depends on the upstream, 12 depends only on down-
stream quantities and produces a cutoff due to particle escape
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6102 G. Morlino et al.

Figure 2. Exponential functions e−11(p) (upper panel) and e−12(p) (lower
panel) for the case of Kolmogorov and Bohm diffusion. For comparison, the
simple exponential function is also shown (grey dashed line).

from the bubble boundary. The typical momentum, pm2, above
which particles can escape the bubble efficiently is defined by the
condition α2 = 1. In the general case of spatially uniform diffusion
D2(p) = κ2p

δ2 , such a condition gives

pm2 =
[

u2Rs

κ2

(
1 − Rs

Rb

)]1/δ2

. (48)

The behaviour of e−12 is shown in the bottom panel of Fig. 2 for
Bohm and Kolmogorov diffusion. Also in this case the Kolmogorov
diffusion results in a broader cutoff with respect to the Bohm one
but the behaviour for p < pm2 is basically identical. The case of
Kraichnan diffusion is intermediate between these two.

Summarizing, the maximum energy is limited by two different
conditions: the drop of energy gain for p > pm1 and the escape from
the bubble boundary for p > pm2. Since pm1 > pm2 (at least when B2

simply results from the compression of B1 at the shock), we formally
define pm1 ≡ pmax . In addition, we have shown that the cutoff depends
in a non-trivial way by the diffusion properties and its correct shape
can only be calculated by solving the full set of equations as we show
below.

4.3 Iterative procedure

Because the expression for fs and f1 are implicit, the full solution can
be obtained using an iterative procedure. We adopt as a guess function
the solution for the plane shock case, namely the one obtained
assuming G = 0 which reads

f (0)
s (p) = sk

(
p

pinj

)−s

e−12(p), (49)

f
(0)
1 (ξ, p) = f (0)

s (p) exp
[
−
∫ 1

ξ

u1Rs

D1
dξ ′

]
. (50)

Than we compute in sequence 11(p), q̃(ξ, p), and G1(ξ , p) using
equations (42), (25), and (44), respectively. At the subsequent steps,
the iterative expressions are:

f (k+1)
s = f (0)

s e−1
(k)
1 (p), (51)

f
(k+1)
1 = f (k+1)

s exp

[
−
∫ 1

ξ

u1Rs

D1

(
1 + G

(k)
1 (ξ ′, p)

R2
s u1f

(k)
1 ξ ′2

)
dξ ′

]
. (52)

The convergence of expressions (51) and (52) is easily reached within
few tens of iterations. When the convergence is reached, we compute
f2 using equation (37).

4.4 General properties of the solution

Here, we illustrate some general considerations concerning the
spectrum and spatial distribution of accelerated particles. Fig. 3
shows the spectrum at different distances upstream of the TS for
Bohm, Kraichnan, and Kolmogorov diffusion (from top to bottom).
The left-hand panels refer to the case when the magnetic field
downstream is given only by the compression of the upstream one
(B2 =

√
11 B1) as discussed in Section 3.1, such that D2/D1 = 0.3,

0.55, and 0.67 for the Bohm, Kraichnan, and Kolmogorov cases,
respectively. The right-hand panels show, instead, what happens
when the downstream magnetic field is further increased, so as to
have pm2 = pm1. The curves labelled as ξ = 1 refer to the location of
the TS, while smaller values of ξ refer to the spectrum at locations
that are closer to the centre of the wind bubble. The dashed black line
shows the zeroth-order solution at the shock position when the effects
due to spherical symmetry are neglected (i.e. when G = 0) while the
grey-dashed line show a simple exponential function, reported only
for comparison. All spectra are multiplied by ps where s is the slope
expected from standard DSA at a planar shock: s = 3σ /(σ − 1).
Notice that the momentum is always normalized to the maximum
momentum pmax ≡ pm1 determined by the upstream conditions and
estimated in Section 3. For each case, the corresponding value of
pm2/pm1 is also reported with a vertical dashed line.

All cases reported in this section are evaluated using typical
parameters’ values of a massive star cluster, namely: Ṁ = 10−4 M(,
vw = 3000 km s−1, tb = 10 Myr, n0 = 1 cm−3, and ξCR = ηB = 0.1.
In addition for the Kraichnan and Kolmogorov cases, we fixed the
turbulence injection scale at Lc = 2 pc.

As expected, particles of lower momenta are spatially concentrated
in smaller regions around the TS, while higher energy particles can
diffuse farther away from the TS and reach regions of the wind that
are close to the star cluster itself. At small ξ , basically only particles
with p ∼ pmax are present. The diffusion coefficient determines the
shape on the cutoff which is much broader for the Kolmogorov case
as compared to the Bohm one. In general, the stronger is the energy
dependence of D, the sharper is the cutoff. Moreover, the type of
diffusion that particles see also determines the effective maximum
momentum, defined as the momentum where an appreciable dis-
placement from the power-law spectrum at lower energies is visible.
The latter approaches pmax only in the case of Bohm diffusion, while
the spectrum departs from the power-law trend at energies lower than
pmax for other types of diffusion. This effect is rather dramatic for
Kolmogorov diffusion. The comparison between different cases can
be better appreciated from Fig. 4 where the distribution functions
at the shock are all plotted together (thick lines). To provide a
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Particle acceleration in winds of star clusters 6103

Figure 3. Particles’ spectra multiplied by ps in the wind region for different distance ξ from the centre (ξ = 1 is the solution at the termination shock). From
top to bottom, the results are shown for different diffusion coefficient: Bohm, Kraichnan, and Kolmogorov. Left-hand and right-hand panels show the solution
for different ratios between the diffusion coefficients upstream and downstream. In all plots, the dashed black line shows the zeroth-order solution at the shock
position when spherical effects are neglected, while the grey dashed line is the simple exponential function shown for comparison. Finally, the vertical dashed
line shows the value of pm2/pm1.

quantitative estimate, we define the effective maximum momentum,
p̂max, as the momentum where psfs(p) decreases by a factor 1/e with
respect to a power-law extrapolation at lower energies. This quantity
is reported in Table 1 together with pm1 and pm2. While for the Bohm
case p̂max ∼ 2 PeV c−1, Kraichnan and Kolmogorov diffusion lead
to p̂max ∼ 180 and ∼10 TeV c−1, respectively.

Fig. 4 also shows the normalized escape flux, psφesc(p)/(u2R
2
s ),

where φesc(p) is given by equation (36). The slightly different shapes
of the escape flux and the spectrum of accelerated particles at the TS
are limited to the cutoff region, as may be expected in a stationary
situation such as the one discussed here.

We stress that, for the reference parameters’ values adopted
here (corresponding to a wind luminosity ∼3 × 1038 erg s−1,
the effective maximum energy is in the PeV range for the case
of Bohm diffusion and marginally also for Kraichnan diffusion.

The effective maximum energy could be somewhat increased if
additional turbulence is present downstream of the TS, perhaps
due to hydrodynamical instabilities. However, such an effect is only
marginal: in order to illustrate how sensitive p̂max is to the choice
of D2, we arbitrarily decreased the downstream diffusion coefficient
(leaving D1 unchanged) so as to have pm2 = 10pm1. This happen when
D2/D1 = 0.02, 0.05, and 0.1 for Bohm, Kraichnan, and Kolmogorov
cases, respectively. The corresponding results are shown in the right-
hand panels of Fig. 3. From these plots, as well as from Table 1,
one can see that the impact of decreasing the downstream diffusion
coefficient is rather limited: p̂max increases at most by a factor ∼2
for the Kolmogorov case, less in the other cases.

The spatial distribution of accelerated particles upstream of the
TS is more clearly illustrated in Fig. 5 for the two Kraichnan cases
with D1/D2 = 0.55 and 0.07. Larger diffusion coefficient upstream
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6104 G. Morlino et al.

Figure 4. Thick lines: distribution function of CR at the shock for different
diffusion coefficients. Thin lines: corresponding escaping flux. The results
refer to the benchmark case described in the text.

Table 1. Values of pm1, pm2, and effective maximum momentum p̂max for
Bohm, Kraichnan, and Kolmogorov cases shown in Fig. 3.

Diffusion D2/D1 pm1 pm2 p̂max
type (PeV c−1) (PeV c−1) (PeV c−1)

Bohm 0.30 4.0 2.8 2.14
” 0.02 4.0 40 2.80

Kraichnan 0.55 3.2 0.48 0.18
” 0.07 3.2 32 0.30

Kolmogorov
0.67 2.6 0.08 0.01

” 0.10 2.6 26 0.02

Figure 5. Spatial distribution function of CRs normalized at the shock value
in the Kraichnan case and for different momenta as shown in the legend. Top
and bottom panels show how the results change decreasing the value of D2
from D2/D1 = 0.55 (top) to 0.07 (bottom).

clearly leads high-energy particles to diffuse on scales that exceed
the radius of the TS, so that they eventually reach the TS on the other
side with respect to the central star cluster. When this happens, the
effective plasma velocity felt by particles is )vw, hence the energy
gain drops to zero and particle acceleration becomes ineffective. The
distribution function downstream of the shock becomes flat only for p
) pmax , while for momenta close to pmax the particle density steadily
decreases while approaching the bubble boundary.

5 D I S C U S S I O N A N D C O N C L U S I O N S

There are mainly two reasons for the rising interest of the CR
community in star clusters: the first is that if the accelerated particles
are extracted from the material expelled by massive stars in the form
of stellar winds, the anomalous 22Ne/20Ne abundance ratio, that has
been known for quite some time (Binns et al. 2006), can be accom-
modated more easily (Gupta et al. 2020) than by using SNR shocks
alone (Prantzos 2012). It should be said that this is all but a trivial
conclusion, in that the abundance of 22Ne in stellar winds depends
upon details of the convection of elements in the surface layers of
massive stars. But for reasonable models of such phenomenon, it
appears that a suitable combination of CRs from massive stars and
from SNR shocks should be able to explain observations.

The second reason for interest in star clusters is that they have
been long suspected (Cesarsky & Montmerle 1983; Webb et al. 1985;
Gupta et al. 2018; Bykov et al. 2020) to be potential sources of CRs
with energies up to the knee. This second aspect turns out to be
especially appealing given the many problems encountered by the
theory of DSA applied to SNR shock in accounting for such high
energies [see for instance Cristofari et al. (2020) and recent reviews
Blasi (2013, 2019)]. The possibility of accelerating particles up to the
knee in SNRs might be limited to very powerful and rare SN events
where the growth of the non-resonant instability may be sufficient to
reach ∼1015 eV at the beginning of the Sedov–Taylor phase of the
shock evolution in the surrounding medium.

In the present article, we presented the theory of DSA at the
termination shock that arises from the interaction between the
collective wind of a star cluster and the surrounding ISM. We solved
the stationary transport equation for CRs in spherical symmetry,
with a velocity profile that reflects the one expected from the wind
region and the bubble region of a star cluster. No restrictions are to
be imposed on the spatial and energy dependence of the diffusion
coefficient. The solution provides both the spectrum of accelerated
particles at any location in the wind and the bubble. The maximum
energy arises in a natural way from the transport of particles in the
shock region.

As one might expect, the spectrum of accelerated particles, at p
) pmax , is a power law, with the same slope as obtained for a planar
shock. This is intuitively clear since the curvature of the shock can
affect the particles’ diffusion only when the diffusion length is of
the same order as the radius of the termination shock. When that
happens, the effect of geometry is no longer negligible and one
should expect deviations from the standard power law. We showed
that the strength of such deviations is very sensitive to the momentum
dependence of the diffusion coefficient in the upstream region, being
the strongest for weak energy dependence. We investigated in detail
three choices, corresponding to a Kolmogorov, Kraichnan, and flat
spectrum of perturbations. The latter gives rise to Bohm diffusion. In
the case of a Kolmogorov spectrum, the deviation from a power law
starts a few orders of magnitude in momentum below pmax , while the
transition is rather sharp at ∼pmax for the case of Bohm diffusion.
The Kraichnan case is intermediate between the two but somewhat
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closer to the Bohm case. In order to quantify the effect of this
transition on the particle spectrum we defined an effective maximum
momentum, defined as the momentum at which the deviation from a
power law extrapolation from lower energies becomes of order 1/e
on the quantity psf(p). These considerations turned out to be highly
valuable in terms of assessing the most important point of the article,
namely whether PeV energies can be reached at the TS of a star
cluster wind.

The maximum momentum of accelerated particles was found to be
in the PeV region for rather bright star clusters, with a wind speed of
∼3000 km s−1 and mass-loss rate of ∼ 10−4 M(yr−1 corresponding
to a kinetic luminosity of ∼3 × 1038 erg s−1. The dependence of
pmax on the mass-loss rate is almost linear and we notice that in
some cases values up to ∼ 10−3 M(yr−1 have been inferred (Stevens
& Hartwell 2003), leading to maximum energies up to ∼10 times
the values reported here. The dependence of pmax upon the wind
velocity is even stronger, hence for velocities appreciably lower than
∼3000 km s−1, pmax rapidly decreases to an extent that depends on
the spectrum of perturbations. Although pmax can be in the PeV range,
as discussed above, the effective maximum momentum can be much
lower as a result of spherical symmetry, especially for Kolmogorov
diffusion. This issue is less pressing for Kraichnan and Bohm
diffusion, where the spectrum shows an effective suppression at
∼0.1–1pmax . Hence, having a correct understanding of the magnetic
turbulence in this environment is of the utmost importance. We also
stress that at the large CR energy we are interested in (resonant
scales comparable with Lc) the effects of anisotropic development of
turbulence (Sridhar & Goldreich 1994; Goldreich & Sridhar 1995)
should not be overwhelmingly important.

We also showed that for a reasonable choice of parameters, the
maximum momentum is determined by the conditions upstream of
the termination shock, namely in the cold wind. This might appear
counter intuitive, since no escape is possible from the upstream
region, due to geometry. However, it can be easily understood in
terms of the effective plasma velocity that the particles experience
in the wind. Such velocity is close to vw when the diffusion length
is much smaller than Rs (low momenta). However, it decreases for
higher momenta, and eventually becomes close to zero when the
diffusion length exceeds Rs. This can also be seen in terms of energy
gain per cycle, which decreases when the diffusion length of the
particles becomes comparable to Rs.

In principle somewhat larger values of pmax can be obtained if
additional turbulence exists downstream of the termination shock,
for instance excited through some kind of hydrodynamic instability.
However, as one could expect, this reflects in only mild increases
in the maximum momentum, since the latter is more strongly
constrained by the upstream conditions. In conclusion, star clusters
are potential sources of CR protons at the knee only for very bright
and relatively uncommon objects. Even for the star clusters for which
the maximum energy is in the PeV region, the shape of the spectrum
close to pmax is such that it may result in an early suppression,
for the case of Kolmogorov-like diffusion. The question of whether
these objects can contribute an appreciable flux of light CRs in
the knee region should then be addressed using observations of X-
rays and very high energy gamma rays, which can provide valuable
information on the conditions at the TS.
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