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ABSTRACT
Understanding the evolution of a supernova remnant shell in time is fundamental. Such understanding is critical to build reliable
models of the dynamics of the supernova remnant shell interaction with any pulsar wind nebula it might contain. Here, we
perform a large study of the parameter space for the 1D spherically symmetric evolution of a supernova remnant, accompanying
it by analytical analysis. Assuming, as is usual, an ejecta density profile with a power-law core and an envelope, and a uniform
ambient medium, we provide a set of highly accurate approximations for the evolution of the main structural features of supernova
remnants, such as the reverse and forward shocks and the contact discontinuity. We compare our results with previously adopted
approximations, showing that existing simplified prescriptions can easily lead to large errors. In particular, in the context of
pulsar wind nebulae modelling, an accurate description for the supernova remnant reverse shock is required. We also study in
depth the self-similar solutions for the initial phase of evolution, when the reverse shock propagates through the envelope of the
ejecta. Since these self-similar solutions are exact, but not fully analytical, we here provide highly accurate approximations as
well.
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1 IN T RO D U C T I O N

Neglecting instabilities, clumpiness, and gradients in the ambient
medium, the evolution of a supernova remnant (SNR) within it can
be described in a schematic way in terms of a shell bounded by two
shocks: the expanding SN ejecta drive a forward shock (FS) in the
ambient medium and a reverse shock (RS), which moves through the
ejecta. In addition, a contact discontinuity (CD) separates the ejecta
material and the shocked ambient medium.

A detailed description of the non-radiative evolution of SNRs was
presented by Truelove & McKee (1999, hereafter TM99). In that
work, through a mix of analytical limits, semi-analytical formulae,
and fits to numerical simulations, a series of approximations to
describe the evolution of the SNR during its different stages was
provided. This paper has become a widely used reference for the
time evolution of the FS and RS.

TM99 solutions are used, for instance, when incorporating the
dynamics in radiative models of pulsar wind nebulae (PWNe), see
e.g. Gelfand, Slane & Zhang (2009), Bucciantini, Arons & Amato
(2011), Martı́n, Torres & Rea (2012), and Torres et al. (2014). In
Bandiera et al. (2020), we have used these solutions as well for
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modelling the physical conditions at the beginning of the so-called
reverberation phase. This time is identified as the moment in which
the boundary of the PWN, formerly expanding into the unshocked
ejecta, reaches the RS. These initial conditions are a key ingredient
for modelling the late PWN evolution, and ultimately to estimate the
PWN compression, but they are highly sensitive to the RS properties
(position and velocity) immediately before the beginning of the
reverberation phase. This in particular will be the argument of a
forthcoming paper in our reverberation project, started with Bandiera
et al. (2020).

Several attempts to reproduce and improve the TM99 model were
made in the past, considering different parametrizations for the ambi-
ent medium (Tang & Chevalier 2017) or a complex clumpy structure
for the ejecta (Micelotta, Dwek & Slavin 2016). Nevertheless these
works focus on specific problems and/or objects, and a more general
description of the shocks (and CD) evolution with varying the
characteristic parameters of the problem is still not available in the
literature. To this purpose, we have run a large number of numerical
simulations, which span a wide range of power-law indices for the
envelope of the ejecta, as well as a choice of density slopes for
their core. Combining these numerical data with known results of
self-similar models, valid during the early SNR expansion (based
on Chevalier 1982, C82 hereafter), we are able to derive highly
accurate prescriptions covering a wide region of the parameter space
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Revisiting the evolution of nonradiative SNRs 3195

of possible ejecta structures, showing that there are general trends
that allow one to re-scale the evolution of the main structural features.

This paper is organized as follows. In Section 2, we recall the
definitions of the characteristic physical scales of the problem and
the typical assumptions for the ejecta profiles. In Section 3, we
discuss the early evolution of the SNR, which is fully described
by the self-similar models of C82. We improve on this description
there as well. In Section 4, we describe the scheme used for our
numerical simulations. In Section 5, we present the results of our
numerical models to reproduce the evolution of SNRs with varying
the parameters that define the ejecta morphology (namely the core
and envelope structures). We discuss our findings and compare with
TM99 results, focusing on the limitations of that work when trying
to reconstruct the evolution with a high accuracy. In Section 6, we
present our new set of analytical approximations for the RS, CD, and
FS time evolution, discussing their validity and precision. Finally,
our conclusions are drawn in Section 7.

2 BASIC ASSUMPTIONS

As shown by TM99, the SNR evolution can be naturally scaled in
terms of the characteristic length Rch and time tch given by

Rch = M
1/3
ej ρ

−1/3
0

# 7.4 pc
(

Mej

10 M$

)1/3 (
mpn0

g cm−3

)−1/3

, (1)

tch = E−1/2
sn M

5/6
ej ρ

−1/3
0

# 3241 yr
(

Esn

1051 erg

)−1/2 (
Mej

10 M$

)5/6 (
mpn0

g cm−3

)−1/3

, (2)

where Mej is the ejecta mass, Esn is the SN energy, ρ0 is the ambient
medium density and n0 is the related number density, while mp is the
proton mass. From these one can also define a velocity scale as:

Vch = E1/2
sn

M
1/2
ej

# 2240 km s−1
(

Esn

1051 erg

)1/2 (
Mej

10 M$

)−1/2

. (3)

The cartoon of Fig. 1 shows a schematic representation of the SNR
structure, featuring the RS, CD, and FS and the density in a qualitative
way. Typical models for the density profile of the freely expanding
ejecta, where velocity scales linearly with radius, assume a core with
a shallow radial profile ∝r−δ (with δ < 3), plus an envelope with a
steep power-law one ∝r−ω (with ω > 5), according to

ρej(r, t) =
{

A (vt/r)δ/t3−δ, if r < vtt,

A (vt/r)ωtω−3, if vtt ≤ r < RRS ,
(4)

where the parameters A and vt (the expansion velocity of the core
boundary, in the unshocked ejecta) are given by

vt =
√

2(5 − δ)(ω − 5)
(3 − δ)(ω − 3)

Esn

Mej
, (5)

A = (5 − δ)(ω − 5)
2π(ω − δ)

Esn

v5
t

. (6)

Typical values for δ are found to vary in the range 0.001 ! δ

! 1 for different types of supernovae, with indications that δ < 1
are characteristic of Type II SNe, while the outer envelope index
is considered to vary in the range 7 ! ω ! 12 (Chevalier & Soker
1989, TM99, Matzner & McKee 1999; Chevalier 2005; Ferrand et al.
2010; Bucciantini et al. 2011; Kasen 2010; Miceli et al. 2013; Potter
et al. 2014; Karamehmetoglu et al. 2017; Kurfürst, Pejcha & Krtička
2020; Meyer, Petrov & Pohl 2020; Meyer et al. 2021).

Figure 1. Cartoon of the initial SNR structure with focus on the radial
profiles of the density in the core (R < Rcore) and envelope (Rcore < R < Renv)
of the ejecta.

Note that models having the same ω and δ, once scaled with their
respective characteristic scales (Rch, tch), form a family of equivalent
solutions.

3 EA R LY EVO L U T I O N

Before discussing the results of our numerical models, let us review
and implement what is known about the very early phases.

C82 derived self-similar solutions for the radial profiles of density,
velocity, and pressure, in the initial phase of evolution, namely as
long as the RS propagates through the envelope of the ejecta. To avoid
confusion, in the following we will specify where our notation differs
from that of the reference paper. For simplicity in Appendix A, we
recall the used notation and, whenever possible, we directly compare
it with the one from TM99 and C82.

To summarize the approach in C82 for a homogeneous ambient
medium, corresponding to the case s = 0 in the notation of that
paper, let us first note that, during these early phases, the evolution
in the whole region between the RS and the FS must only depend
on the dimensional quantities ρ0, i.e. the density of the ambient
medium, and ρejrωt3 − ω, a (time- and space-independent) quantity
that is related to the density of the expanding envelope, is labelled
in Section 2 as Avω

t , and corresponds to gn in the C82 notation; also
note that in that paper our index ω is called n. For instance, the total
SN energy and mass of the ejecta do not enter here, because all the
material inside the RS is causally disconnected.
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3196 R. Bandiera et al.

Therefore, one cannot derive independently the characteristic
length and time for this problem, but they must be linked together.
First, the RS, CD, and FS sizes must all evolve like t(ω − 3)/ω. In
addition, apart from their respective dimensional scalings, the radial
profiles of the hydrodynamic quantities must all depend on just one
self-similar variable, comoving with the RS, CD, and FS. Following
C82, we choose here the self-similar independent variable:

η ≡ rλ/t, where λ = ω/(ω − 3). (7)

We can then factorize the hydrodynamic quantities (here velocity,
sound speed and pressure) in a dimensional part, and in a dimension-
less, self-similar one:

v(r, t) = U (η)
r

t
; cs(r, t) = C(η)

r

t
;

p(r, t) = P (η)Avω
t

r2−ω

t5−ω
. (8)

The local sound speed can be written as cs =
√

'p/ρ, where ' is the
adiabatic index. Differently from C82, we have preferred to use here a
dimensionless quantity also for the pressure, by extracting explicitly
Avω

t . Namely the definition of P(η) is not the same as in C82.
Anyway, this different choice does not affect the final results. The
hydrodynamic equations can then be transformed in the following
ordinary differential equations in the η variable (C82):

U 2 − U + (λU − 1)ηU ′ +
(

λ

'

ηP ′

P
− ω − 2

'

)
C2 = 0 ; (9)

(ω − 3)(1 − U ) + ληU ′ + (λU − 1)
(

ηP ′

P
− 2

ηC ′

C

)
= 0 ; (10)

(ω − 5) − '(ω − 3) + (2 + (' − 1)ω) U

+(λU − 1)
(

2'
ηC ′

C
− (' − 1)

ηP ′

P

)
= 0. (11)

One may note that η is explicitly present only together with a first
derivative of some quantity (labelled with a prime), which means
that the solutions are invariant by translation in η. In addition, the
self-similar pressure P appears only in the form of a logarithmic
derivative, which means that its solution is invariant by an arbitrary
scaling. For these reasons, the numerical solutions for the inner and
outer sides to the CD can be integrated independently, starting from
the RS and FS boundaries. In a second stage one can fix the regularity
conditions, by assigning the same η value (conventionally 1) on both
sides of the CD, as well as by imposing pressure continuity across
the CD itself. For completeness, the boundary conditions for the
self-similar quantities read:

URS = ' − 1 + 2/λ

' + 1
; C2

RS = 2'(' − 1)
(' + 1)2

(
1 − 1

λ

)2

, (12)

in the downstream of the RS, while:

UFS = 2
λ(' + 1)

; C2
FS = 2'(' − 1)

(' + 1)2

'

λ2
, (13)

in the downstream of the FS. Using the approach described above, we
have computed the radial structure of the RS, CD, and FS for a large
number of cases, with values of ω ranging from 6 to 100. Although
the solutions for the positions of RS, CD, and FS are not analytical,
we provide here highly accurate analytical approximations for some
of these quantities. In comparison, C82 tabulated them only for a
limited selection of cases. The (exact) formula for the evolution of
the CD radius (RCD) is

RCD(t) =
(

9 Avω
t

α(ω)(ω − 3)2ρ0

)1/ω

t (ω−3)/ω , (14)

with

α(ω) ≡ pRS

pFS

(
RFS

RRS

)2 (
RRS

RCD

)ω

, (15)

where pRS and pFS are the pressures at the two shocks. Unfortunately
there is no analytical solution for this quantity, but it can be accurately
approximated by

α(ω) # 0.79966 − 0.49408
√

ω − 5 + 0.68648 (ω − 5)

2.03247 − 0.63043
√

ω − 5 + (ω − 5)
. (16)

Using this formula the quantity α−1/ω, which enters in equation (14),
is approximated to be better than 0.01 per cent for all ω values
larger than 6. The positions of the RS and FS radii (RRS and RFS,
respectively) with respect to that of the CD can be approximated well
by

RRS

RCD
# 1 −

0.21064
(
1 + 0.06245/

√
ω − 5

)

1.38208 + (ω − 5)
, (17)

and
RFS

RCD
# 1.09572 + 0.18326

0.14675 + (ω − 5)
. (18)

It can be seen that, for very large ω values, RFS/RCD reaches an
asymptotic value # 1.09572. Both approximations reach an accuracy
of 0.003 per cent for ω > 6. Note, however, that all the formulae given
above are not reliable for ω values approaching the critical case ω =
5. During this self-similar phase, the mass of the ejecta collected by
the RS is

M(t) =
∫ ∞

RRS(t)
4πAvω

t r−ωtω−3r2dr

= 4πAvω
t

ω − 3

(
RRS(t)

t

)(3−ω)

∝ (t (ω−3)/ω−1)3−ω = t3(ω−3)/ω , (19)

and therefore the time at which the RS reaches the core of the ejecta,
namely when M(t) becomes equal to the total mass of the envelope
Menv = (3 − δ)Mej/(ω − δ), is found to be

tcore

tch
=

(
81(3 − δ)5(ω − 3)(ω − 5)−3

128π2α2(ω)(5 − δ)3(ω − δ)2

)1/6 (
RRS

RCD

)ω/3

. (20)

After this time, the RS shock no longer follows the power-law expan-
sion characteristic of the self-similar solution: its further evolution
will be more complex, requiring a fully numerical investigation.

The RS and CD will experience the end of the self-similar solution
as well, but at later times. This is because the information about the
change of the ejecta density profile will take some time to reach the
outer regions. After tcore, a rarefaction wave propagates at the sound
speed through the shocked layers (see Fig. 2), so that the delayed
time tx for the wave reaching a radial distance Rx (corresponding to
the self-similar coordinate ηx), can be evaluated as

tx

tcore
= exp

(∫ ηx

ηRS

dη

η [λ(C(η) + U (η)) − 1]

)
. (21)

Let us call tcore,CD and tcore,FS the times at which the sound wave has
reached, respectively, the CD and the FS. For these quantities, we
have derived the following approximated functions:

tcore,CD

tcore
# 1.10672 + 0.37713

1.50122 + (ω − 5)
, (22)

tcore,FS

tcore
# 1.35730 + 1.67250

0.27501(ω − 5)0.13135 + (ω − 5)
, (23)

both with an accuracy better than 0.01 per cent, for ω > 6. One
should notice that C82 solutions are by themselves independent of
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Revisiting the evolution of nonradiative SNRs 3197

Figure 2. Cartoon illustrating the position Rx at a particular time of the
rarefaction wave (in green), propagating the information of the RS interaction
with the core in the shocked ejecta. Colours are the same as in Fig. 1. In the
yellow box, we show a zoom-in of the effect of the rarefaction wave on the
ejecta structure: blue points are from the simulation, in red the comparison
with the predicted structure from the pure Chevalier model (no rarefaction
wave). The initial boundary of the core is indicated by the dotted orange
line. It can be appreciated how the passing of the wave produces a lowering
and widening of the ejecta profile. Notice that the real relative dimensions
of the radial profile in the main figure are not maintained in order to better
appreciate the global structure.

the density profile in the core, since it has not been reached as of yet.
The presence of δ in equation (20) comes only from the fact that the
fraction of mass in the envelope depends also on the density profile
in the core. For ω approaching infinity, tcore vanishes as ω−2/3.

In the following, we shall also consider the limit case of ω = ∞,
which corresponds to ejecta without any envelope, and is dubbed
by TM99 as ω = 0. Following the above equations, in that limit we
found tcore to vanish, as well as the distance between the RS and the
CD. The last result can be easily understood, having in mind that
all the ambient medium swept by the FS will then be stored in the
volume between the CD and the FS itself, so that

4π
3

ρ0R
3
FS = 4π

3
ρavg

(
R3

FS − R3
CD

)
, (24)

where ρavg is the average density in the shell bound by the CD and FS.
In the asymptotic limit ω → ∞, from the value of the ratio RFS/RCD #
1.09572 (equation 18) it can be derived ρavg = 4.16933 ρ0, actually
very close to the factor 4 right behind the FS.

4 N U M E R I C A L S C H E M E

In this section, we present the hydrodynamic Lagrangian code that
we have developed to model numerically the 1D hydrodynamic
evolution of SNRs. One advantage of using a Lagrangian scheme over
an Eulerian one is that one can follow in greater detail the structure
of the SNR envelope even in those regions with steep gradients, like
in the envelope of the SNR ejecta, preserving with high accuracy
the large density discontinuities. In addition, the ability to follow the
fluid elements as they expand, contrary to Eulerian scheme on fixed

grid, relaxes the computational requirement of a large dynamical
range in radius.

We have developed a 1D Lagrangian hydrodynamical scheme,
following the recipes described in Mezzacappa & Bruenn (1993).
Shocks are handled through the implementation of standard von
Neumann–Richtmyer viscosity (Von Neumann & Richtmyer 1950).
For the reader convenience, we briefly summarize here the equations
that are solved. In order to gain accuracy in time, without resorting
to a full second-order approach, the time evolution of the velocity
(v) and radius (r) of interfaces i + 1/2 between the shell i and the
shell i + 1 has been modified, with respect to the standard half-step
time staggering, to account also for their acceleration (a), according
to

Qn
i = ηvnrρ

n
i

(
vn

i+1/2 − vn
i−1/2

)2
)
[
vn

i−1/2 − vn
i+1/2

]
, (25)

an
i+1/2 =

[(
rn
i+1/2

)2(
pn

i+1 − pn
i

)
−

(
rn
i+1

)2
Qn

i+1 +
(
rn
i

)2
Qn

i

]
/

*mi+1/2, (26)

vn+1
i+1/2 = vn

i+1/2 − 4π*tan
i+1/2, (27)

rn+1
i+1/2 = rn

i+1/2 + 4π*tvn
i+1/2 + 2π(*t)2an

i+1/2, (28)

where )[ · ] is the Heavyside function, *t is the time interval between
the steps n and n + 1 (chosen in order to ensure a stable time evolution
based on the standard Courant–Friedrichs–Lewy condition, and the
requirement that no shell should compress or expand more than a
factor 1.2 in each time-step), *mi + 1/2 is the mass at the interface,
defined as a function of the mass of the two bounding shells *mi + 1/2

= (*mi + 1 + *mi)/2, ηvnr = 4 is the viscosity coefficient (which we
chose larger than the typical value 2 of the standard von Neumann–
Richtmyer method in order to suppress numerical noise arising from
the presence of strong shocks) and Q is the viscous pressure (Schulz
1964). The radius of each shell is defined as the barycenter radius:

rn
i =

((
rn
i+1/2

)3 +
(
rn
i−1/2

)3

2

)1/3

, (29)

and its density:

ρn
i = 3*mi

4π
[(

rn
i+1/2

)3 −
(
rn
i−1/2

)3] . (30)

Instead, the pressure is derived by solving (either by successive
iterations or by direct solution) the following equation for the specific
internal energy ei:

en+1
i = en

i − pn+1
i + pn

i

2

(
1

ρn+1
i

− 1
ρn

i

)
+

−2π*t
[
rn+1
i + rn

i

]2
Qn

i

vn
i+1/2 − vn

i−1/2

*mi

, (31)

and assuming the following equation of state pi = 2ρ iei/3, appropriate
for a perfect gas of adiabatic index ' = 5/3. In order to avoid spurious
entropy generation associated with numerical noise, we force the
entropy to remain constant in the region bounded by the RS and
FS. Our numerical models are initialized using the analytical SNR
solutions of C82 hereafter (see Section 3), at a time corresponding
to 0.9tcore. Our resolution is set in order to have 500 mass shells
uniformly spaced in radius between the initial positions of the RS
and FS. The unshocked cold ejecta inside the RS are resolved
over 4000 mass shells logarithmically spaced in radius up to the
centre. The unshocked cold ISM outside the FS is resolved over
1500 logarithmically spaced shells up to an outer radius of 11Rch.

MNRAS 508, 3194–3207 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/3/3194/6369356 by B
iblioteca di S

cienze, U
niversità degli studi di F

irenze user on 03 N
ovem

ber 2022



3198 R. Bandiera et al.

The stretching in these two regions is chosen in order to have a
smooth change in resolution at the RS and FS locations. We have
verified by either changing the initial time to 0.5tcore, and by doubling
the resolution in each zone, that results are unchanged and that the
numerical model preserves the C82 structure up to tcore.

The boundary conditions at the outer radius pose no problem if
one chooses it far enough so that for the SNR FS never reaches it
during the evolution. As inner boundary condition the first interface
is held fixed at the centre r1/2 = 0, and reflection is imposed on the
other fields. This condition is robust and allows the late bouncing of
the RS without artefacts.

In order to treat the asymptotic case ω = ∞, we have used a
different initialization for our simulations, maintaining the same
numerical scheme and grid, but based on the Parker (1963) model.
This is equivalent to the C82 one for the shocked ambient medium,
except for the fact that now one considers a spherical piston, instead
of the CD, moving like t1/λ, where the link to the C82 problem is
obtained by setting λ = ω/(ω − 3). In this case, the initial time of
the simulations is set to tini = 0.01tch.

5 A NA LY S I S O F TH E N U M E R I C A L R E S U LTS

We have used our Lagrangian code (described in the previous
section) to analyse multiple possible properties of the ejecta, shaping
differently their core and envelope, characterized respectively by the
parameters δ and ω. We have explicitly calculated models with ω

= 6, 7, 8, 9, 10, 11, 12, 14, 18, 25, 50, ∞ (the choice of these
values has been simply motivated by the need to provide a suitably
spaced sampling for our interpolations and for a direct comparison
with TM99 results). As already mentioned before, in each case with
a finite ω value, we have taken as a starting time of our numerical
models the value tini = 0.9 tcore. For the shocked region, we have used
the Chevalier’s solution (C82). Only in the ω = ∞ case we have used
tini = 0.01tch, and an initial profile without the shocked ejecta and
with a shocked ambient medium, according to a Parker’s solution.
We have repeated all the simulations for different values of the core
power-law indices in the range of interest, namely δ = 0, 0.1, 0.5,
1.0.

In order to test the numerical convergence of our models, we
have also run simulations in which the density profile of the ejecta
has been cut at a radius at which the density was comparable
with that of the ambient medium, and the ejecta have been left at
the initial time in direct contact to the ISM, without any shocked
medium in between. We have run different cases with varying tini,
and we found a reasonable convergence of the solution for tini ≤
0.01tch. Some noticeable difference in their late evolution appeared
for small ω values, simply because the arbitrary cut in the profile
of the ejecta implies a modification of both total mass and energy.
We point out, however, that these simulations have been run only
to test the stability of the numerical code; while for the results
that follow we have used those initialized with the self-similar
solutions.

Fig. 3 shows our first result: the convergence of the evolutionary
curves of the RS, FS, and CD to the asymptotic ones (ω = ∞),
for a representative selection of ω values (δ is set here to 0). The
convergence of the RS (panel a) is shown as function of the time
scaled with the time at which the RS implodes (timplo(ω)). When
increasing the ω value, the curves approach the asymptotic one with
a monotonic behaviour. We notice that the convergence of the RS
trajectory to the asymptotic one with the ω value is rather fast. A
deviation of less than 0.01 Rch at t = 0.5 timplo can be found starting
from ω = 14, while for ω = 25 the deviation is non-significant and

(a)

(b)

(c)

Figure 3. Convergence of the RS (a), FS (b), and CD (c) curves to the
asymptotic case ω = ∞. Depicted are cases with ω = 6, 7, 9, 14, 25 and
δ = 0. The convergence is shown as differences between each of the curves
with respect to the asymptotic one and as function of time normalized to the
implosion time timplo(ω) in the RS case, or as function of time in characteristic
units. Each curve is plotted starting from t = tcore. Notice that the percentage
difference between the curves is really small, and the convergence is indeed
fast with increasing the ω value. It should not be surprising that the behaviour
of ω = 6 diverges so much from the other ones, since it is so close to the
critical case ω = 5. And a similar effect can be noticed also in the following
figures.

the two curves appear to be coincident. The same conclusion remains
valid also for the δ > 0 cases, for which convergence at large ω values
is even more rapid than in the flat case (as it can be appreciated if
comparing the different panels of Fig. 4).

Fig. 3 also shows the convergence to the asymptotic case of the
CD and FS trajectories, for the same selection of ω values and in
the δ = 0 case. We observe the FS to converge very quickly to its
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Revisiting the evolution of nonradiative SNRs 3199

Figure 4. Evolutionary paths of the FS, CD, and RS as extracted from the results of our numerical simulations for the cases ω = 6, 7, 8, 9, 14, 50, ∞, and
for different values of the core index δ, namely: δ = 0 (top-left), δ = 0.1 (top-right), δ = 0.5 (bottom-left), and δ = 1 (bottom-right). Notice that the x-axis scale
is different in the upper and bottom panels. For t ≤ tcore, we plot the C82 analytical profiles presented in Section 3.

asymptotic limit when increasing ω, with the two curves becoming
almost coincident from ω = 14, while in the ω = 9 case the difference
is only of a few 10−3 up to the implosion time. We notice that the
differences in the FS curves are mostly limited to the initial part of
the evolution (say for t ! 1.5 tch), while at later times they all show
the same trend and are separated by the asymptotic curve only by
a constant shift (the maximum is of 0.015 Rch for ω = 6). Finally,
the CD appears to be the slower curve to converge to the asymptotic
profile with the ω value, with a small difference of ∼1.5 × 10−3 still
noticeable for ω = 25 at t = 2 tch.

Comparing the convergence of all the curves shown in Fig. 3,
it is quite clear that the asymptotic limit is rapidly reached while
increasing ω, with the differences between ω = 25 and ω = 50 being
only of a few × 10−3, and becoming even smaller for higher ω values.

As advanced above, the most sensitive curve to the variation of the
model parameters, except for the RS in the ω = 6 case, is found to be
the CD, as it can also be appreciated looking at Fig. 4. Here, we show
a direct comparison of the FS, CD, and RS trajectories with varying
ω (same panel) and for the different values of δ considered (different

panels). Namely we plot the curves for the cases: ω = 6, 7, 8, 9, 14,
∞ and δ = 0, 0.1, 0.5, and 1.0. We can notice again the monotonic
convergence of the curves to the asymptotic one, which is very fast for
the FS. The FS and CD appear to be very weakly affected by the core
structure, thus their main properties can be described only based on
the ω family. On the contrary, the RS shows a relevant deviation from
the flat case (δ = 0), already for δ > 0.1, with the structure of the core
reflecting in a slower propagation of the shock towards the centre,
and a modification of the implosion time from [2.39 − 2.71] tch for
the δ = 0 case (considering all the ω values) to the [3.1 − 3.3] tch for
the δ = 1 one. It can be also seen that, augmenting δ, the differences
between the RS for the lower and higher ω values tend to diminish,
with a faster convergence to the asymptotic case at higher δ. On
the other hand, the difference in the implosion time between the flat
case and δ = 0.1 is only of 5 per cent for all the ω values, while for
δ < 0.1 this difference becomes irrelevant. This is the reason why
we will consider the case δ = 0 for comparing directly with TM99
results. They in fact assume δ = 0 in general, while a slightly higher
value of δ = 0.03 is used when the flat limit is considered not to be
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3200 R. Bandiera et al.

Figure 5. Left-hand panel: Direct comparison of the RS trajectories for different ω values as computed with our numerical models (solid lines) and from the
semi-analytical prescriptions of TM99 (dot–dashed lines). The numerical results are given for the δ = 0 case, as is the most suitable for a comparison with
TM99 assumptions. Right-hand panel: Plot of the logarithm of the relative difference between the curves in the TM99 approximation and this work, namely:
* = |RTM99

RS (ω) − RRS(ω)|/RTM99
RS (ω). The curves are only plotted in the range tcore ≤ t ≤ timplo (from the numerical models). The large dips in these curves

happen because of the crossing of the solutions (where the log relative difference is formally −∞).

a good approximation. Following our results, this latter case can be
safely assimilated to the flat one, without introducing any significant
deviation to the SNR characteristic curves.

Fig. 5 shows a direct comparison of the trajectories of the RS as
obtained with our numerical simulations with those computed using
TM99’s formulas.

We show a selection of ω values, namely: ω = 6, 7, 9, 12, ∞ for
the δ = 0 case that, as already pointed out, is the most suitable for
this comparison. Let us first focus on the asymptotic curves (ω = ∞
in our notation, equivalent to the case labelled as ω = 0 in TM99
one). The two differ only by ∼1 per cent around the RS maximum (t
∼ tch). On the other hand, the approximations that TM99 introduced
to get a semi-analytical description of the RS trajectory cause an
important deviation close to the implosion time, with an evident
difference in the slope of the RS for t " 0.8 timplo (" 2.1 tch in this
case). The same can be actually observed if comparing the original
numerical and semi-analytical results of TM99. We conclude that this
deviation is a consequence of the chosen approximations and not of
the numerical model itself. The only other case in which we found
some coincidence of the TM99 solutions with our results is that of
ω = 6. But when increasing the ω value, the difference between the
trajectories clearly increases. For instance, in TM99 the maximum
size of the RS, for ω changing from 9 to 12, changes from 0.743 Rch

to 0.881 Rch, while in our model the variation is very small, from
0.664 Rch to 0.666 Rch. We found that the relative variation between
the models, * = |RTM99

RS (ω) − RRS(ω)|/RTM99
RS (ω), is typically of the

order of 10 per cent. It can easily go much higher, as for instance,
it is 30 per cent in the ω = 14 case at time t = 1.5 tch, as can be
seen in Fig. 5. Also, as already noticed, the loss of accuracy of
the chosen representation of the curves in the TM99 approximation
leads to even larger relative differences closer to the implosion time,
which are close to 100 per cent. Moreover, it is clear that the TM99
solutions do not converge, for large ω values, to their asymptotic
solution ω = 0 (equivalent to ω = ∞ in our notation), for which they
get 0.674 Rch. For comparison, the value we get for the asymptotic
case is instead 0.668 Rch.

This can be more easily appreciated in Fig. 6, where we show
the radius of the RS for a selection of ω values and at fixed times
(t = 1.0 tch and t = 2.0 tch), in comparison with the results obtained

Figure 6. Values of the RS radius at fixed time (t = 1.0 tch with circles and
t = 2.0 tch with diamonds) as function of the ω value, varying in the range
ω = 6, 7, 8, 9, 10, 12, 14. Our results are shown in pink colour, while those
from TM99 in orange colour. As reference for the asymptotic case we have
used the model with ω = 50, in correspondence to which we have plotted the
asymptotic case as from TM99. The dashed lines must not be considered as
fits of the data, but simply represent a graphical connection of points to help
visualizing their trend.

using the TM99 formulae. Again, it is evident that the TM99 solutions
are not converging to the asymptotic value ω = ∞. On the contrary,
they appear to diverge while increasing ω, meaning that the maximum
radius of the RS becomes larger and larger when increasing the
steepness of the density profile of the ejecta envelope. This does not
appear to be physically motivated, since cases with a very high-ω
should approach that with an infinitely steep envelope. Our solutions
are instead found to converge rather fast to the asymptotic case with
increasing ω, what is true even if looking at different points of the
evolutionary curve of the RS.

To summarize, our solutions show a rather fast monotonic con-
vergence of the RS trajectories to the ω = ∞ one, so that all cases
with ω > 9 do not differ by more than 1 per cent along most of the
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Revisiting the evolution of nonradiative SNRs 3201

trajectory. For this reason, the asymptotic case ω = ∞ can be used
as an excellent approximation to model SNRs with steep density
profiles. On the contrary, we found that the accuracy of the widely
used TM99 approximated expressions for the shocks evolution to be
rather poor in some cases, especially for the RS, when changing the
profile of the ejecta ω.

6 FO R M U L A E FO R T H E FS – C D – R S
T R A J E C TO R I E S

To our understanding, there is no analytical nor semi-analytical
treatment able to provide accurate formulae for the position of the
shocks, as well as for that of the CD, when the conditions of validity
of C82’s solutions no longer hold. For this reason, while achieving
the following results, we do not try to provide a detailed physical
justification of the functional structure of our formulae, but simply
to fit well the numerical results in a smooth way, with some further
constraints that allow us to satisfy the asymptotic limits. We will also
discuss some details of the numerical results, trying to outline the un-
derlying physics, even though in most cases just in a qualitative way.

As in the rest of this paper, we use here the dimensional scaling
introduced in Section 2 (namely radii and times are expressed in
terms of the characteristic quantities Rch and tch). Our formulae will
then form a family, depending on the two ejecta parameters (ω, δ).
On the other hand, as we have seen in Section 3, the C82 solutions,
to which ours must connect, depend essentially just on the parameter
ω, while the value of δ enters only in determining the scaling for
the fraction of mass in the envelope, and then in deriving from it
the value of tcore. While our formula for the RS must match the
C82 solution reasonably well at tcore, our formulae for the CD and
FS will have to match the corresponding C82 solutions at delayed
times, respectively, tcore,CD and tcore,FS, which have been discussed
and evaluated in Section 3.

Our models have the following validity in terms of time: the
RS trajectory is described with high accuracy (see the following
subsection) up to the implosion time (timplo), after which the RS
disappears. The fit presented here for the CD trajectory is only valid
up to timplo: as we will discuss in the appropriate section, at t > timplo

the CD starts to oscillate before reaching an asymptotic trend at very
late times. Finally, the fit for the FS trajectory is valid up to late times
since it is defined taking into account the asymptotic trend.

In the following subsections, we will provide highly accurate
fitting formulae for the RS, CD, and FS. In Appendix B, we
provide some useful tables, giving respectively the summary of our
general formulas (Table B1), and a direct comparison with the TM99
expressions (only valid for δ = 0; Table B2).

6.1 Reverse shock

We have already discussed how the curves describing the evolution
of the RS change their shape with ω in a rather continuous and
monotonic way (see Fig. 4). We have found that the similarity of the
curves, at fixed δ, can be better appreciated when scaling the time
with timplo: some noticeable difference can be observed only at low ω

values, while the curves are almost coincident for ω ≥ 8. At a given
δ value, the main difference between curves with different ω can be
assimilated to a mere difference in the radial scaling. This behaviour,
at least, holds in the latter part of the RS evolution, when its size
is contracting. It can be understood with arguments similar to those
used by Guderley (1942) to derive the self-similar solutions for a
converging shock: one may expect that in the late phases, just before
timplo, the RS implosion proceeds following a power-law evolution

Table 1. Coefficients of the implosion time (timplo)
general expression.

Function Coefficient

t∞i a∞
t = 2.399

bt = 0.4813
ct = 0.1760

timplo at (δ) = 0.1006 + 0.04184 δ

bt (δ) = 0.06494 + 0.09363 δ

ct (δ) = 0.7063 − 0.09444 δ

∝(t − timplo)β , where β is a function of only the central density profile
(described by the parameter δ). From our numerical data, we have
extracted the following expression:

βi(δ) = 0.6824 + 0.07720 δ + 0.02456 δ2 , (32)

that fits the data, in the range 0 ≤ δ ≤ 1. We have verified that β i(0)
= 0.6824 is a very good approximation (with 1 per cent precision)
of the exact value derived from the self-similar analysis (namely
0.68838).

On the other side, all the details of the former RS evolution
concur in determining the time of implosion and the strength of
the imploding RS. As for the value of timplo(ω, δ), we have derived
the following analytical approximation:

timplo(ω, δ) = t∞
implo(δ)

+

√(
at (δ)
ω − 5

)2

+
(−bt (δ) + ct (δ)/(ω − 5)

1 + (ω − 5)2

)2

,

(33)

where the first term

t∞
implo(δ) = a∞

t + b∞
t δ + c∞

t δ2, (34)

gives the approximated implosion time (for each δ) in the asymptotic
ω limit, with an accuracy always better than 0.4 per cent for ω ≥
14, for all δ. It can be noticed that t∞

implo increases with increasing
δ, a reasonable behaviour having in mind that larger δ means higher
densities near the core centre, and therefore a more pronounced
slowing down of the converging shock. At a fixed δ, timplo always
increases with decreasing ω. The reason for this behaviour is that
in not so steep density profiles of the envelope, the RS must travel
across more mass before reaching the core; an effect that is already
apparent in the functional dependence of tcore. The values for the fit
parameters are reported in Table 1. The radial scaling for the RS,
instead, shows a non-monotonic behaviour with ω: at large ω values
this scaling slightly decreases with decreasing ω; while at ω ! 9 the
radial scaling increases again.

For the approximating formula, we have then chosen to separate
the time dependence from that on ω, namely:

RRS(x, δ, ω) = R(x, δ) × F (ω, δ) , (35)

where

x = t/timplo and tcore < t ≤ timplo. (36)

The function R(x, δ) represents a sort of universal shape of the RS
trajectory in the asymptotic regime (ω → ∞), valid for all the δ in
the considered range, and it is well approximated by

R(x, δ) = x1+εRS(δ)(1 − x)βi(δ)

aRS(δ) + bRS(δ)x + cRS(δ)x2
, (37)
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3202 R. Bandiera et al.

Table 2. Coefficients for RS global function.

Function Coefficient

R εRS(δ) = 0.5548 + 0.03673 δ

aRS(δ) = 0.01964 − 0.01092 δ

bRS(δ) = 0.5095 − 0.09787 δ + 0.01412 δ2

cRS(δ) = 0.1871 + 0.1663 δ

F aF (δ) = 0.02171 + 0.03051 δ

bF (δ) = 1.389 − 0.3606 δ

-0(δ) = 0.3338 + 0.2884 δ

Figure 7. Contour map of the precision of the RS fit in the log10(ω − 5) –
−δ plane.

where β i(δ) is given by equation (32). The second term F (ω, δ) is a
re-scaling from the asymptotic curve to each ω value and for all the
δ, with the form:

F (ω, δ) = 1 + aF (δ) [-/-0(δ) − 1]
1 + [-/-0(δ)]−2bF (δ)

, (38)

where for writing simplicity we called:

- = 1/(ω − 5). (39)

All the parameters are given in Table 2.
The combination of the two functions R(x, δ) and F (ω, δ), allows

for having a smooth and continuous description of the RS curves in
the given ranges of ω and δ. Anyway we notice that the function
R(x, δ) alone represents by itself a very good approximation for the
RS curves for all the ω " 8, with an accuracy always better than
0.5 per cent.

In Fig. 7, we show the distribution of the errors introduced by
our approximation to the RS evolution for each one of the cases
we have investigated numerically. Errors are shown as contours in
the (log10(ω − 5), δ) plane. To summarize, we have then found a
very good representation of the data, with our formulae being able to
approximate all of our numerical profiles for the RS, in the parameters
region ω = {6, 50} and δ = {0, 1}, with RMS errors always of the
order of a few 10−3. We notice ω = 8 to be the worst case in general
(having a precision still better than 0.5 per cent for all δ). This is not
surprising, since it represents a transition point between the low-ω
and high-ω regimes. Finally, we note that deviations at lower ω values
from the shape given by equation (37) are more relevant only close to
tcore, while the behaviour near timplo stays always almost unaffected.

Figure 8. Long term evolution of the CD (for the ω = ∞ case) and
comparison with the asymptotic trend, which signs the beginning of the
Sedov phase.

6.2 Contact discontinuity

The evolution of the CD, after tcore,CD, shows a rather high level of
complexity, characterized by oscillations with a damped amplitude.
The CD asymptotic evolution follows that of the FS: according to
the Sedov solution, RFS(t) ∝ t2/5, while the pressure at the FS is
∼ρ0RFS(t)2/t2 ∝ t−6/5, and the pressure in the internal layers scales
as t−6/5 as well. Since the medium inside the CD expands in an
adiabatic way, asymptotically its pressure scales as R−5

CD, so that RCD

∝ t6/25. The above argument assumes an asymptotic pressure balance
in the region surrounded by the CD, and we have verified that in
the asymptotic regime it works rather well also quantitatively. We
did so by deriving – from extended-time numerical simulations –
an asymptotic value for the product of the internal energy inside
the CD times R2

CD, and then assuming a homogeneous bubble, the
asymptotic numerical evolution is well approximated. Unfortunately,
this asymptotic regime is reached only at very late times, beyond
30–40 tch (see Fig. 8). It is apparent that assuming the Sedov
solution at times / 30 tch is a strong enforcement, leading to an
oversimplification of the problem and perhaps to a very different
evolution of the system.

Before then, the radius of the CD experiences a number of
prominent quasi-periodic oscillations, with a period increasing with
time. The reason of these oscillations can be qualitatively explained
as the effect of reflected shock waves that bounce back and forth,
both from the FS and from the RS; the period increase is likely
associated with an increase of the sound crossing time. The rather
large elongation of these oscillations, in turn, can be justified by the
fact that the density of the layers immediately surrounding the CD
is very low, and therefore in these conditions of low inertia even
moderate pressure unbalances may cause rather large displacements.
Of course, such oscillations are also a numerical consequence of
having assumed in our models a spherical symmetry; while in a real
case this complex evolution is more likely to show a 3D rather chaotic
behaviour (Dwarkadas 2000).

For the above reasons, in the following we will present accurate
analytical approximations of the CD size evolution, but only valid
at rather early times, namely not extending beyond timplo. A fit that
includes the oscillatory phase is beyond our scope, and probably also
of little use.

Even with this limitation, an accurate modelling of RCD(t), valid
over a wide range of ω and δ, is necessarily complex. Among the
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Revisiting the evolution of nonradiative SNRs 3203

Table 3. Coefficients for CD fitting function.

Function Coefficient

aCD(ω, δ) a0,1 = −0.1597 , a1,1 = 0.1859

ã(ω) A0 = 1.141 , B0 = 1.806 , C0 = 7.636

bCD(ω, δ) b0,0 = −1.051, b0,1 = −0.1961
b1,0 = 1.290 , b1,1 = 0.2375

cCD(ω, δ) c0,0 = −5.561 , c0,1 = −0.6741
c1,0 = 1.265 , c1,1 = −0.07309
c2,0 = −4.826 , c2,1 = −0.6504

various choices that we have tested, we have finally selected this
one:

RCD(t) # aCD(ω, δ)t (ω−3)/ω

1 + bCD(ω, δ)t cCD(ω,δ)
, (40)

where in the numerator we have kept the time dependence as in the
C82 models. The denominator, close to 1 as early times, is intended
to rule how much the solution, beyond tcore,CD, detaches from the
extrapolation of the early self-similar evolution. In principle, also
the coefficient aCD(ω, δ) could be derived from the C82 models
but, since we have fitted these approximated formulae only to the
numerical data beyond tcore,CD, we have found slightly better fits not
constraining this parameter. The chosen functional dependences are

aCD(ω, δ) = a0,1δ + (1 + a1,1δ) ã(ω) , (41)

bCD(ω, δ) = b0,0 + b0,1δ + (b1,0 + b1,1δ) ã(ω) , (42)

cCD(ω, δ) = c0,0 + c0,1δ + (c1,0 + c1,1δ) ω

c2,0 + c2,1δ + ω
, (43)

where

ã(ω) = A0 + B0 ω

C0 + ω
, (44)

and all the best-fitting parameters (15, all together), are listed in
Table 3.

The accuracy of this approximation oscillates from 0.4 to
0.8 per cent, for ω values above 7; while it behaves not so well
– in comparison – for ω in the range from 6 to 7, where the accuracy
downgrades to a few per cent (with the worst case being ω = 6 and
δ = 1, for which we get a maximum error of 7 per cent).

6.3 Forward shock

The case of the FS is slightly simpler than that of the CD for a few
reasons:

(i) the self-similar (C82) regime ends at a later time with respect
to that of the CD;

(ii) the analytical asymptotic solution (Sedov solution) is known,
and it is equal to RFS(t) = ξ 0t2/5, with ξ 0 # 1.15169 for ' = 5/3;

(iii) the dependence on the density structure of the inner ejecta,
namely on the parameters δ and ω, is expected to be weaker (see
Fig. 4);

(iv) finally, most of the swept-up mass is packed closer to the FS,
and the inertia of those layers is higher than near to the CD, so that
one does not expect the strong oscillations reported in the previous
subsection.

In this section, we present a reasonably simple, but none the less
accurate, analytical approximating function for the FS trajectory.
We search in particular for the most appropriate way to join the

asymptotic regime, in order to ensure the Sedov solution to be reached
at late times. Using as benchmark an extended-time simulation (in
the specific case with an δ = 0, ω = ∞, and tmax = 14.4 tch), we have
found that the approximated function:

RFS(t) = ξ0 (t + 1.94)2/5

1 + 0.672/t + 0.00373/t2
(45)

where we recall that both the time and radii are expressed in
characteristic units. Even if there is a partial degeneracy among the
best-fitting parameters, the offset in time in the formula above, not
only allows for a better accuracy, but can also be understood as the
sign that the long-term effect of the earlier evolution, characterized
by an expansion index (ω − 3)/ω, higher than 2/5, is an effective
expansion time larger than the actual age.

The above formula allows to reproduce the FS trajectories for all ω
and δ values, with an accuracy always better than 2.5 per cent. Most
of this error is actually accumulated close to tcore,FS, while it reduces
to a ! 1 per cent around tch, remaining of such order up to timplo. We
have also performed specific fits for all of our choices of the δ and
ω parameters, obtaining negligible differences in the parameters for
each case.

7 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have presented a detailed model for the evolution
and structure of non-radiative SNRs, in the 1D spherically symmetric
case. Understanding this evolution, even in the considered simplified
scheme, has been shown to be fundamental when modelling the
complex dynamics of the interaction between the SNR and its host
PWN (Bandiera et al. 2020). This interaction is very complex and
a correct modelling, with high accuracy, of the SNR RS is partic-
ularly relevant. During their coupled evolution, the SNR and PWN
start to interact directly during the so-called reverberation phase,
beginning when the RS, in its receding motion, encounters the PWN
bubble. Depending on the properties of the SNR at the beginning
of reverberation and on the energetics of the PWN, the outcome
of this interaction may substantially change the PWN structure.
The amount of compression the PWN will experience during this
phase may determine all subsequent evolution, and generate local-
in-time effects such as superefficiency (Torres & Lin 2018). Since it
might produce important variations on the observational properties
of the PWN, the reverberation phase is fundamental, and needs
to be understood and correctly modelled. We recently started to
investigate in detail the properties of the reverberation phase (see
Bandiera et al. 2020), and our research program in this direction
continues. A deeper understanding of reverberation will especially
affect the interpretation of aged systems – that will become more
and more numerous in the near future, thanks to the forthcoming
new gamma-ray facilities (as the Cherenkov Telescope Array). We
found that even small variations of the position and velocity of the
RS at the onset of reverberation may produce large variations in
the final compression factor of the PWN (i.e. the ratio between
the maximum and minimum radii the nebula experience during
its evolution). This is already quite clear even by assuming the
TM99 solutions on their own, and changing ω only, as fig. 2 of
Bandiera et al. (2020) shows. The effect is especially notable in
the models presented in that paper, where we have considered the
parameters of two sort of limit pulsars: a very energetic (the Crab)
and a lower energetic (J1834.9−0846) ones. We found that, in the
former case, different ω values lead to noticeable variations in the
compression factor (from 3.5 to 11.4 in the range 0 ≤ ω ≤ 12).
This effect is less evident for the lower energetic pulsar (even if the
compression factor changes from 980 to ∼1400) but the time at which

MNRAS 508, 3194–3207 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/3/3194/6369356 by B
iblioteca di S

cienze, U
niversità degli studi di F

irenze user on 03 N
ovem

ber 2022



3204 R. Bandiera et al.

the maximum compression happens is still remarkably different.
We thus felt the need of developing a more accurate description of
the RS structure and evolution, which is what we have presented
here.

Using a Lagrangian numerical code, we have performed a large
sample of numerical simulations and test their reliability comparing
with the initial phase of the system evolution, for which analytical
solutions are known (C82). We have modelled the SNR ejecta
considering a density profile with a radial power-law distribution
both in the core (with index δ) and in the envelope (with index ω)
and repeated the simulations for a large set of different values of both
parameters.

We have focused our investigation to the behaviour of the RS,
but for the sake of completeness we have presented also analytical
approximations for the evolution of the CD and the FS, with the hope
that our results will have a wider range of applications, beyond our
project on the SNR-PWN interaction, started with Bandiera et al.
(2020) and that will continue with a forthcoming paper.

We found that the RS shows a fast monotonic convergence to
the asymptotic case of the flat ejecta envelope (namely ω = ∞,
or ω = 0 in the TM99 notation) effect that is also not seen in the
TM99 model. Moreover, our solutions for the RS evolution differ
effectively from those of TM99, except for the asymptotic one and
the ω = 6 case, for which the difference is rather small. However,
deviations of at least 10 per cent are rather typical for a variety of ω

values and times. Differences closer to the implosion time can easily
reach values close to 100 per cent due to the loss of accuracy of
the analytical formulas of TM99 in this final part of the evolution.
Beyond achieving a formal correction, these changes in the positions
of the shock are indeed relevant: a variation of ∼10 per cent in the
RS position close to the beginning of reverberation may change
completely the outcome of this phase. As already recalled previously,
in Bandiera et al. (2020) we have in fact shown that even the small
variations of the RS profile, which occur by changing the ω value
within the TM99 model, produce a different evolution of the PWN
during the reverberation phase. We will discuss in a forthcoming
paper how this picture changes taking into account our new model,
for which we have shown relevant deviations from the TM99 one.

It is worth mentioning that our model is a simplification of
the more complex 3D evolution of the SNR and its characteristic
curves. A more realistic model would need to consider the results
from 3D magnetohydrodynamic simulations instead of 1D ones.
Unfortunately such models are still not available for very long
evolution or large parameters space; due to their huge computational
cost, mainly models devoted to the description of specific systems
have been produced, specialized to particular parameters of the SNR
and ambient medium (see e.g. Orlando et al. 2019; Stockinger et al.
2020; Tutone et al. 2020; Gabler, Wongwathanarat & Janka 2021
for recent results). We expect that possible asymmetries introduced
during the supernova explosion, as well as strong gradients in the
ISM density, might change dramatically the evolution, since the
spherical symmetry will be completely destroyed. The development
of strong instabilities driven at the boundaries (especially at the CD;
Dwarkadas 2000) can also introduce modifications to the spherical
geometry. On the other hand, we expect our model to be able to
predict the position of the characteristic shocks for all the cases that
would not differ much from the spherical case. As an example,
Ferrand et al. (2010) noticed a correspondence of the positions
of characteristic shocks from their 3D simulations with the TM99
predictions.

We remark that the TM99 evolution of non-radiative supernova
remnants has been used hundreds of time in the last 20 yr, and affect

aspects as varied as dust formation and survival in supernova ejecta
(see e.g. Bianchi & Schneider 2007). In this latter case, the passage
of the RS produces a shift of the size distribution function towards
smaller grains of dust. Thus, a different velocity or position of the
reverse and forward shock has an influence on to which grains, and
of what size, can be formed in supernova remnants (see e.g. fig. 7 of
Kozasa et al. 2009). We thus recommend a re-analysis of this issue
using the solutions provided here.
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Table A1. List of the relevant parameters in our notation, compared with TM99 and/or C82 ones.

Variable/Parameter This Work Value/Range Reference Work

Ambient medium density ρ0 – ρ0 (TM99), q (C82)
Ambient medium profile – uniform s = 0 (TM99, C82)
Ejecta envelope index ω >5 n (TM99, C82)
Ejecta envelope limit case ω → ∞ – n = 0 (TM99)
Envelope density parameter Avω

t – gn (C82)
Ejecta core index δ 0 ≤ δ ≤ 1 0 (TM99, C82)
RS radius RRS – R∗

r (TM99), R1 (C82)
FS radius RFS – R∗

b (TM99), R2 (C82)
CD radius RCD – RC (C82)

APPENDIX A: NOTATION

In this appendix, we list the notation used within this paper and recall
the one used in TM99 and C82, our reference works. For simplicity
and consistency with our previous paper (Bandiera et al. 2020), the
used parameters name do not always coincide with those of TM99
and C82. We hope that the list in Table A1 can be of help when trying
to migrate from one notation to another.

APPENDI X B: TABLE OF THE RS, CD, AND FS
G E N E R A L F O R M U L A S A N D D I R E C T
COMPARI SON WI TH T M 9 9

In Table B1, we show the complete set of formulas for the description
of the RS, CD, and FS evolution and their range of validity in terms
of time and ω values. Our approximations have been obtained in the
range 0 ≤ δ ≤ 1.

In Table B2, we then compare our formulas for the characteristic
curves, specialized to the δ = 0 case, directly with those from the
TM99 paper.
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ã
(ω

)
=

( 1
.1

41
+

1.
80

6
ω

) (
7.

63
6

+
ω

)−
1

b
C

D
=

−
1.

05
1

−
0.

19
61

ã
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