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Pulsars, rapidly rotating neutron stars left behind in supernova 
explosions, have played a critical role in the development of 
many areas of astrophysics. In non-thermal astrophysics, the 

nebula around the Crab pulsar was the first known teraelectronvolt 
source1 and is by far the best-studied site of astrophysical particle 
acceleration outside the Solar System2,3. The relativistic wind from 
pulsars is halted at a termination shock (TS), and beyond this a 
synchrotron-radiation-emitting pulsar wind nebula (PWN) forms, 
apparently dominated by relativistic electron–positron pairs and 
magnetic fields (see ref. 4 for a review). The processes of energy con-
version from the highly magnetized flow in the vicinity of the pul-
sar magnetosphere (at ~106 m) to the particle-dominated one at the 
parsec-scale nebula are a matter of continuing debate and intense 
theoretical study (see, e.g., ref. 5 and references therein).

Ideally, in a steady, spherical flow, the gamma radiation from the 
confined region should reflect the dominant convective character 
of propagation (relativistic magnetohydrodynamic—MHD—flow) 
and the morphology of the nebula (typically elongated/asymmet-
ric relative to the pulsar’s position), whereas beyond it a diffusive 
propagation should dominate. Note however that this paradigm 
breaks when looking at the emission of the highest-energy particles, 
which, especially in evolved objects, have large Larmor radii that 
can be comparable to the system size (more complex MHD simula-
tions and particle transport models are required when looking into 
PWNes in detail6–8.

Figure 1 illustrates the main evolutionary stages of PWNe. During 
stage 1 the PWN is inside the supernova remnant (SNR) and has not 
yet been touched by the reverse shock. Stage 2 starts when the PWN 
is crushed by the reverse shock but the pulsar is still within the SNR: 
due to the declining magnetic field and the different cooling time of 
the emitting electrons, X-ray-dim, gamma-ray-bright ‘relic’ bubbles 
can be observed at this stage. Stage 3 starts when the pulsar leaves 
its parent SNR and high-energy particles escape into the interstellar 
medium (ISM): Geminga and PSR B0656+149 are thought to be in 

this stage. The fringes between stages 2 and 3 are often unclear, and 
there has been considerable discussion of when the term ‘halo’ can 
legitimately be applied. Here we adopt the term to refer to a popula-
tion of particles essentially free from their parent PWN, or at least 
outside the region in which the nebula is energetically dominant.

Understanding the physics of these haloes has implications 
of fundamental importance for a number of open problems in 
high-energy astrophysics. First, haloes can be used to probe the 
evolution of particle acceleration and escape in pulsars and PWNe, 
which are themselves a unique laboratory for relativistic astrophys-
ics. Second, the observation of cooling electrons and positrons trav-
elling freely through the ISM from a well defined source provides a 
unique probe of the propagation of relativistic particles. This trans-
port is regulated by the diffusion coefficient, which for the ISM has 
been estimated to be D(10 GeV) ~ 8 × 1028 cm2 s−1 (refs. 10,11), through 
comparison between spallation data and particle transport models. 
However, this value refers to the average diffusion coefficient in 
the ISM, and local variations should be expected. Observations of 
haloes provide information about these variations around powerful 
electron and positron accelerators. Moreover, these measurements 
have strong implications for the global electron spectrum.

In this Review, we explore the existing experimental constraints 
on pulsar haloes and discuss the theoretical expectations for par-
ticle escape and propagation, finally considering the prospects in 
this area given the powerful new instrumentation on the horizon.

Current experimental results
The observations of our Galaxy in the teraelectronvolt energy 
range with moderate- to large-field-of-view sensitive telescopes 
have revealed a large number of extended regions of gamma rays. 
In particular, the Galactic plane survey performed by the High 
Energy Stereoscopic System (H.E.S.S.) array of Cherenkov tele-
scopes12–14 was a milestone in the study of such multiparsec struc-
tures, unveiling a large population of PWNe, which dominates the 
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teraelectronvolt emission of the Galactic plane15. The presence of 
teraelectronvolt structures much larger than the X-ray ones had 
already been predicted in ref. 16. The large diversity of teraelectron-
volt PWNe discovered by H.E.S.S. and other Imaging Atmospheric 
Cherenkov Telescopes such as VERITAS (Very Energetic Radiation 
Imaging Telescope Array System) and MAGIC (Major Atmospheric 
Gamma Imaging Cherenkov Telescopes) (see, e.g., refs. 17,18) pro-
moted the classification of PWN evolution in several stages, 
according to the physical properties of the region from which ter-
aelectronvolt emission originates during the lifetime of a pulsar. 
This first classification included a free-expansion stage, followed by 
a second phase in which the PWN is interacting with the turbulent 
plasma left behind by the SN explosion (stage 1 in Fig. 1); examples 
of this stage are PWNe such as the Crab Nebula or 3C 58. The next 
stage, also called the relic stage, is one in which a large teraelec-
tronvolt nebula expands beyond the SNR, altering the surrounding 
ISM (stage 2 in Fig. 1). For objects in this stage, teraelectronvolt 

observations with Cherenkov telescopes, combining good energy 
and angular resolution, allowed disentanglement between emission 
properties in different subregions, proving efficient particle cooling 
and diffusive propagation within the nebula19–22.

The advent of large-field-of view instruments such as Milagro23 
and currently the High-Altitude Water Cherenkov Observatory 
(HAWC) and Large High Altitude Air Shower Observatory 
(LHAASO) in the teraelectronvolt range24,25, and the Fermi-LAT 
(Large Area Telescope) satellite in the gigaelectronvolt range26, 
opened a new window to complete the evolutionary picture of 
PWNe, thanks to improved sensitivity to very large gamma-ray 
structures (Fig. 2). The discovery of a large ~5° teraelectronvolt emis-
sion around the ≳100-kyr-old pulsars Geminga and PSR B0656+14 
triggered a new understanding of the electrons injected within the 
pulsar environment. The dimension of the halo (~25 pc for 100 TeV 
electrons) has been interpreted as due to slow escape9 of electrons 
and positrons accelerated at the pulsar wind TS. The most natural 
explanation for the propagation is that charged particles diffuse in 
the turbulent magnetic field of the region. Under this assumption, 
ref. 9 constrained the diffusion coefficient in the region surround-
ing Geminga and PSR B0656+14 to D(100 TeV) ~ 5 × 1027 cm2 s−1, a 
value much lower than the average in the ISM, which poses a prob-
lem for the origin of this increased level of turbulence with respect 
to that inferred, from local cosmic-ray spectra, as the average in the 
Galaxy. Recently, an alternative interpretation to the slow-diffusion 
scenario has been proposed, in which a combination of ballistic plus 
diffusive propagation at the same rate as the average in the ISM is 
used to explain the observed size and teraelectronvolt emission fea-
tures27. The region seen in the teraelectronvolt range is character-
ized by an energy density below that of the ISM, which exhibits an 
outflow of escaping electrons in a region that is not modified by 
the pulsar itself. The proximity of these pulsars (at ~250 pc), com-
bined with the large field of view, makes possible the detection of 
the otherwise very low teraelectronvolt gamma-ray surface bright-
ness (~10−12 TeV cm−2 s deg−2). These electrons diffuse away and 
fill up a large region or halo, providing a unique clean scenario to 
study diffusive propagation in the Galaxy. The transition between 
relic and halo stages is blurred and has motivated different clas-
sification criteria28,29. An example of this transitional stage is the 
very extended source HESS J1825-137 (21 kyr), with an unusually 
large extension of ≳100 pc (refs. 30,31), exceeding the scales antici-
pated by the standard hydrodynamical paradigm of PWN forma-
tion. The energy dependence of the morphology strongly suggests 
advection-dominated transport within the PWN, but the fringes 
of the emission extend to very large distances and may indicate 
the presence of unconfined teraelectronvolt-emitting particles30. 
Similarly, the 11-kyr-old Vela X shows a compact teraelectronvolt 
emission, coincident with a bright X-ray nebula and an extended 
region with a similar spectrum. The extended region also coincides 
with a radio halo32, which might be a sign of particles escaping20,33–35. 
However, the majority of the teraelectronvolt PWNe are consistent 
with a relic scenario. These naturally stem from the observational 
bias towards ~0.2° sources at ~5 kpc distance, for which Cherenkov 
telescope sensitivity is optimal, in terms of size and flux: at shorter 
distances the halo becomes too large to be fully contained in the 
field of view36–38, whereas for distant sources the flux might be too 
faint to be detectable. The good angular resolution permits how-
ever a deeper investigation of the morphology in different energy 
ranges, hinting at transition regions between different propagation 
regimes. Although there are only two firmly identified sources in 
which emission is produced by already escaped electrons, there have 
been reports of other halo candidates39–43 and proposals that this 
could be the dominant mechanism in several known sources44,45. 
Very recently, the LHAASO collaboration has reported the detec-
tion of Geminga46 and is currently studying it and PSR B0656+14 
in detail47.
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Fig. 1 | Evolutionary stages in the life of a PWN. The early confinement of 
particles and the later escape of (at least) the higher-energy relativistic 
particles to form a halo visible in teraelectronvolt gamma rays is illustrated. 
Figure adapted from ref. 28 under Creative Commons license CC bY 4.0.
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The observation of the multiwavelength counterpart of pul-
sar haloes poses severe challenges. The corresponding size and 
expected flux are related to the particles’ cooling regime: in the 
sub-100-GeV and radio energy band a large emission region with 
a very hard spectral index is expected, whereas the highest-energy 
electrons are affected by strong cooling, resulting in compact soft 
X-ray emission (Fig. 2), as in the case of Geminga48,49. Geminga has 
been investigated in the gigaelectronvolt regime by several authors 
using data from the Fermi-LAT. The results are however hampered 
by the expected number of photons in this energy band: on one 
hand, the hard uncooled electron spectrum (~1.8) results in low 
flux levels below a few tens of gigaelectronvolts; on the other hand, 
the overwhelming gamma-ray background diffuse emission that 
dominates the Galactic plane makes it difficult to disentangle the 
low surface brightness of these haloes. Using an energy-dependent, 
model-dependent template, ref. 50 claimed a detection of the 
Geminga halo above 10 GeV . A second analysis in ref. 51, using 
a smaller region of interest, did not confirm such an extended 
gigaelectronvolt emission, using a similar physics-motivated tem-
plate approach (two-zone diffusion spatial templates), although not 
including the proper motion of the pulsar. Observations with instru-
ments such as the Cherenkov Telescope Array (CTA) or Southern 
Wide-field Gamma-ray Observatory (SWGO) in the future should 
provide a clear picture of the evolution in size and spectrum below 
hundreds of gigaelectronvolts.

In the search for haloes, X-ray observations provide different 
diagnostic tools at different scales. On one hand, the excellent angu-
lar resolution of instruments such as X-ray Multi-Mirror Mission 
(XMM)-Newton and Chandra provides precise images of pulsars 
propagating in the ISM, forming a bow-shock, which demonstrates 
particle escape through the observation of bright filaments52–54. 
On the other, a few-degree soft-X-ray halo should emerge, corre-
sponding to the synchrotron emission of electrons powering the 
gamma-ray source. The detection of such diffuse emission requires 
a deep-observation programme involving several pointings. In the 
case of Geminga, ref. 55 examined a 1° region around the pulsar and 

obtained an upper limit on the magnetic field below 1 μG, based 
on X-ray upper limits on the synchrotron emission by the electrons 
responsible for the emission detected by HAWC. The derived mag-
netic field is below the mean one in the ISM, pointing to a perturbed 
medium.

Implications in PWN theory
The experimental results described above have several implica-
tions, regarding not only the acceleration efficiency of particles 
(electrons and positrons) but also their propagation. The maximum 
particle energy derived from the highest photon energy measured 
in Geminga (≈300 TeV) has strong implications in the acceleration 
mechanisms: it appears that particles are accelerated up to a fraction 
close to 1 of the maximum potential drop available in the pulsar 
magnetosphere ΦPSR =

√

Ė/c (ref. 56), with c the speed of light and 
Ė the pulsar spin-down power. The bulk of the particles making 
PWNe bright non-thermal sources are believed to be accelerated 
at the pulsar wind TS. The details of the mechanisms are not clear. 
The three main proposals are shock acceleration (see ref. 57 for a 
review), magnetic reconnection58 and resonant absorption of ion 
cyclotron waves59,60. All of these mechanisms may in principle reach 
the required energies (see, e.g., ref. 61 for a recent review), but not 
easily. In fact, the maximum achievable energy at the TS (ignor-
ing all dissipative effects) is determined by the condition that the 
particle Larmor radius be smaller than the characteristic size of the 
accelerator (‘Hillas criterion’), namely Emax,TS = eRTSBTS, where RTS is 
the TS radius and BTS the local magnetic field strength. Writing the 
magnetic pressure at the TS as a fraction ηB of the ram pressure of 
the wind Ė/(4πR2

TSc), we find BTS = (η1/2B /RTS)
√

Ė/c, from which 
we derive that the maximum achievable energy at the TS (ηB = 1) 
is Emax,TS ≈ eΦPSR; that is, in the absence of losses, the maximum 
energy depends only on the potential drop in the pulsar magneto-
sphere. Note that this constraint does not depend on the accelera-
tion mechanism. Writing the pulsar spin-down luminosity in units 
of 1036 erg s−1, we have Emax ≈ 1.8η1/2B Ė1/236  PeV (with Ė36 in units of 
1036 erg s−1). In particular, for Geminga, with Ė36 = 0.03, electron 
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Fig. 2 | map of the sky region around the HAWC detection of Geminga. background image and ‘Optical’ inset: DSS2 obtained using Aladin sky atlas (ref. 9; 
original source, Palomar Observatory/California Institute of Technology). Very high energy gamma-ray inset: test-statistics map adapted with permission 
from the HAWC observations (ref. 9, AAAS). ‘X-ray and Ir’ inset: X-ray, NASA/CXC/PSU/ref. 49; Ir map, NASA/JPL-Caltech.
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energies of a few hundred teraelectronvolts correspond to maxi-
mally efficient acceleration.

Once these particles have been accelerated, their escape in the 
ISM is again a dive into poorly understood physics. The common 
view of PWNe is that these sources can be well modelled within the 
framework of relativistic MHD (see, e.g., ref. 62 for a review), where 
the propagation of particles inside them is governed by advection. 
This picture is bound to fail at the highest energies, and indeed 
computation of the particle dynamics on top of the electromagnetic 
field structure derived from MHD simulations shows that only in 
a narrow energy range close to Emax,TS does the fraction of particles 
that can escape from a PWN become sizable63. Very interestingly, 
the escaping population is charge separated, with electrons and 
positrons escaping in approximately equal numbers, but along dif-
ferent paths64. In principle, this would create the conditions for the 
development, in the PWN vicinity, of a current large enough to have 
interesting consequences. In fact, one of the proposed explanations 
for the reduced diffusion coefficient constrained by the HAWC 
observations is that this results from an enhanced turbulence level 
produced by the particles escaping the PWN. The well-known reso-
nant streaming instability65 does not seem to be effective enough66. 
The existence of a net current opens the door to the possibility that 
the fast-growing non-resonant streaming instability67 may be at 
work. This requires that the energy density in the current-carrying 
particles is larger than that in the local magnetic field. Such a con-
dition, which it is possible in principle to satisfy64, appears at odds 
with estimates of the energy density in very high-energy electrons 
derived from modelling of the Geminga halo emission28. An alterna-
tive explanation for the reduced diffusion coefficient is that it results 
from a local reduction of the magnetic field coherence length, down 
to parsec values, a factor ≈10−2 of what is commonly adopted for 
MHD turbulence in the Galaxy68. In fact, within quasilinear theory, 
the diffusion coefficient can be written as

D(E) ≈ 2× 1028 cm2 s−1
ξ
−1
B,0.1

(

λpc
ETeV

)α−1
Bα−2

μ (1)

where ξB,0.1 = (δB/B)2 is the ratio between the power of the turbu-
lent and ordered magnetic field normalized to 0.1, λpc is the outer 
scale of the turbulence in units of parsec, Bμ is the large-scale mag-
netic field in units of microgauss and ETeV is the particle energy in 
teraelectronvolts; finally, α is the turbulence spectral index with 
α = 5/3 (3/2) for a Kolmogorov (Kraichnan) phenomenology. It is 
clear then that a reduced diffusivity might result from an increased 
turbulence level (larger ξB) or a smaller coherence length λ of the 
turbulence. Distinguishing between these two scenarios would only 
be feasible by looking at particles of higher energies, with Larmor 
radii comparable to the turbulence coherence length. In that sense, 
observations with LHAASO should provide crucial information in 
the understanding of the diffusive regime. Recently, a new solution 
different from the diffusion-only regime for the propagation of elec-
trons has been proposed. Reference 27 studied the halo morphology 
taking into account that a substantial fraction of the propagation 
of multi-teraelectronvolt electrons could take place in the ballistic 
or ballistic-to-diffusive regimes. The ballistic propagation of these 
electrons in a turbulent magnetic field for distances larger than their 
Larmor radius could make the gamma-ray morphology of Geminga 
compatible with the standard diffusion coefficient derived from 
cosmic-ray measurements.

Haloes and Galactic cosmic rays
The escaping particles diffuse further within the Galaxy, ultimately 
adding up to the sea of Galactic cosmic rays. These cosmic rays 
can be described as a low-density plasma whose propagation is 
governed by the diffusion-loss equation69,70. Local measurements 
of cosmic-ray fluxes and relative abundances provide insights into 
the distribution of sources generating them. What pulsar haloes 
directly probe is the transport of electrons and positrons, but since 
cosmic-ray propagation in the Galaxy is thought to depend on par-
ticle rigidity alone we expect the propagation of hadrons and lep-
tons to be the same for a given rigidity. Irrespective of the cause of 
enhanced scattering in the haloes, these regions can have important 
implications for the galactic transport of both leptonic and hadronic 
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cosmic rays, and even put crucial constraints on the origin of the 
locally measured cosmic-ray fluxes. In this sense, it is important to 
understand how common pulsar haloes are28,71.

Local effects. Electrons and positrons that escape from these 
sources can substantially contribute to the local all-electron (e±) 
spectrum72. This provides information about the propagation of 
these e±, while the e+ fraction (e+ flux divided by e± flux) provides 
the ratio between the flux of secondary positrons, produced in the 
collisions of cosmic rays with the ISM, and that of the dominant 
primary electrons. There is, however, an anomaly known as the 
‘positron excess’ in the e+ fraction, produced by an excess of posi-
trons above the cosmic-ray-induced background73–75 above energies 
of a few gigaelectronvolts that has led to intense speculation on their 
origin. This excess has been postulated to arise from PWNe76,77, 
microquasar jets78 or dark-matter annihilation79. According to the 
most commonly accepted propagation theories within the ISM, 
the highest-energy positrons measured by satellites (~1 TeV) must 
originate from a region within a few kiloparsecs from the Earth 
(rd(E) =

√

2D(E)tcool(E), where D(1 TeV) ≈ 1029–1030 cm−2 s−1, 
depending on the assumed energy dependence of the diffusion coef-
ficient, and tcool(1 TeV) ≈ 300 kyr, also depending on the assumed 
energy losses), limiting the number of possible sources behind this 
phenomenon80.

In Figs. 3 and 4, we can see different estimations from the lit-
erature for the local all-electron and positron spectra; some other 
recent works on local electron/positron spectrum estimations can 
also be found in the literature81–85. The HAWC results on Geminga 
and PSR B0656+149 argued against a substantial contribution to 
the electron and positron spectra at the Earth by these two pulsars, 
assuming a uniform (one-zone) diffusion coefficient from them to 
the Earth. There has since been extensive literature arguing other-
wise85–88, by invoking a two-zone diffusion model to describe the 
propagation of these escaping electrons. In this scenario, the totality 
of the high-energy electrons and positrons measured at the Earth 
can be explained using nearby pulsars.

The recent measurement of the cosmic-ray all-electron spec-
trum up to ~20 TeV (ref. 89), in addition to those by the Dark Matter 
Particle Explorer90 and the Calorimetric Electron Telescope91, indi-
cates that these electrons and positrons must be generated near 
the Earth because of their cooling due to their interaction with 
interstellar magnetic and photon fields. Assuming fast diffusion, 
the origin of these high-energy electrons may be the aforemen-
tioned pulsars, or sources such as SNRs92,93. The key to discerning 
between these two source types is the positron flux, which seems 
to point to a decrease at the highest energies, disfavouring pul-
sars as the origin of the highest-energy electrons94. If, on the other 
hand, we consider a slower diffusion, even an undiscovered pul-
sar in the Local Bubble, the explanation of the local high-energy 
cosmic-ray all-electron spectrum might still be dominated by pul-
sars95. Another observable directly related to the local contribution 
of a particular source type is the dipole anisotropy, which should in 
principle pinpoint the origin of the primary accelerator. The cur-
rent measurements are however still compatible with the different  
scenarios proposed95,96.

It remains an open question whether known pulsars97, SNRs92, 
unknown pulsars95 or dark matter79 are still a viable explanation for 
the local e± flux.

Global effects. The level of magnetic field turbulence with respect 
to the average in the Milky Way is expected to increase in regions 
dominated by an active cosmic-ray accelerator98, but it is difficult to 
find an efficient mechanism that could explain such an increase in 
the turbulence in the case of haloes around pulsars, as discussed in 
Implications in PWN theory. Assuming that the existence of pulsar 
haloes implies a slow diffusion coefficient, there are two scenarios 
in which the existence of pulsar haloes can affect the global propa-
gation of cosmic rays in our Galaxy. First, we assume that this slow 
diffusion is only a signature of regions surrounding sources of this 
type. In this first scenario, if these haloes cover a large fraction of 
the Galaxy, they could substantially slow down Galactic cosmic- 
ray propagation. It is however unlikely that they can impact the 
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overall residence time of hadronic cosmic rays in the Galaxy, which 
is dominated by propagation in the halo68,87. The second scenario is 
the case where the diffusion coefficient derived from the observa-
tion of pulsar haloes is a more accurate representation of the average 
in the Galaxy. This may have profound implications, such as a much 
larger accumulated grammage by cosmic-ray nuclei (see, e.g., ref. 99 
for a discussion of these effects around SNRs), which is in any case 
mostly determined by propagation in the disk, difficult to reconcile 
with the results obtained with cosmic-ray propagation codes such 
as GALPROP100, DRAGON2101, PICARD102 or USINE103. This con-
straint must be carefully taken into account by ‘Swiss-cheese’-like 
models of diffusion in the Galactic disk88.

Conclusions and prospects
The ‘pulsar–pulsar wind–pulsar wind nebula’ concept is a success-
ful paradigm explaining the link between two major galactic source 
populations: pulsars (compact relativistic objects) and PWNe (dif-
fuse non-thermal structures filled by magnetic fields and relativistic 
electrons). The link is realized through the ultrarelativistic (most 
likely, cold) electron–positron wind with bulk motion Lorentz 
factor γ ~ 105–106. The typical magnetic field of almost all PWNe 
is rather modest—about 10 μG or even less (the Crab nebula is 
an atypical PWN; its average field of 200–300 μG is a rare excep-
tion—note also that magnetic fields higher than 10 μG have been 
inferred from modelling efforts; see, e.g., ref. 104), but the general 
trend of low magnetic field holds. The favourable combination of 
the low magnetic field and injection of ultrarelativistic electrons at 
a rate comparable to the pulsar’s spin-down luminosity allows elec-
trons to travel tens of parsecs from their acceleration sites and form 
large-scale gamma-ray structures, which can be detected by the cur-
rent ground-based instruments. In halo-type emission, we expect 
spherically symmetric morphology of gamma rays with radial dis-
tribution of electrons close to 1/r taking into account the continuous 
injection of electrons with a constant rate over ≥104 yr. However, at 
the highest energies, the radiative losses become an essential factor, 
and we should see an energy cutoff toward the outskirts of the halo. 
The model-independent information about the spatial and spectral 
distribution of electrons provides a unique tool for the extraction 
of the diffusion coefficient characterizing the propagation of cos-
mic rays in the Galactic disk. The multi-hundred-teraelectronvolt 
electrons in the interstellar magnetic fields produce X-ray syn-
chrotron extended sources. The detection of these objects with 
angular extensions of ≥1° is challenging but feasible, for bright 
gamma-ray haloes, by eROSITA, or planned experiments such as 
AMEGO (All-sky Medium Energy Gamma-ray Observatory) and 
AdEPT (The Advanced Energetic Pair Telescope)105. Thus, the com-
bined X-ray and multi-teraelectronvolt observations could provide 
exact independent measurements of the interstellar magnetic field 
throughout the Galactic disk on ≤100 pc scales. Several authors29,45,71 
have computed prospects for the number of haloes that could be 
detected by current and future facilities, using different assump-
tions. This number ranges from a few, as currently detected, up to 
hundreds of haloes, under the most optimistic assumptions. It is 
expected that the next-generation detectors, in particular CTA and 
SWGO, together with the partly completed LHAASO, will mark-
edly increase the number of identified pulsar haloes. Likewise, the 
continuous increment of the already vast Fermi-LAT dataset will 
increase the sensitivity to low-surface-brightness sources, not only 
unveiling more Geminga-like objects but also characterizing the 
spectrum in the sub-100-GeV energy range106.

It would not be an exaggeration to argue that the very task of 
exploration of these standard candles, containing direct informa-
tion about the energy budget of pulsars in the relativistic electrons, 
as well as about the cosmic-ray diffusion coefficient and the mag-
netic field strength in the ISM, would alone justify these ambitious 
ground-based projects.
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