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7 Institut de Ciències del Cosmos, University of Barcelona, ICCUB, Barcelona 08028, Spain
8 Institucio Catalana de Recerca i Estudis Avancats, Passeig Lluis Companys 23, Barcelona 08010, Spain

9 Institut d’Astrophysique de Paris, UMR 7095, CNRS, 98 bis boulevard Arago, F-75014 Paris, France
10 Institut Lagrange de Paris, Sorbonne Universites, 98 bis Boulevard Arago, 75014 Paris, France

11 SISSA, Via Bonomea 265, 34136 Trieste, Italy
12 INFN - Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via Bonomea 265, 34136 Trieste, Italy

13 INAF - Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34143 Trieste, Italy
14 IFPU - Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy and

15 Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Draft version September 21, 2021

ABSTRACT

We quantify the information content of the non-linear matter power spectrum, the halo mass
function, and the void size function, using the Quijote N -body simulations. We find that these
three statistics exhibit very different degeneracies amongst the cosmological parameters, and thus
the combination of all three probes enables the breaking of degeneracies, in turn yielding remarkably
tight constraints. We perform a Fisher analysis using the full covariance matrix, including all auto-
and cross-correlations, finding that this increases the information content for neutrino mass compared
to a correlation-free analysis. The multiplicative improvement of the constraints on the cosmological
parameters obtained by combining all three probes compared to using the power spectrum alone
are: 137, 5, 8, 20, 10, and 43, for Ωm, Ωb, h, ns, σ8, and Mν , respectively. The marginalized error
on the sum of the neutrino masses is σ(Mν) = 0.018 eV for a cosmological volume of 1 (h−1Gpc)3,
using kmax = 0.5hMpc−1, and without CMB priors. We note that this error is an underestimate
insomuch as we do not consider super-sample covariance, baryonic effects, and realistic survey
noises and systematics. On the other hand, it is an overestimate insomuch as our cuts and binning
are suboptimal due to restrictions imposed by the simulation resolution. Given upcoming galaxy
surveys will observe volumes spanning ∼ 100 (h−1Gpc)3, this presents a promising new avenue to
measure neutrino mass without being restricted by the need for accurate knowledge of the optical
depth, which is required for CMB-based measurements. Furthermore, the improved constraints on
other cosmological parameters, notably Ωm, may also be competitive with CMB-based measurements.

Keywords: neutrinos, cosmological parameters, large-scale structure of Universe, methods: numerical

1. INTRODUCTION

High-precision measurements of large-scale structure
from upcoming cosmological surveys, such as DESI1, Eu-
clid2, PFS3, Roman Space Telescope4, Vera Rubin Ob-
servatory5, SKA6, and SPHEREx7, are expected to rev-
olutionize our understanding of fundamental physics, for
example, by measuring neutrino mass. To fully realize
the potential of these surveys, an urgent task is to de-
termine the key observables that can maximize the sci-
entific return. For Gaussian density fields, the answer

* abayer@berkeley.edu
† fvillaescusa@flatironinstitute.org

1 https://www.desi.lbl.gov
2 https://www.euclid-ec.org
3 https://pfs.ipmu.jp/index.html
4 https://wfirst.gsfc.nasa.gov/index.html
5 https://www.lsst.org
6 https://www.skatelescope.org
7 https://www.jpl.nasa.gov/missions/spherex

is well known: the power spectrum, or equivalently, the
correlation function, is the statistic that completely char-
acterizes the field. Therefore, on large scales and at high
redshift, where the density fluctuation in the Universe
resembles a Gaussian field, the power spectrum encapsu-
lates all the information.

However, at low redshift and on small scales, non-
linear gravitational evolution moves information from the
power spectrum into higher-order moments. It is cur-
rently ill-understood which observable(s) will allow re-
trieval of the maximum information in the non-linear
regime. For instance, it has been shown that for non-
Gaussian fields, all clustering information may not be
embedded in the infinite N-point statistics (Carron 2011,
2012). Since the number of modes increases rapidly by
going to small scales, it is expected that the amount
of information will also increase by considering observ-
ables in the mildly to fully non-linear regime. While
the amount of information, at least for some parameters,
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may saturate in the power spectrum (Rimes & Hamil-
ton 2005; Villaescusa-Navarro et al. 2020b) (see however
Blot et al. 2016), many authors have shown that other
statistics contain complementary information (see, e.g.
Takada & Jain 2004; Sefusatti et al. 2006; Bergé et al.
2010; Kayo et al. 2013; Schaan et al. 2014; Liu et al.
2015a,b; Kacprzak et al. 2016; Shan et al. 2018; Mar-
tinet et al. 2018; Hahn et al. 2020; Hahn & Villaescusa-
Navarro 2020; Dai et al. 2020; Uhlemann et al. 2020;
Allys et al. 2020; Gualdi et al. 2020; Harnois-Déraps et al.
2020; Banerjee & Abel 2021; Massara et al. 2021).

In this paper we quantify the information embedded
in the non-linear matter power spectrum, the halo mass
function (HMF), and the void size function (VSF). We
apply the Fisher formalism using a subset of the Quijote
simulations (Villaescusa-Navarro et al. 2020b), compris-
ing of 23,000 N -body simulations for 16 different cos-
mologies spanning six cosmological parameters: Ωm, Ωb,
h, ns, σ8, and Mν . We study the information that these
probes contain individually and when combined together,
showing how the combination of these three statistics
breaks degeneracies amongst the cosmological parame-
ters, in turn setting very tight constraints. We consider
the effects of both the auto-correlation for each probe and
the cross-correlation between different probes when com-
puting the total information content. A simpler, theoret-
ical, treatment combining cluster and void abundances
has been studied by Sahlén (2019).

Of particular interest in this work are constraints on
the sum of the neutrino masses Mν ≡

∑
νmν . The first

evidence for neutrino mass came from oscillation exper-
iments (Fukuda et al. 1998; Ahmad et al. 2002; Araki
et al. 2005; Ahn et al. 2006; An et al. 2012), which mea-
sured the difference in the squares of the masses of the
three neutrino mass eigenstates. The best-fit results ob-
tained from a joint analysis of oscillation experiments are
∆m2

21 ≡ m2
2 −m2

1 ' 7.55 × 10−5eV2 from solar neutri-
nos, and |∆m2

31| ≡ |m2
3 − m2

1| ' 2.50 × 10−3eV2 from
atmospheric neutrinos (de Salas et al. 2018). Since at-
mospheric neutrino experiments only probe the magni-
tude of the mass difference, there are two possibilities for
the neutrino mass hierarchy: ∆m2

31 > 0, known as the
normal hierarchy, or ∆m2

31 < 0, known as the inverted
hierarchy. This gives a lower bound on the sum of the
neutrino masses of Mν & 0.06eV for the normal hier-
archy, or Mν & 0.1eV for the inverted hierarchy. The
current tightest upper bound on the effective electron
neutrino mass from particle experiments is obtained by
the KATRIN β-decay experiment, meff

νe . 1.1eV (Aker

et al. 2019) 8.
Neutrinos also play an important role in the Universe’s

history, as the presence of massive neutrinos both shifts
the time of matter-radiation equality and suppresses the
growth of structure on small scales. Measuring these ef-
fects enables determination of neutrino mass via cosmol-
ogy, providing a complementary probe to particle physics
(Doroshkevich et al. 1981; Hu et al. 1998; Eisenstein &
Hu 1999; Lesgourgues et al. 2013). While the effects of

8 Single β-decay experiments do not directly measure the neu-
trino mass sum, but rather the effective mass of electron neutrinos.
In the quasi-degenerate regime where the eigenmasses mi > 0.2 eV
(i = 1, 2, 3), the three eigenmasses are the same to better than 3%,
and hence meff

νe
≈ 1/3Mν .

neutrinos on linear (i.e. relatively large) scales are well
understood theoretically, understanding the effects on
non-linear (i.e. relatively small) scales is an active field
of research. There are numerous approaches to obtain
theoretical predictions of the non-linear effects of neu-
trinos, with varying computational efficiency (see, e.g.
Saito et al. 2008; Brandbyge & Hannestad 2009, 2010;
Shoji & Komatsu 2010; Viel et al. 2010; Ali-Häımoud
& Bird 2012; Bird et al. 2012, 2018; Costanzi et al.
2013; Villaescusa-Navarro et al. 2014, 2018; Castorina
et al. 2014, 2015; Banerjee & Dalal 2016; Archidiacono
& Hannestad 2016; Carbone et al. 2016; Upadhye et al.
2016; Adamek et al. 2017; Emberson et al. 2017; Inman
& Pen 2017; Senatore & Zaldarriaga 2017; Yu et al. 2017;
Banerjee et al. 2018; Liu et al. 2018; Dakin et al. 2019;
Chen et al. 2020b,a; Bayer et al. 2021).

The current best constraints on Mν arise by consider-
ing the cosmic microwave background (CMB) and com-
bining it with other cosmological probes. Assuming a Λ
cold dark matter (ΛCDM) cosmological model, the upper
bound on the neutrino mass from the Planck 2018 CMB
temperature and polarization data is Mν < 0.26eV (95%
CL) (Collaboration et al. 2018). When combined with
baryonic acoustic oscillations (BAOs) a more stringent
bound of Mν < 0.13eV (95% CL) is obtained. Further
combining with CMB lensing gives Mν < 0.12eV (95%
CL).

A major limiting factor of current cosmological con-
straints is that CMB experiments measure the combined
quantity Ase

−2τ , where As is the amplitude of scalar
perturbations and τ is the optical depth of reioniza-
tion. Hence, accurate determination of τ is imperative to
obtaining tight constraints when combining CMB with
clustering/lensing (Allison et al. 2015; Liu et al. 2016;
Archidiacono et al. 2017; Yu et al. 2018; Brinckmann
et al. 2019). Most upcoming ground-based CMB exper-
iments, such as Simons Observatory and CMB-S4, will
not observe scales larger than ` ∼ 30, and will there-
fore be unable to directly constrain τ (Abazajian et al.
2016). Planck currently provides the best constraint of
τ = 0.054 ± 0.007, with large improvements expected
from the ongoing CLASS experiment (Watts et al. 2018)
and the upcoming LiteBIRD (Hazumi et al. 2012) space
mission. Furthermore, future radio 21cm and, e.g., near-
infrared/optical galaxy observations will provide new in-
formation on the optical depth which would also help
improve the constraints form the CMB (Liu et al. 2016;
Brinckmann et al. 2019).

Before significant progress will be made in measuring τ ,
improved measurements of Mν are expected from galaxy
surveys such as DESI, LSST, and Euclid. These surveys
will measure fluctuations on non-linear scales with un-
precedented precision. There is thus much motivation to
explore other probes of neutrino mass, beyond the tradi-
tional 2-point clustering. By adding probes such as the
halo and void abundances, we demonstrate that it is pos-
sible to break the strong degeneracy between Mν and σ8

usually seen in 2-point clustering constraints (see, e.g.
Villaescusa-Navarro et al. 2018). In turn, this gives tight
constraints on neutrino mass, and in fact all cosmological
parameters, potentially without the need for including
CMB priors. In addition to improved constraints, hav-
ing multiple independent probes of neutrino masses will
allow for more robust controls of systematics.
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The paper is organized as follows. We first review the
Quijote simulations in Section 2. The Fisher formalism
used to quantify the information content on the different
observables is described in Section 3. We explain how the
matter power spectrum, halo mass function, and void
size function are obtained in Section 4. We show the
results of our analysis in Section 5. Finally, we conclude
in Section 6.

2. SIMULATIONS

We quantify the information content of different cos-
mological observables using the Fisher matrix formalism.
We model the observables using the Quijote simulations
(Villaescusa-Navarro et al. 2020b), a set of 23,000 N -
body simulations that at a given redshift contain about
8 trillion (8×1012) particles over a total combined volume
of 44,100 (h−1Gpc)3. Each simulation considers a box of
size 1 (h−1Gpc)3. The simulation subset used in this
work spans a total of 16 different cosmological models
that have been designed to evaluate the two ingredients
required to compute the Fisher matrix: (1) the covari-
ance matrix of the observables and (2) the derivatives
of the observables with respect to the cosmological pa-
rameters. Despite their larger computational cost than
analytic approaches (e.g. perturbation theory or the halo
model), numerical simulations are more accurate into the
fully non-linear regime and rely on fewer assumptions
and approximations.

We consider six cosmological parameters: Ωm, Ωb, h,
ns, σ8, and Mν . The set of cosmological parameters is
shown in Table 1. To evaluate the covariance matrix,
we use the 15,000 simulations of the fiducial cosmology.
We compute the derivatives by considering simulations
where only one cosmological parameter is varied, with
all others fixed. We use 1,000 simulations (500 pairs)
for each derivative, with the exception of neutrino mass,
where we use 1,500 (see below).

The initial conditions (ICs) were generated in all cases
at z = 127 using second-order Lagrangian perturbation
theory (2LPT) for simulations with massless neutrinos,
by rescaling the z = 0 matter power spectrum using the
scale-independent growth factor from linear theory. Be-
cause the 2LPT formalism has not yet been developed
to account for massive neutrinos, the ICs for massive
neutrino cosmologies adopt the Zel’dovich approximation
with scale-dependent growth factors and rates, following
Zennaro et al. (2017). For this reason there is also a
‘Fiducial (ZA)’ class of simulations, which is identical to
the fiducial simulations but with Zel’dovich ICs to match
the Mν simulations (see Villaescusa-Navarro et al. 2020b,
for further details); this enables accurate computation of
derivatives with respect to Mν . Note that in the full Qui-
jote simulations there are two sets of Ωb cosmologies; we
use the Ω++

b and Ω−−
b set too obtain smoother deriva-

tives.
All simulations follow the evolution of 5123 dark mat-

ter particles down to z = 0. The simulations with
massive neutrinos also contain 5123 neutrino particles.
The gravitational force tree for neutrinos is turned on at
z = 9. The gravitational softening for both dark matter
and neutrinos is 50 h−1kpc (1/40 of the mean interpar-
ticle distance). In this work, we consider redshift z = 0
only.

3. FISHER INFORMATION

We use the Fisher matrix formalism (Tegmark et al.
1997; Heavens et al. 2007; Heavens 2009; Verde 2010)
to calculate the information embedded in the non-linear
matter power spectrum, the halo mass function and the
void size function, individually and when combined. The
Fisher matrix is defined as

Fij = −
〈
∂2 logL
∂θi∂θj

〉
, (1)

where L is the likelihood and ~θ is the vector representing
the parameters of the model (Fisher 1925). Under the
assumption that the region around the maximum of the
likelihood can be approximated as a multivariate normal
distribution, one can write the Fisher matrix as

Fij =
1

2

[
∂ ~O

∂θi
C−1 ∂

~OT

∂θj
+
∂ ~O

∂θj
C−1 ∂

~OT

∂θi

]

+
1

2
Tr

[
C−1 ∂C

∂θi
C−1 ∂C

∂θj

]
, (2)

where ~O is the vector with the values of the observables
and C is the covariance matrix. In order to avoid un-
derestimating the errors, we follow Carron (2013) and
neglect the dependence of the covariance on the cosmo-
logical parameters, by setting the last term of Eq. 2 to
zero. This is necessary when assuming a Gaussian like-
lihood. Note that we use Greek (Latin) characters to
index observables (parameters).

In this work, the observables and parameters are given
by

~O = {Pm(k1), ..., Pm(kA),H(M1), ...,H(MB),

.......................................V(R1), ...,V(RD)},
~θ = {Ωm,Ωb, h, ns, σ8,Mν}

respectively, where Pm(k) is the matter power spectrum
at wavenumber k, H(M) is the halo mass function at
mass M , and V(R) is the void size function at radius R.
Note there are a total of A, B, and D bins for the matter
power spectrum, the halo mass function, and the void
size function respectively, giving a total dimensionality
of A+B +D.

We quantify the information content by considering the
marginalized error on the cosmological parameters,

σ(θi) ≡
√

(F−1)ii , (3)

which is a lower bound.

3.1. Covariance matrix

We estimate the covariance matrix using the Ncov =
15,000 simulations of the fiducial cosmology as

Cαβ = 〈(Oα − 〈Oα〉) (Oβ − 〈Oβ〉)〉 , (4)

where 〈〉 denotes the mean over simulations. This is the
largest number of simulations used for covariance estima-
tion to date. We have verified that our combined results
are converged even with half of the simulations. We show
the results of our convergence tests in Appendix A.
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Quijote Simulations

Name Ωm Ωb h ns σ8 Mν(eV) ICs Realizations

Fiducial 0.3175 0.049 0.6711 0.9624 0.834 0.0 2LPT 15,000

Fiducial ZA 0.3175 0.049 0.6711 0.9624 0.834 0.0 Zel’dovich 500

Ω+
m 0.3275 0.049 0.6711 0.9624 0.834 0.0 2LPT 500

Ω−m 0.3075 0.049 0.6711 0.9624 0.834 0.0 2LPT 500

Ω++
b 0.3175 0.051 0.6711 0.9624 0.834 0.0 2LPT 500

Ω−−b 0.3175 0.047 0.6711 0.9624 0.834 0.0 2LPT 500

h+ 0.3175 0.049 0.6911 0.9624 0.834 0.0 2LPT 500

h− 0.3175 0.049 0.6511 0.9624 0.834 0.0 2LPT 500

n+
s 0.3175 0.049 0.6711 0.9824 0.834 0.0 2LPT 500

n−s 0.3175 0.049 0.6711 0.9424 0.834 0.0 2LPT 500

σ+
8 0.3175 0.049 0.6711 0.9624 0.849 0.0 2LPT 500

σ−8 0.3175 0.049 0.6711 0.9624 0.819 0.0 2LPT 500

M+
ν 0.3175 0.049 0.6711 0.9624 0.834 0.1 Zel’dovich 500

M++
ν 0.3175 0.049 0.6711 0.9624 0.834 0.2 Zel’dovich 500

M+++
ν 0.3175 0.049 0.6711 0.9624 0.834 0.4 Zel’dovich 500

Table 1
Characteristics of the subset of the Quijote simulations used in this work. The fiducial cosmology contains 15,000 simulations, that are
used to compute the covariance matrix. In the other cosmological models, one parameter is varied at a time, and these simulations are

used to compute the numerical derivatives. The initial conditions of all simulations were generated at z = 127 using 2LPT, except for the
simulations with massive neutrinos and a copy of the fiducial cosmology, where the Zel’dovich approximation is used (see main text for

further details). All realizations follow the evolution of 5123 CDM (+ 5123 Neutrino) particles in a box of size 1 h−1Gpc down to z = 0,
with a gravitational softening length 50 h−1kpc. For massive neutrino simulations, we assume three degenerate neutrino masses.

3.2. Derivatives

For the cosmological parameters Ωm, Ωb, h, ns, and σ8,
we approximate the derivatives using a central difference
scheme centered on the fiducial cosmology,

∂ ~O

∂θi
'

~O(θi + δθi)− ~O(θi − δθi)
2θi

. (5)

Note that only the value of the ith cosmological param-
eter is perturbed about its fiducial value, θi, while the
values of all other parameters are held fixed. The error
of this approximation is O(δθ2

i ).
For neutrinos we cannot use Eq. 5 because the fidu-

cial model has massless neutrinos, so ~O(θi − δθi) would
correspond to a cosmology with negative neutrino mass.
We thus compute the derivatives for neutrinos using a
second-order forward difference scheme,

∂ ~O

∂Mν
' −3 ~O(Mν + 2δMν) + 4 ~O(Mν + δMν)− 3 ~O(Mν)

2δMν
,

(6)
which has error O(δM2

ν ). We exclusively use the M++
ν

and M+++
ν cosmologies in Eq. 6 throughout this work.

We use a total of Nder = 1,000 (500+500) simulations
to compute derivatives when using Eq. 5, and 1,500 when
using Eq. 6. In Appendix A we show that our results are
robust and converged with this number of simulations.
We also give evidence of robustness with respect to the
choice of finite difference scheme for Mν .

4. COSMOLOGICAL PROBES

In this section we outline the cosmological observables
considered in this work: the matter power spectrum, the

halo mass function, and the void size function.

4.1. Matter power spectrum

The first observable we study is the matter power spec-
trum. For each realization, the density field is computed
by depositing particle masses to a regular grid using the
cloud-in-cell mass assignment scheme. In simulations
with massive neutrinos we consider both CDM and neu-
trino particles when constructing the density field. The
density contrast field, δ(~x) = ρ(~x)/ρ̄− 1, is then Fourier
transformed and the power spectrum is computing by

averaging |δ(~k)|2 over spherical bins in |k|. The size of
each bin is equal to the fundamental frequency, 2π/L,
where L = 1h−1Gpc is the simulation box size.

A grid with 10243 cells is used, which is large enough
to avoid aliasing effects on the scales of interest for this
work. In our analysis we consider wavenumbers up to
kmax = 0.5 hMpc−1, using 79 bins. This choice of kmax

is based on the fact that the clustering of the simulations
is converged at this scale for this mass resolution (see
Villaescusa-Navarro et al. 2020b). We will however show
that using a larger kmax would likely lead to even tighter
constraints than the ones we report. We show the power
spectrum for the fiducial cosmology in Fig. 1.

4.2. Halo mass function

The second observable we consider is the halo mass
function (HMF). Dark matter halos are identified using
the Friends-of-Friends algorithm (Davis et al. 1985), with
a linking length b = 0.2. The halo finder considers only
the dark matter distribution, as the contribution of neu-
trinos to the total mass of a halo is expected to be neg-
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Figure 1. The matter power spectrum for the fiducial cosmology.

ligible (Villaescusa-Navarro et al. 2011, 2013; Ichiki &
Takada 2012; LoVerde & Zaldarriaga 2014).

The halo mass function is defined as the comoving
number density of halos per unit of (log) halo mass,
dn/d lnM . The mass of a halo is estimated as

M = Nmp, (7)

where N is the number of dark matter particles in the
halo and mp is the mass of a single dark matter particle.
Note that in the Quijote simulations, there are only dark
matter and neutrino particles, i.e. dark matter particles
represent the CDM+baryon fluid. The mass of a dark
matter particle is thus normalized according to Ωcb, such
that

mp =
V ρc
Np

Ωcb =
V ρc
Np

(
Ωm −

Mν

93.14h2

)
, (8)

where V = L3 is the simulation volume, Np is the total
number of dark matter particles in the simulation, and
ρc is the Universe’s critical energy density at z = 0. Thus
mp = mp(Ωm,Mν) is a cosmology dependent quantity,
which induces noise when computing the derivatives of
the HMF with respect to Ωm or Mν in a fixed mass bin.
This is because it is the number of dark matter particles
that is the fundamental constituent of the halo mass: a
halo with a given number of particles will lie in the same
number bin for all cosmologies, whereas it may lie in a
different mass bin depending on the value of mp. This
noise can thus be avoided by instead working with bins
of fixed particle number by considering the derivative
of the comoving number density of halos per unit (log)
number of particles, dn/d lnN . One can then transform
these derivatives in bins of fixed N to derivatives in bins
of fixed M to obtain the derivatives of the halo mass
function.

Using the shorthand H to denote the halo mass func-
tion, we now derive this transformation. In practice, one
measures the halo mass function for a fixed cosmology,

thus working in logarithmic bins gives

H :=
dn

d lnM
=

dn

d lnN
, (9)

where it is understood that the derivative is taken with
fixed cosmological parameters, ~θ. Explicitly, one can
think of the halo mass function as a function of the cos-
mological parameters and halo mass,H(~θ,M), or the cos-

mological parameters and number of particles, H(~θ,N).
Thus the derivative of the HMF with respect to one of
the cosmological parameters, θ, while holding all other
cosmological parameters, /θ, fixed can be written as(

∂H
∂θ

)
/θ

=

(
∂H
∂θ

)
M,/θ

+

(
∂H

∂ lnM

)
~θ

(
∂ lnM

∂θ

)
/θ

, (10)

or(
∂H
∂θ

)
/θ

=

(
∂H
∂θ

)
N,/θ

+

(
∂H
∂ lnN

)
~θ

(
∂ lnN

∂θ

)
/θ

. (11)

Equating these two equations and rearranging gives(
∂H
∂θ

)
M,/θ

=

(
∂H
∂θ

)
N,/θ

+

(
∂H
∂ lnN

)
~θ

[
∂ lnN

∂θ
− ∂ lnM

∂θ

]
/θ

=

(
∂H
∂θ

)
N,/θ

−
(

∂H
∂ lnN

)
~θ

(
∂ lnmp

∂θ

)
/θ

,

(12)

where Eq. 7 was used in the final step.
The cosmology dependence of mp takes effect in the

final term of Eq. 12. There is only a difference between
the fixed N and fixed M derivative of the HMF when
mp depends on θ, i.e., when θ ∈ {Ωm,Mν}. Using Eq. 8,
one finds that

∂ lnmp

∂Ωm
=

1

Ωm
, (13)

∂ lnmp

∂Mν
=

1

Ωcb93.14h2
, (14)

where it is understood that all cosmological parameters
apart from the one in the derivative are held fixed at
their fiducial values.

Thus our procedure to compute derivatives of the HMF
using Eq. 12 is as follows. We first bin the number of ha-
los according to the number of dark matter particles they
contain. We then compute the derivatives for each fixed-
N bin using the equations from Section 3.2, yielding the
first term on the right-hand side of Eq. 12. This will
be sufficient for all cosmological parameters except for
Ωm and Mν , as these require a correction term to trans-
form to fixed-M bins due to the variation of mp. The
∂H/∂ lnN term can be computed via spline interpolation
or by using finite difference methods between the bins of
the halo mass function of the fiducial cosmology. We have
confirmed the stability of both approaches. Finally, the
derivative of lnmp with respect to θ is computed using
Eqs. 13 and 14 evaluated at the fiducial values.

We consider halos with a number of dark matter par-
ticles between 30 and 7,000, using 15 logarithmically
spaced bins. The corresponding halo mass range is ap-
proximately 2.0×1013 to 4.6×1015 h−1M�. As with the
matter power spectrum, this choice of binning and cuts
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Figure 2. The halo mass function for the fiducial cosmology.

is made to ensure convergence of the derivatives based
on the resolution and number of the simulations avail-
able. Hence, using more bins and/or a larger mass range
would likely lead to stronger constraints than we report.
We show the HMF for the fiducial cosmology in Fig. 2.

4.3. Void size function

We identify voids in the underlying matter field using a
spherical void finding algorithm developed by Banerjee &
Dalal (2016), which we now outline. We use a grid of res-
olution 7683 to look for voids — this is slightly finer than
the CDM grid resolution of 5123 to enable detection of
small voids. The density contrast field is then smoothed
with a top-hat filter over a large-scale, R = 53.4h−1Mpc,
which is a multiple of the grid spacing and is chosen to
be bigger than the size of the largest void. Next, min-
ima that are smaller than the threshold δth = −0.7 in
the smoothed field are considered as voids with radius
R, unless they overlap with existing voids. This proce-
dure is then performed iteratively while decrementing R
by the grid spacing. In this work we use a threshold of
δth = −0.7, but have checked that results are similar for
δth = −0.5.

The void size function (VSF) is then computed as the
comoving number density of voids per unit of radius, de-
noted dñ/dR. Unlike the halo mass function, the VSF is
not prone to the changes in particle mass, since the void
finder operates directly in the same unit as the VSF. The
range of void sizes is limited by our resolution and the
size of our simulated volume. Having found the voids,
we apply radius cuts of Rmin = 10.4 and Rmax = 29.9
h−1Mpc, corresponding to 15 bins linear in R. As with
the matter power spectrum and the halo mass function,
this choice of binning and cuts is made to ensure conver-
gence of the derivatives based on the resolution and num-
ber of the simulations available. Hence, using more bins
and/or a larger range of void sizes may lead to stronger
constraints than we report. We show the VSF for the
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Figure 3. The void size function for the fiducial cosmology.

fiducial cosmology in Fig. 3.
Investigation of the void size function, and void abun-

dances, is a rich field that has shown promising theoret-
ical work to match mocks (see, e.g. Platen et al. 2008;
Bos et al. 2012; Sutter et al. 2012; Jennings et al. 2013;
Pisani et al. 2015; Paillas et al. 2017; Sahlén 2019; Con-
tarini et al. 2019; Verza et al. 2019).

5. RESULTS

In this section we present the main results of this work.

5.1. Full covariance of the probes

In Fig. 4 we show the correlation matrix, defined as
Corr(Oα, Oβ) := Cαβ/

√
CααCββ , where Cαβ is the co-

variance matrix (Eq. 4). First we discuss the correla-
tions for each individual probe (auto-correlations). For
the matter power spectrum (bottom-left region of Fig. 4),
we observe some well-known structures: the covariance is
almost diagonal on large scales, while mode-coupling in-
duces significant off-diagonal correlations on small scales.
For the halo mass function (central region of Fig. 4), the
covariance matrix is almost diagonal, with some small
correlations between the different mass bins; the corre-
lations are negative for heavy halos, but are positive for
the lightest halos considered in this work. The covari-
ance of the void size function (top-right region of Fig. 4)
is also almost diagonal, with the abundance of different
void sizes slightly anti-correlated with nearby bins due
to conservation of volume.

Next, we consider the correlations between different
probes (cross-correlations). The halo mass function
shows an interesting correlation pattern with the matter
power spectrum: the abundance of the more (less) mas-
sive halos shows a ∼ 20% correlation (anti-correlation)
with small scales of the matter power spectrum. Simi-
lar trends are seen between halos and large scales of the
matter power spectrum, albeit at a weaker level. On the
other hand, voids can be seen to be somewhat indepen-
dent of both the matter power spectrum and halos, as
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Figure 4. Correlation matrix for the matter power spectrum (Pm,
with 72 linear bins and kmax = 0.5 hMpc−1), the halo mass func-
tion (HMF, 15 log bins between 2.0×1013 and 4.6×1016 h−1M�),
and the void size function (VSF, 15 linear bins between 10.4 and
29.9 h−1Mpc), from bottom left to top right. Bin values increase
from left to right for each probe. While the HMF shows clear off-
block correlation with Pm, the VSF is somewhat independent from
both Pm and the HMF.

their cross-correlation is . 5% for all scales and masses.
As discussed in Section 3, we combine the covariance

matrix with the numerically computed derivatives to cal-
culate the Fisher matrix. The numerical derivatives and
related numerical convergence tests are shown in Ap-
pendix A.

5.2. Cosmological constraints

We show the two-dimensional (2D) 68% and 95% confi-
dence intervals obtained from our Fisher analysis for each
individual probe, and the combination of all probes, in
Fig. 5. The constraints on the parameters are not gener-
ally tight when considering any of three probes alone,
because we adopt a conservative survey volume of 1
(h−1Gpc)3, which is significantly smaller than what is
achievable by DESI, ∼ 102 (h−1Gpc)3.

The three probes show different degeneracies and are
sensitive to each parameter at different levels. For
example, the halo mass function provides a relatively
tight constraint on Ωm when compared to the other two
probes, as the halo mass function depends non-linearly
on and is highly sensitive to Ωm (see, e.g. Haiman et al.
2001). The void size function provides weaker constraints
than the other two probes on almost all parameters, ex-
cept for ns compared to Pm. Naively, this is not sur-
prising, considering the relatively smaller range of scales
being probed by the void size function compared to the
matter power spectrum. More information could proba-
bly be retrieved by using other void-related observables,
such as the void-matter correlation function.

Because the degeneracies between parameters are often
very different for each probe, it is expected that combin-
ing the probes will break the degeneracies and in turn
yield significantly tighter constraints on the cosmologi-
cal parameters than the individual probes do. Indeed,
the black ellipses in Fig. 5 show the tight constraints ob-

tained by combining the three probes. We emphasize
that these constraints account for all the correlations be-
tween the different observables, i.e. by using the full co-
variance matrix of Fig. 4.

The benefit of combining the three probes is particu-
larly well demonstrated in the Mν–σ8 plane. Because the
combined constraints are too small to be visible in Fig. 5,
we zoom in on this plane in Fig. 6. We find that, despite
not being as powerful tools as Pm in constraining Mν ,
the HMF and VSF both show degeneracies in different
directions from that of Pm, which guarantees that con-
straints on the neutrino masses will be largely reduced
by combining the three probes. In turn this helps break
the well-known Mν–σ8 degeneracy for the matter power
spectrum. We note that the area of these confidence
contours, particularly for the HMF, can potentially be
reduced by increasing the bin boundaries and/or by fine-
tuning the binning schemes. Our choice of binning is
restricted by our simulation resolution. We leave these
investigations to future works.

For a direct comparison to the usual constraints ex-
pected from the matter power spectrum, we show the
1D marginalized errors (Eq. 3) from different combina-
tions of the probes with Pm in Fig. 7. We study how
the errors vary with the cutoff scale kmax. Combining
Pm with either the HMF, VSF, or both, can achieve a
significant level of improvement on all 6 parameters. The
combination with the HMF is typically more beneficial
than the combination with the VSF. The only exception
is for Mν , where the VSF is the better probe to combine
with Pm.

While the constraints from Pm alone saturate at
around kmax = 0.2hMpc−1 for all parameters, the com-
bined constraints for Mν (and Ωm) continue to improve
beyond kmax = 0.5hMpc−1. This can be explained by
the breaking of degeneracies when combining probes.
It was shown in Fig. 5 of Villaescusa-Navarro et al.
(2020b) that increasing kmax beyond 0.2hMpc−1 leads
to a squeezing along the semi-minor axes (i.e, the most
constraining direction) for the Pm ellipses. While this
squeezing has little effect on the marginalized error on
Mν from Pm alone, its effects are manifest when com-
bined with other probes with misaligned contours, re-
sulting in significant tightening of constraints. Even
though the numerical resolution of the Quijote simula-
tions prevent us from confidently investigating beyond
kmax = 0.5hMpc−1, our results hint that even tighter
constraints could be achieved by including smaller scales.

In Table 2 we list the errors for kmax = 0.5hMpc−1 us-
ing different probe combinations. We list the constraints
obtained by combining all three probes while (1) only us-
ing the diagonals of the covariance matrix (diag), (2) only
considering auto-covariance (auto), and (3) considering
the full covariance (full). We find that using only the di-
agonal components of the covariance matrix, effectively
ignoring both the correlation between the probes and be-
tween different bins of the same probe, leads to a factor
of 1.7 increase on the error on the neutrino mass. Using
only block cross-correlations, i.e. ignoring the correlation
between the probes, leads to a factor of 1.2 increase on
the error on the neutrino mass. Therefore, to obtain the
tightest constraints, it is crucial to model the full covari-
ance matrix. It is interesting to note that when consider-
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Figure 5. 68% (darker shades) and 95% (lighter shades) confidence contours for the cosmological parameters for the non-linear matter
power spectrum (Pm, red), the halo mass function (HMF, blue), and the void size function (VSF, green). Due to the often different
degeneracies of each probe, we obtain significantly tighter constraints when combining the three probes (black). We note that some
contours extend into unphysical regions (Ωb < 0, h < 0,Mν < 0): this is just a result of the Gaussian approximation associated with a
Fisher analysis.

ing the matter power spectrum alone, correlations cause
an increase in errors due to the positive correlation be-
tween different scales (see Fig. 4). However, it is the com-
plex correlation structure, notably the anti-correlations,
introduced by considering the HMF and VSF that leads
to a reduction in error, both for the HMF and VSF in-
dividually, and in turn when combining all probes. The
association of anti-correlation with the tightening of con-
straints was also pointed out by Chartier et al. (2020).

In Table 2 we quantify the improvement of the com-
bined constraints compared to those achieved from Pm

alone. We find the improvements to be a factor of 137,
5, 8, 20, 10, and 43, for Ωm, Ωb, h, ns, σ8, and Mν , re-
spectively. Thus we achieve 43 times tighter constraints
on neutrino mass by combining all three probes. Specif-
ically, the marginalized errors on Mν are 0.77eV (Pm
alone) and 0.018eV (Pm+HMF+VSF). We provide an
additional plot in Appendix B to show the confidence el-
lipses when combining only two of the probes at a time.

6. DISCUSSION AND CONCLUSIONS
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Marginalized Fisher Constraints

Probe(s) Ωm Ωb h ns σ8 Mν(eV)

Pm 0.098 0.039 0.51 0.50 0.014 0.77
HMF 0.034 0.042 0.28 0.12 0.082 1.6
VSF 0.31 0.12 1.3 0.42 0.083 1.1

Pm + HMF 0.00077 0.0089 0.076 0.034 0.0016 0.061
Pm + VSF 0.016 0.011 0.12 0.074 0.0018 0.025
HMF + VSF 0.0063 0.037 0.23 0.10 0.0069 0.096

Pm + HMF + VSF (diag) 0.0015 0.0088 0.066 0.028 0.00061 0.031
Pm + HMF + VSF (auto) 0.0015 0.0086 0.071 0.033 0.0016 0.025

Pm + HMF + VSF (full) 0.00071 0.0084 0.064 0.025 0.0015 0.018

Multiplicative improvement 137 5 8 20 10 43

Table 2
Marginalized errors of cosmological parameters for kmax = 0.5hMpc−1 using different probe combinations. Note, we list the constraints

obtained by combining all 3 probes while: 1) only using the diagonals of the covariance matrix (diag), 2) only considering auto-covariance
(auto), and 3) considering the full covariance (full). We highlight in bold the full constraints on the sum of the neutrino masses. We also

list the multiplicative improvement in the constraints from the full covariance compared to those from Pm alone.
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Figure 6. The Mν–σ8 plane from Fig. 5. We inset a zoom-in of
the contour obtained by combining all three probes. The marginal-
ized error on Mν from Pm alone is 0.77eV, while the error after
combining all three probes is 0.018eV, corresponding to a factor
∼ 43 improvement.

Upcoming galaxy surveys will map large volumes of
the Universe at low redshifts, with the potential to dras-
tically improve our understanding of the underlying cos-
mological model. With the unprecedentedly precision
achievable by these surveys, it is expected that a very
large amount of cosmological (and astrophysical) infor-
mation will lie in the mildly to fully non-linear regime,
where analytic methods are often intractable. It remains
an open question which observable(s) will lead to the
tightest bounds on the cosmological parameters.

In this paper, we use the Quijote simulations, based on
the Fisher formalism, to quantify the information content
embedded in the non-linear matter power spectrum, the
halo mass function, and the void size function, both in-

dividually and when combined, at z = 0. We find that
the HMF and VSF have different degeneracies to each
other and to the matter power spectrum, particularly in
the Mν–σ8 plane (Figs. 5 & 6). In terms of measuring
neutrino mass, we find the void size function to be the
more complementary probe to combine with the matter
power spectrum. This is consistent with findings that
void properties are particularly sensitive to matter com-
ponents that are less clustered, such as neutrinos (Mas-
sara et al. 2015; Kreisch et al. 2019).

By combining the non-linear matter power spectrum
(kmax = 0.5 hMpc−1), with the halo mass function
(M & 2 × 1013 h−1M�), and the void size function
(R > 10.4h−1Mpc), we achieve significantly tighter con-
straints on the cosmological parameters compared to Pm
alone (Fig. 7). In particular, we find that with a vol-
ume of just 1 (h−1Gpc)3, the error on the sum of neu-
trino masses from the combined probes is at the 0.018eV
level, compared to 0.77eV from the matter power spec-
trum alone — a factor of 43 improvement. We emphasize
that this value mainly demonstrates the information con-
tent in the late-time statistics, and they are not forecasts
for any particular survey.

Also of particular interest is the factor 137 improve-
ment in the error on Ωm. This is driven by the infor-
mation in the HMF, and gives a marginalized error of
σ(Ωm) = 7.1 × 10−4, which is almost 100 times smaller
than the error obtained from a joint large-scale struc-
ture analysis by DES Y1 (σ(Ωm) ≈ 0.04, To et al. 2021),
and 8 times smaller than Planck 2018, (σ(Ωm) ≈ 5.6 ×
10−3 (TT,TE,EE+lowE+lensing+BAO), Planck Collab-
oration et al. 2018). In addition, we found σ(h) = 0.064
by combining the three probes, which is 8 times tighter
than the constraints from the matter power spectrum
alone. This could provide a new angle to investigate the
Hubble tension.

There are several caveats in this work. Firstly, we as-
sumed perfect knowledge of the three-dimensional spatial
distribution of the underlying matter field in real-space.
However, in reality, one observes either tracers of the
matter field in redshift-space, or the projected matter
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Figure 7. The 1D marginalized error for each of the cosmological parameters as a function of kmax. We consider 4 scenarios: Pm alone
(red), Pm + HMF (magenta), Pm + VSF (yellow), and Pm + HMF + VSF (black). While the constraints from Pm alone saturate at
kmax ' 0.2hMpc−1, the combined constraints for Mν (and Ωm) continue to improve until kmax = 0.5hMpc−1, and likely beyond.

field through lensing. Therefore, additional links must be
made to bridge the galaxy–matter connection and the 2D
lensing–3D matter distribution gaps. This effect is also
relevant for voids: in this work we considered voids in
the 3D matter field, which is not something current sur-
veys are able to observe directly. Detecting voids in the
matter field from photometric (2D lensing) data has been
considered in works such as (Pollina et al. 2019; Davies
et al. 2020). Alternatively, one can measure voids in the
3D halo field (see, e.g. Nadathur 2016; Contarini et al.
2019). If we were to instead have considered voids in
the 3D CDM field, the combined error on Mν slightly
degrades to 0.025eV. However, considering voids in the
CDM field versus halo field can lead to non-trivial differ-
ences in void properties, which might increase or decrease
constraints (Kreisch et al. 2019). We will consider voids
in the halo field in a future work.

A further note regarding voids is that there are various
conventions when it comes to defining voids (see, e.g.
Platen et al. 2007; Sutter et al. 2014). It would thus
be interesting further work to consider how the choice of
void finder impacts constraints. A different void finder
may be able to extract additional information compared
to the spherical void finder applied here.

Another limitation of this work is that our simulations
consider only gravitational interactions and hence ignore
baryonic effects which can impact the small-scale mat-
ter distribution. This is particularly relevant for both
clustering and halos (see, e.g. Villaescusa-Navarro et al.
2020a; Cromer et al. 2021; Debackere et al. 2021, and ref-
erences therein), while it is expected that baryons have a
lower impact on voids (Paillas et al. 2017). Furthermore,
halo clustering is influenced by various properties, such
as spin, concentration, and velocity anisotropy, which
have not been considered in this work (see, e.g. Wechsler

et al. 2006; Gao & White 2007; Faltenbacher & White
2009; Lacerna & Padilla 2012; Lacerna et al. 2014; Paran-
jape et al. 2018; Shi & Sheth 2018).

Additionally, we have neglected super-sample covari-
ance (Takada & Hu 2013; Li et al. 2014), which could
modify the errors reported in this work.

We also note that the constraints obtained here may
be overly conservative due to the limited number and
resolution of simulations available. Firstly, this means
that the number of bins used are likely suboptimal. Sec-
ond, applying more aggressive bounds on the observ-
ables, e.g. a higher kmax, a larger halo mass range, or a
larger void size range, would likely also reduce the com-
bined constraints. Third, we only considered a single
redshift, z = 0: in practice, surveys measure z > 0 where
the universe is more linear and the constraints will thus
be weaker, however, combining multiple redshifts could
tighten the constraints as found in works such as Liu &
Madhavacheril (2019). Fourth, we considered a volume
of only 1 (h−1Gpc)3, whereas surveys such as Euclid and
DESI will cover volumes of around 102 (h−1Gpc)3, so,
conservatively, the error on the parameters will shrink by
a factor of 1/

√
102 = 0.1. Fifth, we have only considered

three probes; using the same observations, one can de-
rive other statistics such as the bispectrum, void profile,
and BAO, which could be combined with the statistics
considered here to further break degeneracies. Finally,
considering redshift space distortions would also tighten
constraints as neutrinos are distinguishable from CDM
via their higher thermal velocity.

We have demonstrated that combining multiple probes
of cosmological structure using their full covariance ma-
trix provides remarkably tight constraints on the cosmo-
logical parameters, and helps extract much additional
information from small scales. In particular, we have
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shown that there is, in principle, sufficient information
to measure the sum of the neutrino masses at the min-
imum mass of 0.06 eV. Our results are in good agree-
ment with Sahlén (2019) who found that combining halo
and void abundances can yield O(0.01 eV) constraints
on the neutrino mass. This approach opens a promising
pathway to measure neutrino mass, potentially without
relying on CMB-based measurements which require ac-
curate knowledge of the optical depth, τ . In addition,
comparing constraints from different combinations of ob-
servables, e.g., CMB+Pm and Pm+HMF+VSF, will help
identify systematic issues and provide robust evidence
for any discovery. We thus hope our work will motivate
galaxy survey collaborations to build the simulations and
analytic tools necessary to implement this approach on
upcoming observational data.
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APPENDIX

A. ROBUSTNESS OF RESULTS TO NUMERICAL SYSTEMATICS

In this section we verify the stability of our results to reduction in the number of simulations used to compute the
covariance matrix and derivatives. In Fig. 8 we show the derivatives of the matter power spectrum (top), halo mass
function (middle), and void size function (bottom) with respect to the cosmological parameters when using a different
number of realizations. For the matter power spectrum, the derivatives are already converged when the mean values
for each model are computed with 300 realizations. Results are slightly noisier for the halo mass function and the void
size function, but still sufficiently converged by 500 realizations.

Next, we comment on the convergence of our simulated results with theory. The convergence of the matter power
spectrum in Quijote has been thoroughly tested (Villaescusa-Navarro et al. 2020b; Aviles & Banerjee 2020; Hahn et al.
2020). For the void size function there is no theoretical formula accurate enough to compute derivatives, but we have
checked results are robust to the parameters used in the void finder. Therefore, we only compare our measured HMF
to theoretical predictions. For the HMF, we plot the theoretical predictions of Sheth-Tormen (ST) (Sheth & Tormen
1999; Sheth & Tormen 2002) and Tinker (Tinker et al. 2008). We use the prescription of Costanzi et al. (2013) in the
case of massive neutrino cosmologies by replacing Ωm → Ωcb and Pm → Pcb as neutrinos have negligible contribution
to halo mass. There is good agreements between these predictions and Quijote. We have also checked that there is
good agreement for different choice of step size (not shown). Note that these theoretical formulae provide a guideline
rather than exact predictions, as they were fitted to simpler simulations or calibrated on spherical overdensity halos,
as opposed to FoF here.

In Fig. 9 we show the convergence of the Fisher matrix elements with respect to the number of realizations used
to compute the covariance, Ncov, and derivatives Nder. We consider the Fisher matrix components for Pm (red), the
HMF (blue), the VSF (green), and the combined probes (black). The gray bands corresponds to the ±5% interval.
While there is some noise in the σ8 component of the Fisher matrix for Pm as function of Ncov, good convergence is
achieved by 15000. Likewise the Fisher matrix is well converged as a function of Nder. Crucially, the Fisher matrix
elements for the combined probes (black) all show good convergence. Note that when combining probes we scale the
power spectrum by a factor of 10−10 to ensure that the condition number of the covariance matrix is sufficiently low
for accurate inversion.

Finally, we comment on the choice of finite difference scheme used to compute the derivative of probes with respect
to Mν . Throughout the paper we used Eq. 6 with δMν = 0.2 eV, thus making use of simulations with Mν = 0, 0.2, and
0.4 eV. Using this scheme we found the full combined constraint on Mν is 0.018 eV, as shown in Table 2. To illustrate
robustness to this choice of finite difference scheme, we also performed the analysis using Eq. 6 with δMν = 0.1 eV
and found it to give an identical constraint of 0.018 eV. Additionally, we tried a forward difference scheme between
Mν = 0 and 0.1 eV, which also gave identical constraints. Hence, the results are consistent with the choice of finite
difference scheme. We do also note that since the joint constraints on the parameters given in Table 2 are smaller
than the step sizes used to compute derivatives, it would be interesting to investigate the effect of smaller step sizes
on the joint constraints. This would reduce the error in the numerical derivatives, and thus may slightly modify the
joint constraints.

Given these results, we believe that our conclusions are robust against potential numerical systematics. We note
again that our bin configuration has been chosen with these results in mind, to ensure sufficiently converged derivatives
and Fisher matrix components, but in principle one could consider more bins over a wider range to potentially obtain
tighter constraints.

B. COMBINING TWO PROBES AT A TIME

Fig. 10 shows the 2D Fisher contours to illustrate the effects of only combining two out of the three probes at a time.
In most cases, the constraints obtained by combining the halo mass function with the void size function are the weakest,
indicating that it is important to use the information from the non-linear matter power spectrum to break degeneracies.

https://github.com/franciscovillaescusa/Quijote-simulations
https://github.com/franciscovillaescusa/Quijote-simulations
https://github.com/franciscovillaescusa/Pylians3
https://github.com/franciscovillaescusa/Pylians3


12 Bayer, Villaescusa-Navarro et al.

102

103

104

105

P
m
/

Ω
m

300 realizations

400 realizations

500 realizations 102

103

104

105

P
m
/

Ω
b

102

103

104

105

P
m
/
h

10-2 10-1

k [hMpc−1]

102

103

104

105

P
m
/
n
s

10-2 10-1

k [hMpc−1]

102

103

104

105

P
m
/
σ

8
10-2 10-1

k [hMpc−1]

102

103

104

105

1
0
×

P
m
/
M

ν

10-7

10-6

10-5

10-4

10-3

H
M

F
/

Ω
m

ST
Tinker
300 realizations

400 realizations

500 realizations 10-7

10-6

10-5

10-4

10-3

H
M

F
/

Ω
b

10-7

10-6

10-5

10-4

10-3

H
M

F
/
h

1014 1015

M [h−1M¯ ]

10-7

10-6

10-5

10-4

10-3

H
M

F
/
n
s

1014 1015

M [h−1M¯ ]

10-7

10-6

10-5

10-4

10-3

H
M

F
/
σ

8

1014 1015

M [h−1M¯ ]

10-7

10-6

10-5

10-4

10-3

10
×

H
M

F
/
M

ν

10-10

10-9

10-8

10-7

10-6

10-5

V
S
F
/

Ω
m

300 realizations

400 realizations

500 realizations

10-10

10-9

10-8

10-7

10-6

10-5

V
S
F
/

Ω
b

10-10

10-9

10-8

10-7

10-6

10-5

V
S
F
/
h

12.5 15.0 17.5 20.0 22.5 25.0 27.5

R [h−1Mpc]

10-10

10-9

10-8

10-7

10-6

10-5

V
S
F
/
n
s

12.5 15.0 17.5 20.0 22.5 25.0 27.5

R [h−1Mpc]

10-10

10-9

10-8

10-7

10-6

10-5

V
S
F
/
σ

8

12.5 15.0 17.5 20.0 22.5 25.0 27.5

R [h−1Mpc]

10-10

10-9

10-8

10-7

10-6

10-5

10
×

V
S
F
/
M

ν

Figure 8. Derivatives of the matter power spectrum (top), halo mass function (middle), and void size function (bottom) with respect to
the different cosmological parameters at z = 0. We show results when the mean values are estimated using 300 (red), 400 (blue), and 500
realizations (black). Solid/dashed lines indicate that the value of the derivative is positive/negative. While the derivatives for the matter
power spectrum are well converged already with 300 realizations, more simulations are required for halos and voids.
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Figure 9. Left: Convergence of all Fisher matrix components as a function of number of simulations used to compute the covariance
matrix, Ncov. Each line shows the ratio between the Fisher matrix elements computed using Ncov simulations and 15,000 simulations
(as used in the paper). Right: Convergence of all Fisher matrix components as a function of number of simulations used to compute
derivatives, Nder. Each line shows the ratio between the Fisher matrix elements computed using Nder simulations and 500 simulations
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(green), and the combined probes (black). The gray bands correspond to the ±5% interval. While there is some noise in the σ8 component
of the Fisher matrix for Pm as a function of Ncov, good convergence is achieved by 15,000. Likewise the Fisher matrix is well converged as
a function of Nder. Crucially, the Fisher matrix elements for the combined probes (black) all show good convergence.
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