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ABSTRACT

Temporal variability in flux and spectral shape is ubiquitous in the X-ray sky and carries crucial information about the nature and
emission physics of the sources. The EPIC instrument on board the XMM-Newton observatory is the most powerful tool for studying
variability even in faint sources. Each day, it collects a large amount of information about hundreds of new serendipitous sources, but
the resulting huge (and growing) dataset is largely unexplored in the time domain. The project called Exploring the X-ray transient
and variable sky (EXTraS) systematically extracted all temporal domain information in the XMM-Newton archive. This included a
search and characterisation of variability, both periodic and aperiodic, in hundreds of thousands of sources spanning more than eight
orders of magnitude in timescale and six orders of magnitude in flux, and a search for fast transients that were missed by standard
image analysis. All results, products, and software tools have been released to the community in a public archive. A science gateway
has also been implemented to allow users to run the EXTraS analysis remotely on recent XMM datasets. We give details on the
new algorithms that were designed and implemented to perform all steps of EPIC data analysis, including data preparation, source
and background modelling, generation of time series and power spectra, and search for and characterisation of different types of
variabilities. We describe our results and products and give information about their basic statistical properties and advice on their
usage. We also describe available online resources. The EXTraS database of results and its ancillary products is a rich resource for
any kind of investigation in almost all fields of astrophysics. Algorithms and lessons learnt from our project are also a very useful
reference for any current and future experiment in the time domain.
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1. Introduction

Variability pervades the cosmos. Almost all astrophysical
objects, from stars in the surroundings of the solar system to
supermassive black holes in the nuclei of very distant galax-
ies, display a distinctive variability. Their flux and spectral shape
change within a range of timescales. This is especially true in the
high-energy range of the electromagnetic spectrum. The X-ray
and gamma-ray sky is extremely dynamic, and new classes of
objects, some of them completely unexpected, have been dis-
covered in the past decades through their peculiar variability.
We may mention different examples of transient or highly
variable high-energy sources. (i) Gamma-ray bursts (GRBs) are
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the most powerful cosmic explosions for electromagnetic out-
put. They are likely produced by the collapse of massive stars
into black holes or by the coalescence of two neutron stars. (ii)
Soft gamma-ray repeaters (SGRs) are X-ray sources that are
believed to be powered by magnetars, that is, by neutron stars
with the strongest magnetic fields in the Universe. (iii) (Tran-
sient) X-ray binaries are black holes, neutron stars, or white
dwarfs that accrete matter from their stellar companion. (iv) Stel-
lar flares are X-ray flares from magnetically active, late-type
stars that are either isolated or in binary systems. (v) Blazar flares
are gamma-ray flares that are produced by the jets of supermas-
sive black holes at the centres of galaxies. (vi) Tidal disruption
events are the gravitational capture and disruption of a star by a
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supermassive black hole. (vii) Supernova X-ray flashes are pro-
duced by the supernova shock that emerges from the exploding
star.

Crucial information is often carried by periodic variability
that arises from the rotation of a (compact) star or from the
orbital motion in a binary system. Examples of high-energy pul-
sators are (i) spinning up and down, accreting, magnetic neutron
stars in binary systems; (ii) spinning down young neutron stars,
whose emission is powered by the dissipation of rotational, ther-
mal, or even magnetic energy, as in the cases of classical radio
pulsars, the so-called Magnificent Seven neutron stars (Haberl
2007), and magnetars; (iii) accreting magnetic white dwarf sys-
tems, such as polars and intermediate polars; (iv) orbital modu-
lations (including periodic dips and eclipses) of the X-ray flux
in various classes of X-ray binaries with accreting neutron stars,
black holes, or white dwarfs (especially if seen from a high incli-
nation).

Variability is key to understanding the nature and physics of
the sources. It is plainly impossible to summarise the range of
science topics in a few lines that can be accessed and addressed
by time-domain investigations in the X-ray range. X-ray vari-
ability yields unique insights into accretion physics (e.g., radi-
ation efficiency of accretion flows, mechanisms for generating
winds and jets) and strong gravity physics (e.g., conditions in
the inner disk) through observations of active galactic nuclei,
tidal disruption events, and gamma-ray bursts (marking the birth
of a black hole). We can learn about the mechanisms of mas-
sive star explosions, and about the progenitors of supernovae, by
observing supernova shock breakout events (which would also
enable more sensitive searches for the long sought-after associ-
ated gravitational waves and neutrinos). X-ray variability allows
us to focus on the physics of magnetic field generation and
dynamics in compact objects (e.g., through observations of vio-
lent and less violent events related to the extreme magnetic fields
of magnetars) and in normal stars (observation of stellar flares
and coronal emission). The latter point holds great promise for
our understanding of planetary system formation and evolution
(the effects of flares on protoplanetary disks and on the habitabil-
ity of planetary systems), and for understanding our own Sun.

Most of the variable phenomena described above have been
discovered with instruments with a large field of view (FoV)
such as the All-Sky Monitor (ASM) on board the Rossi X-ray
Timing Explorer, the Imager on Board the INTEGRAL Satel-
lite (INTEGRAL/IBIS), the Burst Alert Telescope (BAT) on
board the Neil Gehrels Swift observatory, and the Monitor of
All-sky X-ray Image (MAXI) on the International Space Sta-
tion, which, constantly observing large portions of the sky, can
also detect relatively rare events. In the soft X-ray energy range
(0.2-12keV), focusing telescopes are much more sensitive than
wide-field instruments. The current generation of space obser-
vatories each day collect a very large amount of data about
serendipitous sources located within their FoV, including a huge
amount of information regarding their variability. Data archives
from these telescopes have great potential for studying variabil-
ity of (serendipitous) X-ray sources, which in principle is only
limited by photon statistics and by the intrinsic time resolution
of the instruments. However, this information remains mostly
unused.

In particular, the European Photon Imaging Camera (EPIC)
instrument on board the European Space Agency mission XMM-
Newton (Jansen et al. 2001), consisting of two MOS cameras
(Turner et al. 2001) and of a pn detector (Striider et al. 2001),
is the most powerful tool for studying the variability of faint
X-ray sources because the combination of large effective area,
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good angular, spectral, and temporal resolution, and large FoV
is unprecedented. More than 20 years after its launch, EPIC is
still fully operational, and its immensely rich archive of data
continues to grow. Large efforts are ongoing to explore the
serendipitous content in XMM data. The catalogue of serendip-
itous sources extracted from EPIC observations is indeed the
largest and most sensitive compilation of X-ray sources ever
produced before the realisation of the eROSITA all-sky sur-
Veyl. Its most recent release (2019 December) at the time of
drafting this paper, dubbed 4XMM-DR9? (Webb et al. 2020),
lists more than 810 000 detections of more than 550 000 unique
sources over more than 1150 square degrees of the sky. The
median flux of these sources is ~5.3 x 107 ergcm™2s~! and
~1.2x 107" ergecm™ s7! in the 0.5-2keV and 2—-12keV energy
ranges, respectively.

About ~20000 sources have been detected in the so-called
XMM Slew Survey (XSS, Saxton et al. 2008), using data that
were collected while the telescope moved from one target to
the next. The data have a shallower sensitivity, but cover more
than 70% of the sky. The XSS provides significantly better
sensitivity (limiting flux ~3 x 10™'>ergcm™2s~!) than any all-
sky survey currently available to the community. In the soft
0.2-2keV band, the XSS is almost as sensitive (limiting flux
~6x107¥ ergcm™ s7!) as the ROSAT All-Sky Survey (RASS).

The time-domain information on such a large sample of
sources remains largely unexplored. The 4XMM catalogue
incorporates light curves of the top ~36% brightest sources.
These light curves are generated with a time bin of 20 times the
frame time for the pn camera (resulting in time binning at 1.46s
in most cases), or with a time bin yielding at least (on average)
20 counts per bin, with a minimum bin time (for bright sources)
of 10s for the MOS cameras. A simple test for time variabil-
ity (a x? test) is automatically performed on these light curves
(pn light curves are rebinned at this stage to have at least 20
counts per bin), and a variability flag is assigned. A catalogue
from stacked data (4XMM-DROs) is also generated for over-
lapping observations, providing information on the long-term
variability of sources between different detections. Systematic
investigations of variability are not carried out by the catalogue
team. The XSS (and new slew data, which are routinely col-
lected) provides the best opportunity at present, compared to the
RASS, for discovering extremely rare high-variability objects. A
number of such objects (novae, tidal disruption events, etc.) have
indeed been selected (e.g., Saxton et al. 2012). However, no sys-
tematic dedicated study and cataloguing of the variability has yet
been performed.

We describe in this paper the main features of the project
called Exploring the X-ray variable and transient sky (EXTraS),
which was carried out in 2014-2016. It produced the most thor-
ough investigation of temporal properties of XMM-Newton and
EPIC sources ever performed. All results and products of EXTraS
have been available since the end of the project through a pub-
lic data archive, which describes the variability of more than
400000 sources spanning more than eight orders of magnitude
in timescale and six orders of magnitude in flux. Applications
range from the search for rare events to population studies, with an
impact on the study of virtually all astrophysical source classes.

The paper is organized as follows: In Sect. 2 we give a
concise overview of the EXTraS project, and in Sects. 3—6 we

I See https://www.mpe.mpg.de/eROSITA. See also Predehl et al.
(2021).

2 http://xmmssc.irap.omp.eu/Catalogue/4XMM-DRO/4XMM_
DR9.html
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describe details of the EPIC data analysis that was carried out in
different research lines. We describe new algorithms that were
designed and implemented within the project to deal with the
peculiar highly variable background noise of the EPIC instru-
ment, and to search for and characterise different types of vari-
ability. We also report details of our main products and results,
including basic statistical properties and advice for their usage.
In Sect. 7 we describe the web resources that were made avail-
able to the community. In Sect. 8 we briefly summarise. Appen-
dices include further details of the data analysis and products.

2. The EXTraS project

The EXTraS? project was aimed at fully investigating and dis-
closing the serendipitous content of the EPIC database in the
time domain and to make it available and easy to use to the whole
community.

EXTraS includes four different lines of EPIC data analysis:

1. Short-term, aperiodic variability (STV), aimed at detecting
and characterising aperiodic variability in the largest possi-
ble number of sources from the XMM serendipitous source
catalogue on all timescales ranging from the instrument time
resolution to the duration of an observation (see Sect. 3).

2. Search for coherent pulsations, aimed at detecting and char-
acterising the largest possible number of X-ray pulsators in a
period range from ~0.2 s up to the highest value allowed by
the duration of the observation (see Sect. 4).

3. Search for transients, aimed at detecting the largest possible
sample of new, faint X-ray transients. These sources are only
above detection threshold for a very short time interval and
thus are missed by standard image analysis and are not listed
in the XMM serendipitous source catalogue (see Sect. 5).

4. Long-term variability (LTV), aimed at detecting and charac-
terising long-term variability, taking advantage of the large
number of overlapping observations performed at different
epochs, using both pointed and slew data, combining detec-
tions and upper limits in long-term light curves spanning up
to 15 years (see Sect. 6).

All EXTraS products and results together with new soft-
ware tools have been released to the community in 2017
March through a public archive (see Sect. 7). This includes
(i) a database of all results, describing temporal properties
of ~400000 EPIC sources on timescales ranging from ~0.1s
to ~10 years and in flux ranges spanning from ~10~° to

~10"%ergem™s7! in the 0.2-10keV energy range, and (ii)

about ~20 millions of ancillary files (light curves, hardness
ratios, power spectra, etc.). A science gateway was also imple-
mented (see Sect. 7) to allow users to run EXTraS pipelines on
any dataset from the XMM Science Archive.

As a part of the project, multiwavelength characterisation
of sources based on available catalogues and phenomenologi-
cal classification of sources using machine-learning algorithms

3 EXTraS (Exploring the X-ray Transient and variable Sky) is a collab-
orative effort of six European partners: Istituto Nazionale di Astrofisica
(INAF, Italy, coordinator); Scuola Universitaria Superiore IUSS Pavia
(Italy), Consiglio Nazionale delle Ricerche (CNR, Italy); University
of Leicester (UK); Max Planck Gesellschaft zur Foerderung der Wis-
senschaften — Max Planck Institut fiir extraterrestrische Physik (MPG-
MPE, Germany); Friedrich-Alexander Universitat Erlangen-Nuremberg
— Erlangen Center for Astroparticle Physics (ECAP, Germany). EXTraS
was funded (2014-2016) by the European Union within the Seventh
Framework Programme (FP7-Space). See the project web site http:
//www.extras-£fp7.eu/ for further details on the team and contact
information.

were also implemented. These activities are not described in
this paper, which focus on EPIC data analysis. We refer to
Gatuzz et al. (2018) for details.

3. Short-term, aperiodic variability (STV)
3.1. Aims and scope

The goal is to provide users with a thorough characterisation
of any type of short-term variability, ideally, on all timescales
ranging from the instrument time resolution to the duration
of an observation for the largest possible number of sources
included in the XMM-Newton serendipitous source catalogue.
This extends the basic temporal analysis of bright sources
included in the production of the XMM catalogue in several
ways: (i) we study a larger fraction of sources, down to much
fainter fluxes, (ii) we use all EPIC data, including time inter-
vals affected by soft proton flares, (iii) we study variability at
the shortest timescales even in faint sources, overcoming limi-
tations of uniformly binned time curves with large bins, (iv) we
perform an energy-resolved analysis, and we also study spectral
variability, and finally, (v) we compute a full set of quantitative
parameters to describe variability patterns and properties.

Our analysis builds on the 3XMM-DR4 source catalogue,
which is the most recent release of the XMM serendipitous
source catalogue available at the start of the EXTraS project. It
includes 7437 observations performed between 2000 February
and 2012 December. We excluded 420 observations collected
in mosaic mode because processing pipeline subsystem (PPS)
products (see next section) are not available. Our analysis is per-
formed for each camera and for each exposure separately. Mul-
tiple exposures collected within a specific observation by a spe-
cific camera are studied independently. Following the 3XMM
selection, we considered only exposures taken in imaging mode
and discarded those taken in small window by the pn camera.
The small field of view precludes our approach for the charac-
terisation of the background.

3.2. Data preparation and filtering

For the MOS cameras, we used event files from the PPS prod-
ucts. For the pn camera, we were faced with a known bug in the
pipeline used to generate the PPS products, in which improper
management of counting mode occurrences can result in inco-
herent time tagging of events within an exposure, preventing a
consistent temporal analysis. This problem affected the data sets
of observations in the PPS archive that were processed with the
XMM-Newton Science Analysis Software (SAS) versions earlier
than 13.5 (see Appendix A). We reprocessed all pn data starting
from observation data files (ODF) using SAS v14.0, where the
issue had been fixed (PPS files in the current archive should be
free from this problem as a result of the recent bulk reprocessing
of data performed in 2019 December).

We selected good events by applying the same quality filters
as were used for the production of the 3XMM catalogue (e.g.,
we excluded time periods with an attitude change >3’). As an
important difference, we also considered time intervals affected
by high particle background, which are generally discarded in
3XMM processing. This resulted in our recovering a major frac-
tion of XMM-Newton exposure time, more than 20%, for scien-
tific exploitation.

We selected photons in the 0.2-12keV energy range. An
energy-resolved analysis in the 0.2-1keV (super-soft), 1-2keV
(soft) and 2—12 keV (hard) energy ranges was also performed, as
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described in Sect. 3.9. We considered all the flags as in 3XMM-
DR4. Barycentric corrections were applied to all events and
GTIs using the SAS task barycen®*.

3.3. Selection of 3XMM sources

We only considered point-like sources, excluding all those
marked as possibly extended by the 3XMM analysis (3XMM
parameter EP_EXTENT_ML > 4 and extension larger than 12",
rejecting 52168 out of 531261 3XMM detections, correspond-
ing to 9.8%). This choice is aimed at preserving uniformity of
the analysis. Extended sources require a different background
treatment. We also excluded from the analysis all sources below
a minimum number of ten expected source events per cam-
era (3XMM parameter PN_8_CTS > 10, M1_8_CTS > 10,
M2_8_CTS > 10). This left 418,387 source detections (81.6%
of detections in 3XMM-DR4). A further selection was made at
a later stage based on the number of actually observed events
in the optimised source region for each specific exposure, cam-
era, and energy band under analysis (see Sect. 3.4). To identify
selected 3XMM sources at the single exposure and camera level,
we cross-correlated PPS source lists with the catalogue.

3.4. Source regions

For each source, we optimised a circular extraction region. As a
figure of merit, we used the signal-to-noise ratio (S/N) according
to the following definition:

Elsrc|r] E[src|r]

SIN(r) = ~ :
IND VElsrc +bkglrl  ymax(Co, E[srclr], Olsrc + bkglr]

where E[X] represents the expectation value of the quantity X
and O[X] is the value that is observed. In this case, X is the num-
ber of counts from the source (src) or from background (bkg),
including the leakage from other sources, in the circle defined
by radius r. Cy is a small constant (107°, chosen to be much
smaller than the other terms in any case) that is introduced to
numerically manage the cases where no events are expected or
observed. This approach allows us to compute the S/N without
having to model the background in advance. Selecting the maxi-
mum value in the set of three quantities in the square root in the
right-hand term of the equation takes care of cases where very
few counts are expected and none are observed. Expected counts
from the source as a function of the extraction radius were com-
puted based on the information provided by 3XMM. Assuming
the 3XMM count rate in the overall energy range (band 8, from
0.2 to 12keV), we produced a map at the source position, for
which we multiplied the instrument point-spread function (PSF),
which is described by its King function parametrisation encoded
in the CCF, by the CCD-dependent exposure map (computed
using the SAS task eexpmap). A resolution of 0”705 was used
to properly account for the effect of bad pixels and columns and
of CCD borders. The observed counts as a function of the radius
were directly evaluated from the cleaned event file.

As a first step, the source extraction radius was optimised
according to our figure of merit. Then we screened all nearby
sources (within 5”) that might contaminate our source region. For
each of these sources, we optimised an exclusion radius accord-
ing to our figure of merit. These steps were iterated. First we
refined r and then the excluded region for each contaminating

4 We rely on the JPL DE405 planetary ephemeris, see https://ssd.
jpl.nasa.gov/?planet_eph_export
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source, until the maximum of our figure of merit was reached.
Last, we counted how many counts from the source were left
in the resulting region. All sources with fewer than ten photons
were not considered any further in our analysis.

3.5. Background modelling

The background noise of the EPIC cameras is the sum of differ-
ent components with different spatial and temporal properties. A
proper treatment of this background is of paramount importance
for characterising the variability of faint sources, especially dur-
ing high-background periods. We implemented a new approach
that is substantially different from common practice in EPIC data
analysis.

In our analysis, we considered as background anything that
was not listed as a point source (with 3XMM extension param-
eter SC_EXTENT smaller than 12”) in 3XMM: extended
sources, unresolved sources, and cosmic X-ray background and
instrumental background (particle-induced and electronic noise).
It has been common practice in X-ray imaging studies to extract
the background from a background region that was indepen-
dent of the source region, but had supposedly similar back-
ground properties. However, the photon background, which in
our analysis includes extended sources, is far from flat; more-
over, the particle-induced background, including soft protons,
has a different vignetting with respect to the photon component
(e.g., Kuntz & Snowden 2008). Therefore we decided to model
the background over the entire FoV to deduce its properties in
the source region. We adopted a heuristic approach, considering
the overall background as the sum of two components: one vari-
able as a function of the time, and the other constant. Each com-
ponent was assumed to have its own spatial distribution that is
not known a priori and was assumed not to vary in shape within
a single exposure.

To produce a model for the steady background component,
we proceeded as follows: (i) We adopted the definition of good
time intervals (GTIs) for the non-flaring background that is
used by 3XMM. (ii) We generated a raw counts map by apply-
ing 3XMM GTIs to the event file. (iii) We removed point-like
sources by excluding circular regions centred on their positions.
To do this, we adopted a cut-out surface brightness level of
0.05 cts square™! arcsec. (iv) We extended the map to the whole
FoV. This operation does not rely on standard spline-fitting algo-
rithms because they often incur large systematics at the edges of
the map (CCD edges, borders of the FoV) and for low statistics.
Instead we smoothed the map by preserving the overall normal-
isation and filled the holes at the positions of removed sources
by 2D linear interpolation. (v) Finally, the resulting map was
divided by the exposure map (all exposure information was taken
into account on a CCD-by-CCD basis.). Points (i) to (v) were
repeated using the simulated image obtained through source
modelling (see Sect. 3.4). Then, this was subtracted from the
map of the steady background component to subtract the tails of
the PSF.

To produce the model for the variable background, we
extracted a raw counts map by applying bad time intervals (i.e.
complementary to GTIs in the exposure) to the event file and
then repeated steps (iii), (iv), and (v) as above, and PSF tail
subtraction. The resulting map includes the variable background
component and the steady component (which is by definition
always present). To produce a map of the variable component
alone, we then subtracted an exposure-rescaled version of the
steady background map.
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Using source models together with the two background
maps, we can recover the map of counts we expect for the entire
exposure. We verified that the residuals obtained by subtracting
the actually observed counts and normalising by the square root
of the expected counts are distributed like a Gaussian.

3.6. Background region

We define as a background region the entire detector. From this,
we cut out optimised circles around sources. As a figure of merit,
we used the error bar we would obtain on an estimate of the
background,

€ C(x) + VB(x)

FoM = s
° B(x)

where C(x) is the overall expected number of source photons
leaking into the background region, x is the maximum number
of leaked photons per source, and B(x) is the number of expected
photons in the background region. According to this definition,
the error bar has two components: a statistical one due to the
Poisson fluctuations, and a systematic one due to the leakage
from sources into the background itself. The two components
are combined linearly through a factor € that weights their con-
tributions. Setting € to 0 would ignore source leakage and con-
sider the entire detector as background. Setting € to 1 would
instead ignore statistical uncertainties and exclude all sources
out to 5arcmin (for technical reasons, we assumed that all the
photons from a source fall within this distance, although this is
not the case for XMM). We calibrated the value of € in order
to balance the need of minimising leakage from sources into the
background and the risk of increasing Poisson uncertainties on
the background in crowded fields by running tests on a set of 200
exposures (including 10000 detections with a large variety in
FoV content and background level). The most robust behaviour
is obtained when € = 0.5. With this choice, the background has
enough statistics (B >9000) in all cases, it is a good representa-
tion of the detector background (B/Bis > 0.15, where By is B
evaluated over the entire detector), and the source contamination
is minimal (C/B < 0.06).

Optimisation of the figure of merit was obtained as follows.
The number of leaked photons as a function of the exclusion
radius was computed for each source based on source models.
The exclusion radius for each source ranged from O to 5 arcmin.
By construction, we required an equal number of leaked photons
for each source (x), which yielded a set of radii that correspond
to an overall source photon leakage. Background counts were
estimated based on background maps. Minimisation of the figure
of merit as a function of the collective leakage of photons from
sources yields the optimised background region.

3.7. Light curves with uniform time binning

Events were selected from the optimised source region, and
a raw light curve was generated with uniform time binning.
We generated a background light curve from the optimised
background region with the same bins. Then we exploited
our knowledge of the spatial (background maps) and temporal
(background light curve) background distributions to predict the
constant and variable background contributions inside the source
region. The counts expected from each component were cor-
rected for GTIs on a CCD-per-CCD basis. Source counts were
then corrected for the PSF tails outside the extraction region,
and for spatial vignetting. For each exposure and camera, for

all detections passing the filter described above, a background-
subtracted light curve was produced with a bin time of 500 s,
5000 s, and optimal uniform binning, which is a source-specific
binning with (on average) at least 25 counts per bin (enough for
the counts to approximate a Gaussian distribution). If a source
is expected to produce fewer than 50 net counts, an optimal bin
light curve was generated with two bins. To limit the number of
bins for the brightest sources, the optimal bin size was always
larger than 5s. We also produced light curves with 10 s bin size.
These are not released, but were used as an input for the analysis
in the frequency domain (see Sect. 3.10).

The error bars were obtained by propagating Poisson uncer-
tainties in the expected background and source components in
each time bin. In particular, because the background accounts
for all or almost all the observed counts, we cannot assume
that the observed excess counts x coincide with the expected
excess counts |, otherwise the Poisson uncertainty would be
null. Instead, we assumed that u = 0.375 + max(x, 0), and the
associated uncertainty dx = +t = +0.375 + max(x, 0). This
solution to the Poisson bias is intermediate between the stan-
dard assumption dx = +/x and that introduced by Mighell (1999)
dx = max(+/x, 1). See also Anscombe (1948).

The cumulative distribution of the rates, that is, the fraction
of time spent by the source below a fixed rate, as a function of the
rate itself was also computed for each light curve as a histogram
with error bars, with a step along the y axis (Fractional time) for
each bin in the original light curve.

3.8. Bayesian block light curves

The Bayesian block algorithm (Scargle et al. 2013) is designed
to provide an optimal representation of a time series as a
sequence of segments over which the underlying signal is con-
stant to within the observational errors. Its application to EPIC
data is challenging because of the high variability of the back-
ground as a function of time. Possible solutions for incorporating
background subtraction in the Bayesian block algorithm were
investigated by Worpel & Schwope (2015) with the specific aim
of detecting transient or eclipsing sources in EPIC data. We
adopted a different approach in which the variable background
count rate was marginalised over.

We implemented a discrete application of the algorithm
by Scargle et al. (2013). Discreteness is introduced through the
definition of an initial set of cells that represent the finest
segmentation that could be achieved by the algorithm. We set
an articulated trigger to define cells: We need at least 50 counts
in the source region, or 50 X k photons in the background region,
where £ is the ratio between the number of counts in the back-
ground and in the source region, and at the same time, the cell
duration must be longer than the frame time. These criteria bal-
ance the need of enough photons for background subtraction in
the Gaussian regime and the time resolution that allows detect-
ing narrow features. The finest resolution that can be achieved
uses the detector frames as initial time cells, but this requires a
careful rethinking of background subtraction in the low-counts
regime.

The initial set of cells is processed by joining in blocks the
cells that have compatible source rates. The positions of edges
between neighbouring blocks is also optimised. Optimisation is
performed according to a figure of merit (fitness function) addi-
tive over the blocks, assuming a prior distribution for the num-
ber of blocks. As a fitness function, we use the logarithm of the
likelihood of the source count rate, summed over blocks. The
log-likelihood of the source count rate is marginalised over the
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distribution of the variable background rate, given the measures
of the number of counts in the source region and in the back-
ground region, and knowing (from background modelling) the
spatial distribution of steady and variable background and the
count rate of the steady background. A Gaussian approximation
for the likelihood profile is used both for the variable background
rate and for the source rate, so that the marginalised likelihood
profile is another Gaussian whose width can be obtained by
simple error propagation. We adopted a geometric prior on the
number of blocks, P(N,) = Py x ¥ where 0 < y < 1, assign-
ing a lower probability to a larger number of blocks. The stan-
dard prior for Bayesian blocks (Scargle et al. 2013) is global,
being related to the number of blocks in the optimal represen-
tation. In our implementation, the value of y was fixed in order
to locally reflect a sigma cut in the separation of blocks: two
blocks were separated if their rates were not consistent within n
sigma. Depending on the threshold for this separation, we gen-
erated two sets of Bayesian block representations, one more sen-
sitive to variability (at the cost of a higher number of spurious
blocks), and the other more robust. The low prior (sensitive)
and the high prior (robust) correspond to a nominal difference
at 30 and 40, respectively, in source rate between neighbouring
blocks. We calibrated them through Monte Carlo simulations of
constant sources to evaluate the number of expected false blocks.
As expected, false blocks are only due to statistical fluctuations
(and therefore only depend on the number of initial cells and
on the prior). As in the case of uniformly binned light curves,
the cumulative distribution of the rates was computed for each
Bayesian block light curve

The Bayesian block representation of the light curve does
not allow distinguishing whether the rate of the source has
changed sharply or smoothly between neighbouring blocks. To
this extent, we introduced a parameter that we call slope (S).
This is the minimum rate of change in the count rate of the
source between two neighbouring blocks. To find S, we shrank
each of the blocks until their associated rates, Ry and R,, were
compatible within 30 or 40 in the sensitive or robust representa-
tion, respectively, assuming that the uncertainty in the rates, 6R,
and 6R,, decreases with time as 771/2, as expected for Poisson
events. Then, we assumed that the rate of the source had changed
linearly for the duration of the two blocks, 7'} + T, compatibly
with the two rates, and obtained

¢ 2 (R, — Ry)*
% (6R x VT7 + R, x \T3)’

For similar blocks that are no- apart (as expected from a source
that undergoes a linear trend in flux, with no background flares),
this relation reduces to

n 2R2—R1
~2(= .
5 (3) T1+T2

We also generated a Bayesian block light curve for the back-
ground. In this case, the Bayesian blocks algorithm reduces to
the standard Scargle et al. (2013) implementation, with Poisson
likelihood and a single scalar time series. The segmentation into
blocks is very different from the one that we obtain for each
source, and it is unique for the entire exposure.

3.9. Energy-resolved analysis

Starting from the event files and source models used for the
full-band analysis, we extracted new event files and generated
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source models in three sub-bands: super-low (0.1-1.0keV, SL),
low (1.0-2.0keV, LO), and high (2.0-12.0keV, HI). As for the
full-band analysis, all sources expected to have fewer than ten
counts in a specific exposure and energy band were disregarded.
We were left with 356 984, 338 869, and 322 281 detections in
the SL, LO, and HI band, respectively. All steps of the energy-
resolved analysis are fully similar to those described above for
the full band. In each energy band, we generated four kinds of
light curves for each source: (i) uniformly binned, with 500 s
bin size; (ii) uniformly binned, optimal bin size; (iii) Bayesian
blocks, sensitive separation level; and (iv) Bayesian blocks,
robust separation level. We analysed 305403 sources in more
than one sub-band and 147316 in all energy bands. For all
sources that were kept in more than one energy band, we pro-
duced hardness ratio light curves starting from uniformly binned
light curves with 500 s binning. Hardness ratios were defined as
an estimator of the ratio of the difference between the net rates
in two bands and their sum,

_Ri-R

HR = ,
R+ R,

where 1 corresponds to the harder and 2 to the lower energy
bands. We used a Monte Carlo simulation to estimate each single
hardness ratio and its uncertainty, taking the error bars in the two
rates into account. We defined the hardness ratio estimator and
its uncertainty as the midpoint and half-width of the smallest
interval with a coverage of 68%.

3.10. Analysis in the frequency domain

For each source, we produced a representation of the time series
in the frequency domain by applying the Fast Fourier Transform
(FFT) algorithm to the uniformly binned light curve with 10s
time bin. All light curves were zero-padded up to 7 ~ 160ks
before applying the FFT. This is longer than any observation
while giving a number of bins that is a power of 2, which yields
a faster FFT computing time. In this way, all the FFTs have
the same format, the same sampling time, and the same size.
This artificial windowing alters the FFT properties. Moreover,
the light curve might have gaps due to gaps in the GTIs, which
also introduces a windowing effect.

3.11. Standard light curves

We also produced light curves with uniform time binning (500 s
and optimal) by following standard data analysis prescriptions
using the SAS software. Data preparation and source selec-
tion were performed as described in Sects. 3.2 and 3.3. Source
events were extracted from the same regions as described in
Sect. 3.4. Background was sampled locally: For each source,
background events were extracted from an annulus surround-
ing the source region. This is the same approach as was used
in 2XMM (Watson et al. 2009), however, while in the 2XMM
case the size of the annulus is the same for all sources, we
decided here to implement a different approach in which the
inner and outer radii are related to each source count rate. We set
the inner radius to be 20% larger than the source region radius
and the outer radius to be the maximum between 40" and twice
the source region radius. This has the advantage of sampling the
background as close to the source as possible, keeping in any
case the source leakage in the background annulus at a low level.
The specific values for the radii were set after extensive testing
on a set of 200 exposures.
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We used the SAS tool evselect to generate light curves for
source and background, and we combined them with the tool
epiclccorr into a background-subtracted light curve, which
also corrects for a number of effects such as vignetting, bad pix-
els, chip gaps, quantum efficiency, and GTIs. These light curves
are released in our archive for comparison purposes only.

3.12. Characterisation of variability

Our STV analysis encompasses a large number of tests for vari-
ability and a set of measurements to extract synthetic infor-
mation from uniform bin and Bayesian blocks light curves,
power spectra, and hardness ratios. All results are stored in the
EXTraS archive and are also included in the headers of the files
themselves.

We fit a series of analytical models of the source rate evolu-
tion to each light curve (both with uniform time bin and Bayesian
blocks). Every single light curve was tested against a constant
and a linear model, including all the light curves extracted in the
three energy sub-bands. Full band light curves were also tested
against more advanced models: a quadratic function, an expo-
nential decay, and local features such as flares and eclipses in
addition to a constant. For each model we extracted the best-
fit value for each parameter and its associated 1o error, the y?
value, the number of degrees of freedom, and the tail probability
for the model.

We provide a number of other variability indices to charac-
terise the light curves. These include the weighted average of
the count rate with its uncertainty; the weighted standard devia-
tion, skewness, and kurtosis of the distribution of the count rates;
the relative variance given by the ratio between the variance
and the average count rate; the relative excess variance with its
uncertainty; the correlation coefficients between the source and
background light curves; the amplitude of count rate excursion
given by (max(rate) — min(rate))/2; the median absolute devia-
tion; and the maximum relative offset from the median given by
max(|rate — median|)/median.

Our characterisation of short-term variability did not take
advantage of tools such as autoregressive models. This is a
promising extension beyond EXTraS.

Other synthetic parameters were extracted by analysing the
cumulative distribution of the count rate. These include the frac-
tion of time spent more than 1, 3, and 5o below and above the
average count rate; the fraction of time spent within 10% of
the median count rate; the width of the range of rates in which
the source spends 90% of its time; the fraction of such a range in
which the source spends 20, 35, 50, 65 and 80% of its time; and
the asymmetry of the count rate distribution in which the source
spends 20, 35, 50, 65 and 80% of its time.

We provide a number of variability indices that are specific
to Bayesian block light curves. These include the number of
blocks; the fragmentariness, that is, the number of blocks per
ks of observation; the steadiness, defined as Y'(rate?/rate?.) per
ks; the minimum time for doubling and halving the count rate in
the light curve (derived from the maximum positive and negative
slope between any two blocks); and the maximum negative and
positive deviation of the rate from the weighted average in sigma
units.

We characterise the spectral variability of XMM sources
with two separate approaches. On the one hand, we fit simple
models (constant and linear) to the hardness ratios light curves,
and on the other hand, we provide a basic characterisation of the
light curves produced in each sub-band, including computation
of excess variance, weighted average, weighted standard devia-

Table 1. Basic facts about the EXTraS STV analysis.

# Selected observations 7007

# Selected exposures 19962
# Selected detections 418387
# Unique sources 297351

# Detections with uniform bin light curves (500 s) 327104 (pn)

225888 (MOS1)

247274 (MOS2)
# Detections with Bayesian blocks light curves 320142 (pn)

221236 (MOSI1)

242056 (MOS2)
# Detections with hardness ratios 154 870 (2 bands)

144293 (3 bands)

tion (and their corresponding uncertainties), median, and median
absolute deviation.

We characterise the power spectra of each source by fitting a
constant+power-law model and a constant + Lorentzian model.
The results of these fits are stored in the archive, in the catalogue,
and in the header of the files themselves.

3.13. Products

The output of the STV analysis of EXTraS consists of (i) a
catalogue that lists all results of the variability characterisation
for all detections included in our investigation. The catalogue
is available as a fits file and is also included in the EXTraS
database. It can be fully searched with an online web form (see
Sect. 7). A light version of this catalogue, that is, stripped down
to the most important quantities, is also available. (ii) A set of
FITS and ASCII files for each source, for each exposure, instru-
ment, and energy band: light curves in the 0.2-12keV energy
range with uniform time bin of 5005, 5000s, and optimal (see
Sect. 3.7); light curves in the 0.2-12keV energy range with
adaptive binning, based on the Bayesian block approach, with
sensitive (30 separation) and robust (40 separation) segmen-
tation of neighbouring blocks; cumulative distribution for uni-
formly binned (500 s) and Bayesian blocks (sensitive and robust)
light curves; background light curve in the 0.2-12keV energy
range with adaptive time binning; light curves in the 0.2—1keV,
1-2keV, and 2-12keV energy ranges with uniform time bins
(500s and optimal); light curves in the 0.2—-1keV, 1-2keV, and
2-12keV energy ranges with adaptive binning (both sensitive
and robust segmentation); hardness ratio light curves (1-2keV
versus 0.1-1keV, 2-12keV versus 1-2keV, and 2-12keV ver-
sus 0.2-1 keV) with uniform time bins (500 s); power spectrum
of the source variability (0.2-12keV); and source and back-
ground region files.

3.14. STV database and its properties

We provide here a very concise statistical analysis of results and
products of the STV analysis to help understand their meaning,
reliability, and usage. An overview of the basic properties of the
STV analysis is given in Table 1.

In Fig. 1 we show the distribution in count rate of detec-
tions included in EXTraS/STV analysis together with the distri-
bution in count rate of detections displaying variability. These
were selected according to different markers for variability. In
the case of light curves with uniform time bins, we used the
p-value associated with a constant model. This is defined as the
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Fig. 1. Top left: distribution in count rate of point-like sources characterised in the time domain. Red: EXTraS/STV analysis. Blue: 3XMM; the
total source sample is shadowed. Top right: same as top left, EXTraS/STV vs. 4XMM. Bottom left: distribution in count rate of point-like sources
displaying variability. Red: EXTraS/STV analysis (p-value p < 1073, according to results of the fit of a constant model on 500 s or optimal time bin,
or with more than one Bayesian block in the sensitive segmentation). Green: EXTraS/STV analysis, based on uniform bin light curves only. Blue:
3XMM timing analysis (p-value p < 1073, according to results of the fit of a constant model). Bottom right: same as bottom left, EXTraS/STV vs.

4XMM. In all panels, all bar items start from the baseline.

probability of observing rates as scattered or more scattered than
those observed when the model holds, and the source is not vari-
able. We selected p < 1073 here, yielding 7279 and 5650 candi-
date variable sources in the 500 s light curves and in the optimal
bin light curves, respectively (9265 candidates when the condi-
tion is fulfilled in at least one light curve, either with 500 s bins or
with optimised bins). In the case of Bayesian block light curves,
a number of blocks greater than 1 is an obvious marker for vari-
ability. This yields 7379 and 14 939 candidate variable sources in
the robust and sensitive Bayesian block segmentations, respec-
tively. In Fig. 1 we include all detections with either p < 107>
in uniform bin light curves or more than one block in the sen-
sitive Bayesian block segmentation, totalling 18 529 candidate
variable detections. In the same figure, we also show the distribu-
tion in count rate of 3XMM-DR4 sources (and variable sources,
according to the 3XMM variability flag), and the same informa-
tion for the recent 4XMM-DRO catalogue, restricted to the DR4
dataset.

The expected fraction of false positives in selecting candi-
date variable sources can be estimated as follows: Based on the
number of light curves with 500s bins and with optimal bins
in our archive (800266 and 797 697, respectively), the assumed
threshold p < 1073 yields about eight spurious candidate vari-
able detections for each sample (~0.1% of the candidate variable
sources) due to statistical fluctuations. In the case of Bayesian
block light curves, as discussed in Sect. 3.16, through extensive
simulations of sources with a constant count rate, we estimated
the number of spurious blocks we expect for each detection due
to statistical fluctuations based on the number of cells in the ini-
tial grid. This yielded 10 (~0.1%) and 1320 (~8.8%) detections
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with more than one expected block in the samples with robust
and sensitive segmentation, respectively.

A basic question regarding the description of variability is
whether it is possible to characterise the variability further if a
light curve is consistent with a constant model. We expect that
a local feature such as a flare might sometimes be detected with
good confidence, even if the global fit of the light curve to a con-
stant is acceptable. This is confirmed by Fig. 2, where it is clear
that a significant flare in uniformly binned light curves (500s
bins) can be missed by the fit to a constant model when the light
curves have a large number of bins. Statistical fluctuations can
lower the global test statistic against a constant for all points far
from the flare, and the contribution of the few discrepant points
to the global test statistic is negligible. In optimally binned light
curves (see Fig. 3), far fewer cases that are compatible with a
constant contain a significant flare. This might be due to the
lower number of bins in the optimal bin size light curves with
respect to those with 500 s bins.

We now compare some variability indicators between uni-
form bin light curves obtained with 500 s binning and with opti-
mal binning. In the first type of light curves we expect many
more frequent departures from the Gaussian regime. The p-value
for a constant model applied to 500 s bin light curves may give an
incorrect indication in a fraction of cases for faint sources. For
sources reaching the Gauss approximation for bin sizes larger
than 500 s, the characterisation based on optimally binned light
curves is more robust. This is shown in Figs. 4 and 5, where we
adopt a threshold at p-value = 1075, implying less than one false
positive when we try to reject the constant model. Sources whose
optimal bin light curves are compatible with a constant while
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Fig. 4. Distribution of the p-value for a constant model as applied to
optimal bin and 500s bin light curves for each source. The threshold
lines at p-value = 107¢ divide the plot into four regions that are colour-
coded as in Fig. 5. Yellow points (2789) in the top left corner corre-
spond to sources whose optimal bin light curves are compatible with a
constant, while 500 s light curves are not. Red points (787 023) in the
top right corner correspond to sources whose light curves are compat-
ible with a constant in both cases. Magenta points (2324) in the lower
left corner correspond to sources whose light curves are not compatible
with a constant in either case. Blue points (2257) in the lower right cor-
ner correspond to sources whose 500 s bin light curves are compatible
with a constant, while optimal light curves are not. See also Fig. 5.

500 s light curves are not (yellow points in Figs. 4 and 5) are
mostly faint and reach the Gaussian approximation for bin sizes
of 2—4 ks, therefore 500 s light curves are mostly not appropri-
ate. Sources whose light curves are compatible with a constant
in both cases (red points) have a distribution of bin sizes that

essentially mimics the distribution of the entire source popula-
tion, with faint sources (with fewer optimal bins) dominating.
Sources whose light curves are not compatible with a constant
in either case (magenta points) are uniformly scattered in the
plot of Fig. 5, indicating that it is easier to detect variability in
bright sources. Sources whose 500s bin light curves are com-
patible with a constant while optimal light curves are not (blue
points) have an optimal bin size that is concentrated beyond 5 ks,
indicating that the 500 s binning is not adequate.

We also compared some variability indicators between
Bayesian blocks and uniform bin light curves with optimal bin-
ning. Figure 6 shows that uniformly binned light curves are often
less effective in spotting localised short features such as flares or
eclipses than Bayesian blocks. Figure 7 shows that a consistent
fraction of sources described by a single Bayesian block have
an associated uniform bin representation that is highly variable.
This may be due to several reasons: If the initial grid for the
Bayesian block segmentation has only one cell, variability can-
not be tested, while optimally binned light curves always have at
least two blocks; a bug in the script that generates the Bayesian
block light curves misrepresents all light curves that should have
as many blocks as initial cells as a single block (see Sect. 3.16).

3.15. Some usage examples

In this section, we provide some usage examples to illustrate
the science capabilities of EXTraS STV products. First, we
give a short account of two investigations that were recently
published by our team: the discovery of an X-ray superflare
from an L dwarf star (De Luca et al. 2020), and the study of
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but are compatible with a constant in their Bayesian block light curve.
The bottom right region includes 3582 sources that are variable accord-
ing to the Bayesian block analysis, but are compatible with a constant
in the uniform bin light curve.

the properties of flares from supergiant fast X-ray transients
(Sidoli et al. 2019). These two cases are selected as a clear
demonstration of EXTraS STV potentialities for the search for
and characterisation of peculiar objects and rare events, and
for the study of the properties of classes of sources. Further
examples are for instance the discovery of X-ray flaring activ-
ity from a young pre-main-sequence star (Pizzocaro et al. 2016),
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Fig. 7. Histogram of the p-value associated with a constant model for
uniform bin light curves with optimal bin size (see also Fig. 6). Sources
that are described by a single Bayesian block are plotted in purple. His-
tograms are normalized to the peak.

the discovery of a puzzling flaring X-ray source in the Galac-
tic globular cluster NGC6540 (Mereghetti et al. 2018), and the
study of the X-ray activity-rotation connection in cool stars
(Pizzocaro et al. 2019). In the last part of this section, we exam-
ine a science project published before the release of EXTraS cat-
alogues: the study of the X-ray variability in a large sample of
stars by Pye et al. (2015). We also compare its results to those
quickly derived from our database (comparison with the recent
4XMM-DRY catalogue is also shown).

3.15.1. Discovery of an X-ray superflare from an L dwarf.

Magnetic activity in stars at the low-mass end of the main
sequence is poorly understood. We cross-correlated the EXTraS
STV catalogue with the catalogue of L- and T-class ultra-cool
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Fig. 8. EXTraS Bayesian block representation of the light curve of the

source 3XMM J033158.9-273925 (pn camera, Obs.Id. 0555780101),

the first detection of flaring activity from an ultra-cool dwarf star of

spectral class L. See text.

dwarfs by Carnero Rosell et al. (2019). This selected 3XMM
J033158.9-273925 (hereafter JO331-27) as a very interesting
case. JO331-27 matches the position of an LO candidate object
within 171. Inspection of EXTraS light curves clearly shows
an X-ray flare (e.g., the Bayesian block light curve is shown
in Fig. 8). The source is located in the FoV of the Chandra
Deep Field South survey, and a large multi-wavelength dataset
is available. As discussed by De Luca et al. (2020), analysis of
these data showed (i) the spectral type to be L1. This is only the
second L dwarf detected in X-rays after a previous four-photon
detection of the binary system Kelu-1 (Audard et al. 2007). (ii)
The flare energetics is in the regime of super-flares, showing
that strong magnetic reconnection events and the ensuing plasma
heating are still present even in objects with photospheres as cool
as ~2100 K. (iii) The flare energy number distribution is incon-
sistent with the canonical power law dN/dE ~ E~2, suggesting
that magnetic energy release in J0331-27, and possibly in all L
dwarfs, takes place predominantly in the form of giant flares.

3.15.2. Statistical properties of flares from supergiant fast
X-ray transients.

The sub-class of high-mass X-ray binaries called supergiant fast
X-ray transients (see Sidoli 2017) shows flaring activity in their
entire dynamic range of luminosities, even outside outbursts. We
used EXTraS STV products to investigate the properties of these
X-ray flares in a sample of nine supergiant fast x-ray transients
(Sidoli et al. 2019). Adopting the Bayesian block decomposition
of the EPIC X-ray light curves, we selected 144 X-ray flares
covering a wide range of luminosities (1032-10% ergs™!), from
quiescence to outbursts. The Bayesian block light curves also
allowed us to measure in a model-independent way the rise time
to and the decay time from the peak of the flares, their dura-
tion, and the time interval between adjacent flares. We also mea-
sured the flare peak luminosity, the average accretion rate, and
overall emitted energy. The observed properties of flares from
supergiant fast X-ray transients are in qualitative agreement with
the expectations of the subsonic settling accretion regime model
(see e.g., Shakura et al. 2012), where the development of flares
is related to the onset of Rayleigh-Taylor instabilities in the hot
quasi-spherical shell of plasma accumulated at the boundary of

the neutron star magnetosphere, resulting in unstable accretion
of the entire shell (see Sidoli et al. 2019, for details).

3.15.3. Variability in a large sample of cool stars

We focused on the sample of 2357 X-ray emitting cool stars
selected by Pye et al. (2015) by matching the HIPPARCOS-Tycho-
2 catalogue with the 2XMM catalogue. In order to study X-ray
variability and flares, Pye et al. (2015) considered all light curves
flagged as variable by the 2XMM catalogue. This yielded 118
light curves. Of these, 22 had spurious variability, which is
related to different issues in the analysis. This left 96 actually
variable light curves, called the cool variable sample (CVS).
As a further step, Pye et al. (2015) visually inspected all of the
remaining 815 light curves that were not marked as variable in
2XMM and found that 12 of them displayed apparent variability.
These were called the cool low variable sample (CLVS).

As a simple exercise, we selected all EXTraS/STV prod-
ucts generated for the same sample of stars using the same data
and searched for variable light curves. First, we cross-matched
the coordinates of all 2357 stars with the EXTraS/STV cat-
alogue by adopting a correlation radius of 15”. Second, we
selected all matches related to the same observation ID in the
two catalogues. We also matched the resulting dataset with the
4XMM catalogue by using the DR4DETID identifier. This exer-
cise yielded 2880 detections with EXTraS light curves of 2039
stars (duplications related to light curves at the single-exposure
and camera level in EXTraS were not included in this count),
including 91 light curves (out of 96) from the CVS and all 12
sources from the CLVS of Pye et al. (2015). We searched for
variability in the resulting sample using the EXTraS/STV output.
As a simple selection criterion, we selected detections whose
EXTraS Bayesian block light curves had more than one block
in the sensitive representation and a tail probability <10 for
a constant model fit to uniform time bin light curves with either
500 s or optimised time bins. This allowed us to select 217 detec-
tions with variable light curves (as above, possible duplications
related to light curves at the single-exposure and camera level in
EXTraS were not included in the count). These include 86 light
curves from the CVS and 11 from the CLVS and 120 additional
variable light curves that are not mentioned by Pye et al. (2015).
We visually inspected the EXTraS/STV results for these 120
detections and identified 108 light curves with genuine variabil-
ity and 12 likely artefacts related to incorrect background sub-
traction during intense soft proton flares or to spurious Bayesian
blocks due to statistical fluctuations in very bright sources (see
Sect. 3.16).

As a further test, we repeated the same exercise using results
from the recent 4XMM-DRO catalogue. First, variable sources
were selected based on the variability flag that is included in the
catalogue (set to true if the tail probability of the source is con-
stant <1 x 107). This yields 109 variable light curves, including
82 light curves from the CVS and 5 from the CLVS, and 22 addi-
tional light curves that are not mentioned by Pye et al. (2015). By
visual inspection, we identified 16 actually variable light curves
and 6 likely artefacts among the latter. We also tried to assume
a different less conservative threshold for variability (tail proba-
bility of a constant fit <1 x 1073). This allowed us to select 155
light curves, including 86 from the CVS, 8 from the CLVS, and
43 additional light curves. Of these, 33 feature apparent vari-
ability, and 10 are likely artefacts. Figure 9 shows the case of
the bright star HD 283810, target of Obs.Id. 0203540501, that
was included by Pye et al. (2015) in their CLVS sample. It is
selected by EXTraS/STV as a variable source, but is not flagged
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Fig. 9. Left panel: EXTraS/STV light curve of the star HD 283810 with uniform time binning (500 s). A large flare is seen in the second half of the
observation. The tail probability of a fit with a constant model is <1072, The flare is missed by the 4XMM variability analysis because it occurred
outside of the GTI (see right panel). Right panel: background light curve of the same observation, taken from the 4XMM products. All observing
times with a background rate exceeding the threshold marked by the blue line are rejected. The time interval of the flare (see left panel) is therefore
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Fig. 10. Number of light curves with at least one negative bin by more
than No and the overall number of bins below this threshold. The hori-
zontal green line indicates the overall number of bins (8 x 107) in 500's
bin light curves, and the green dots show their number at least No
below 0. Similarly, we show the light curves that contain these points in
brown. The vertical separation between green and brown dots indicates
the average number of negative bins per light curve. The number of bins
per light curve increases as the threshold decreases.

as variable by 4XMM. The left panel shows the EXTraS/STV
light curve of the source (pn camera, exposure S003). A large
flare is apparent in the second half of the observation. The
flare was missed by the 4XMM variability analysis because it
occurred outside of the GTI. The observation is affected by pro-
ton flares: the right panel shows the 4XMM background light
curve and the GTI adopted in the catalogue analysis. The result-
ing tail probability of a constant model in the EXTraS/STV cat-
alogue is <1072° (pn camera, light curve with 500's bins), while
in 4XMM (where the flare was excluded) it is ~3 x 1073.

Thus, using the EXTraS/STV catalogue, the number of vari-
able light curves identified by Pye et al. (2015) can be extended
by a factor of two using the same set of observations with rela-
tively little effort. While an astrophysical characterisation of the
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tions below zero of all negative average rates for light curves with a neg-
ative average rate. The histogram is normalised to the peak. Red bars:
light curves with uniform bins of 500s. Blue bars: optimally binned
light curves.

variable stars that were not studied by Pye et al. (2015) is beyond
the scope of this work, the figures reported above show that the
EXTraS/STV catalogue allows us to perform a very sensitive but
robust search for variability in any sample of sources.

3.16. Known problems and caveats

In some light curves, one or more bins can assume negative
values. In principle, this is expected because we often subtract
the background component in a low-count regime. However, the
number of negative bins is larger than expected from simple
fluctuations. Figures 10 and 11 show that there are two kinds
of problems. Figure 10 shows that most light curves that have
bins at least 30~ below 0 have only some such bins on average.
Light curves that have bins at least 100~ below 0 have dozens of
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Fig. 12. Left panel: distribution of the number of cells in the initial grid and its effect on the Bayesian block algorithm (see Sect. 3.8). The dashed
line is an upper limit to the number of blocks that can never exceed the number of initial cells. A bug in the code, described in Sect. 3.16, prevents
us from reaching this line. The distribution in the left panel clearly shows that this bug has no effect on light curves that start from a grid with >10
cells. Right panel: cumulative distribution of the number of initial cells. We show the 0.9 and 0.99 values with solid lines. Currently, about 77% of
the sources are not characterised by Bayesian blocks because their initial grid has fewer than three cells.

such bins. Figure 11 shows that the distributions of the num-
ber of standard deviations below zero of all negative average
rates for light curves with uniform 500 s bins and for optimally
binned light curves have a clearly different shape. The bulk of
the points within 100 from O in the former is not apparent in
the latter; the points beyond 100 are instead very similar. In
many cases, light curves have a few negative bins whose errors
are underestimated due to the failing Gaussian assumption. Opti-
mally binned light curves are indeed less affected by this issue.
In a few cases entire light curves have a baseline much below 0.
This is due to problems in background modelling. This interpre-
tation was confirmed by visual inspection of problematic cases,
which we found flawed by rare issues in the background char-
acterisation such as bright extended sources in the vicinity of
the point source under study. These entries are flagged as bad
(QUALITY_FLAG) in the light version of our catalogue.

We describe below some caveats about the usage of a frac-
tion of Bayesian block light curves. By construction, the number
of blocks in the Bayesian block representation depends on the
initial segmentation in cells (see Sect. 3.8). An initial grid of a
few cells results in a light curve with at most several blocks. This
is the most common situation: 67% of the sources start with an
initial grid made of a single cell, 90% start from 5 or fewer cells,
and only 1% of the sources start from a grid with more than 50
cells (see Fig. 12). The user should therefore check the num-
ber of initial cells through the column BB_LC_NCELLS in the
light version of the catalogue. We also warn users that all light
curves that should have as many blocks as initial cells are mis-
represented as a single block because of a bug in the script that
generates the Bayesian block light curves. As shown in Fig. 12,
this bug has no effect on light curves starting from an initial grid
with >10 cells.

Visual inspection of Bayesian block light curves highlighted
recurring narrow spurious features, both flare-like and eclipse-
like, that are made of pairs of closely separated false blocks.
The occurrence of this feature is strictly correlated to the num-
ber of expected false blocks. The geometric prior in Bayesian
blocks gauges between the sensitivity to weak real features in
the light curve and the robustness against false features. We sim-
ulated constant sources in addition to real observations, span-
ning a wide range of parameters, to estimate the number of
false blocks in each single light curve. This number essentially

depends on the number of cells in the initial segmentation that
generated the light curve. We included these estimates for sensi-
tive (BB_LC3_NFALSE) and robust (BB_LC4_NFALSE) seg-
mentations.

Finally, we include the description of some caveats affecting
our results for few peculiar cases. As reported in Sect. 3.2, and
following 3XMM selections, we excluded time periods with atti-
tude change >3’. These changes can lead to an incorrect coordi-
nate conversion within the SAS tools. During these occurrences,
our event selection, based on celestial coordinates, could fail to
extract events around the selected source but extract events from
a shifted region, thus resulting in spurious variability. We have
provided the user with a column in the light version of the cata-
logue, ATT_FLAG. This reports the maximum attitude variation
during the observation in arcseconds.

Because background maps are produced with a 1 arcmin
smoothing, sources falling at the edge of bright extended sources
can be affected by an incorrect background subtraction. Very
bright flares (>few counts s™") could be underestimated because
we did not consider the loss of counts due to pile-up effects.
Moreover, because we did not treat OOT events, light curves of
sources falling on OOT trails can be contaminated.

Photons from extremely bright optical sources can excite
a significant number of electrons in the X-ray CCDs and can
be (falsely) recognised as (X-ray) events (this phenomenon is
known as optical loading). Sources contaminated by optical
loading do not follow the expected PSF. Therefore our modelling
over- or under-estimates their count rate. The 3XMM catalogue
does not flag such sources.

4. Search for pulsations
4.1. Aims and scope

The main goal is to search for signals in all the 3XMM detection
time series with more than 50 counts in a systematic and auto-
matic fashion. In particular, our search is optimised for coher-
ent signals, that is, signals that are characterised by only one
characteristic variability timescale, as opposed to quasi-periodic
oscillations (QPOs), for example, where an interval of charac-
teristic variability timescales is present. For more than 500 000
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Fig. 13. EPIC power spectra of one of the new faint
(~1.3 x 10%ergss'cm™ 1-10keV flux) X-ray pulsators dis-
covered within the EXTraS project with a period of about 128.5 min,
namely 3XMM J221900.5+722508 (3XMM id. 233383, 4XMM id.
204025302010035). Upper panel: based on 2XMMi/3XMM-DR4
binned light curves (in the specific case, the 3XMM-DR4 time bin is
11.020s); mid panel: based on 4XMM-DR9 pn camera binned light
curve (bin time 3.98 s); lower panel: from EXTraS catalogue (pn+MOS
data, counting 300 photons).

time series and about one million timing analyses, we searched
for coherent signals in a period range spanning from ~150ms
(in the majority of cases) up to the highest value allowed by the
length of each specific time series (observation). In particular,
we worked directly on photon arrival times rather than on binned
light curves in order to optimise the signal search sensitivity that
is strongly dependent on the number of counts and the binning
time, among other things. This is particular relevant for sources
with relatively poor statistics and/or faint signals. In this respect,
we note that the corresponding time series of these sources pro-
vided by the 3XMM-DR4 products are often heavily rebinned,
which hampers a sensitive search for signals; see the upper panel
of Fig. 13 as an example where the signal at about 1.3 x 107* Hz
is not even sampled in the power spectrum of the 3XMM-DR4
light curve. While we drafted this paper, the 4XMM-DRO cata-
logue and products were released. From the point of view of the
analysis discussed in this section, no major changes with respect
to 3XMM-DR4 are registered. In particular, although a differ-
ent rebinning is considered in 4XMM-DRO, including a pn light
curve that is rebinned to few seconds (in most cases 1.46s; see
the central panel and caption of Fig. 13), no search for signal is
foreseen or performed.

Our analysis was carried out on both the pn and the two MOS
detectors individually for about 50% of the total FFTs that were
carried out during the search in order to keep the original time
resolution and to rely upon unbinned data, and merging all the
available data from the three different instruments. Correspond-
ingly, depending on the observational mode and the position of
the source in the CCDs, it is possible to have one, two, or three
EPIC time series for each detection (in a small fraction of cases
more than three time series for a detection are available) in order
to maximise the statistics and therefore the signal search sensi-
tivity. Again, this is rather important for faint sources and/or faint
signals (see the central and lower panel of Fig. 13 as an exam-
ple where the power spectra of the pn only and pn plus MOS
time-series is shown, respectively).
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4.2. Data preparation, filtering, and source event selection

As in the search for short-term aperiodic variability in the previ-
ous section, we used the PPS event files. For the pn data we used
the same reprocessed data as described in Sect. 3.2 in order to
cope with the counting-mode bug that causes incorrect time tag-
ging of events and strongly affects the search for periodic signals
and that is not filtered for time intervals affected by high particle
background. Good events were selected using the PPS extraction
flag parameters, which for the pn camera exclude events near
the CCDs borders. By using the events flag #XMMEA_2 in the
SAS tool evselect, we selected sources near borders. For these
sources we performed an additional extraction with the standard
#XMMEA_EP & PATTERN<=4 filters, as described in the offi-
cial SAS threads’. For each source we used the GTIs, the time
intervals during which cameras are properly working and look-
ing at the target field, which correspond to the CCD in which the
source is observed. Sources that fall near the borders may have
photons in two or more CCDs. In these cases we used the GTI
of the CCD that contained most of the photons. When more than
one exposure in a single observation was available, the events of
single sources were merged with the SAS tool merge if the time
resolution used in each exposure was the same. Otherwise, the
event files of different exposures were analysed separately. After
extraction and before the search for signal, we shifted the time
of arrival (ToA) of each event to the Solar System barycenter
reference frame using the SAS task barycen and the relevant
*ROS.ASC PPS file. About 99.7% of the event lists were suc-
cessfully corrected. When the file was missing (and a correction
was not possible), the timing analysis was carried out while a
warning flag was set and added to the final database for future
checks. For the correction of each events file we used the central
coordinates of the corresponding circular extraction region.

4.3. Search for a coherent signal

The pn and MOS event files extracted and prepared as described
above were then ingested into the signal search pipeline. This
pipeline is structured as described below.

Step 1. It sets the file groups (in order of decreasing time
resolution) for the file events of each source in order to cope
with the different observational modes and sub-modes of each
EPIC detector.

Sub-modes affect the time resolution of events, which is an
important parameter for the timing analysis: the better the reso-
lution, the higher the frequency range in which we can search for
signals. For a given source, the pn and MOSs can have different
time resolution, and different sources within the MOSs can have
different time resolutions depending on the CCD in which they
lie. For each source, a decision tree has therefore been imple-
mented, starting from the instrument and/or science mode event
file with the highest time resolution and subsequently adding all
the other instrument and/or science mode event files (whenever
available) with lower resolution. This approach optimises the
signal search capability in different frequency intervals based on
the specific sub-modes of each single source. Correspondingly,
for each source in a given observation, we can have from one to
several groups of event files where the signal search is applied.
When the ratio of the length of the observation and the sam-
pling time is higher than 2 million, the analysis is split into two
modes: The first mode is aimed at keeping the maximum Fourier

> https://www.cosmos.esa.int/web/xmm-newton/
sas-thread-timing
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Fig. 14. Left panel: EPIC pn power spectrum of 3XMM J004301.4+413016 (Obs. Id. 0650560301) unbinned events, the first accreting NS found in
the nearby galaxy M31 (Esposito et al. 2016; Zolotukhin et al. 2017; see also Sect. 4.6). One peak is above the 3.50 detection threshold (solid red
line) and corresponds to the 1.2 s period. Right panel: EPIC pn power spectrum of the same source for an earlier pointing (Obs. Id. 0112570101)
during which the signal is not detected: the 30~ upper limits (red dots) are obtained. Upper limit units are in %/100 (e.g., 0.1 stands for 10%).
The increasing values towards high frequencies are due to the x/ sin x term in the relation between the signal amplitude (pulsed fraction) and FFT

powers (Leahy et al. 1983; see also Sect. 4.7).

resolution, 1/7, and rebinning the original sampling time such
to have only one interval with two million or fewer time bins.
The second mode keeps the original time resolution and cuts the
observation into two or more time intervals, each one with 2 mil-
lion time bins.

Step 2. Tt carries out the signal search with the validated
detection algorithm for all the groups with more than 50 counts.
Different algorithms were taken into account, such as the Z]2v
(Buccheri et al. 1983), the Rayleigh periodogram, and the FFT.
For several reasons, an FFT was considered the best solution for
the specific task or project. The choice was driven by the CPU-
time consumption and frequency resolution among other things,
independent of the signal frequency itself (1/T rather than P?/2T,
where T is the observation length). The adopted FFT includes a
logarithmic smoothing algorithm in order to evaluate the spec-
trum continuum plus a detection algorithm that derives the main
signal parameters from the Fourier transform properties (such as
period, pulsed fraction, and statistical significance). The smooth-
ing module is needed in order to cope with non-Poissonian
power spectrum noise components, which might be present as
a consequence of source intrinsic aperiodic variability or back-
ground radiation flares (Israel & Stella 1996; note that the dif-
ferent length of pn and MOSs time series also introduces spu-
rious aperiodic variability in power spectra). Correspondingly, a
local (frequency-dependent) power threshold level for candidate
signals is computed. For the project, we set a 3.50 detection
threshold assuming a number of trials equal to the number of
FFT frequencies in each power spectral density (PSD; see also
Sect. 4.7). The inferred main signal parameters are the period
1/v; (where v; is the jth Fourier frequency), the pulsed fraction
(defined as the semi-amplitude of the sinusoid divided by the
source average count rate), and the probability of being a noise
fluctuation. For the latter quantity, for which we cannot apply the
properties of the y? statistics, we refer to Israel & Stella (1996).
Upper limits to the pulsed fraction are inferred at the 30 level if
no significant peak is found in the PSD. For the source groups
with fewer than 50 counts a FFT is computed but no search is
attempted due to the poor statistics.

Step 3. It further inspects the candidate signals by means
of a Rayleigh periodogram and inferring the pulse shape, pulsed
fraction, and period. With the aim of confirming the goodness
and source-origin of each detected signal, a number of follow-
up analyses were carried out. These include a search for spuri-
ous signals with similar frequency in the background event file
(one for each CCD and after removing the extraction regions of
all detected sources in it), a Rayleigh periodogram with a slight
overestimation (about a factor of 10) of the period Fourier reso-
lution (P?/2T), and a light curve folded on the detected period.
The latter algorithm does not have an automatic routine to decide
whether the detected peak is intrinsic to the source (true) or spu-
rious (false). The decision is left to the archive user and to a more
accurate analysis (see also Sect. 4.7).

Step 4. 1t creates the database and products. We divided the
information contained in the catalogue into four categories: (1)
Observation (OBSID) parameters, (2) single source (SRC) infor-
mation, (3) parameters of the periodic signals search, and (4)
peak parameters. For the last item, different information is stored
in the catalogue depending on whether a peak is found above the
statistical detection threshold. If no signal is found, the analysis
efficiency was recorded, measured in terms of the percentage of
Fourier frequency with upper limit values below 100%, together
with the highest value of the ratio of the detection threshold and
the powers in the FFT. Furthermore, for each group of event
files the following plots were generated (in gif format): the light
curve, the power spectrum with the 3.50 detection threshold if
at least a peak is found, or the 30~ upper limits in the case of neg-
ative detection (see Fig. 14). The Rayleigh periodogram carried
out around the detected signal and the folded light curve were
also stored.

4.4. Products

The products of our search for periodic signals consist of (i) a
PSD per detection, (ii) a discrete periodic search (DPS) with the
signal detection threshold, (iii) a DPS with the pulsed fraction
(PF) upper limits (if no significant signal is found), (iv) a folded
light curve (for each signal found), and (v) a catalogue that lists
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Fig. 15. Comparison of period distributions between recorded peaks
(above the 3.5¢0 threshold) over observations affected by counting-mode
switches (blue bars) and a cleaned sample of observations that is not (or
almost not) affected by the counting-mode switch (red bars).

all results of the search for periodic variability, the parameters
used for the search, in particular, the smoothing width of the
DPS, the probability of the power spectra being chi-squared
distributed, the time resolution of the search, its Nyquist fre-
quency, the quantity of frequencies analysed, and the quantity of
PSD used in the analysis. The most relevant information about
the analysed source is listed there as well: its unique identifier,
its celestial coordinates, its International Astronomical Union
name, the OBSID of the specific detection, the quantity of signif-
icant peaks in its DPS or the efficiency of the PF upper limits (if
no peaks were detected), a flag indicating whether the event ToA
was shifted to the Solar System barycenter, the instrument that
made the current detection, the best period found, its amplitude,
the probability of the signal being noise, and if there were no
peaks detected, then the ratio of the detection threshold and the
power of the highest peak found; and if a signal was detected,
its associated power and its Fourier frequency. The catalogue
also contains information about the observation in which the
source was observed: its exposure time, the quantity of events
in the source region, the CCD in which the source is located,
a flag indicating if there is a CCD border near the source (see
Sect. 4.2), the observation pointed object, and a link to the Sim-
bad database® for the source position. A detailed description and
full list of all the catalogue columns and the catalogue itself are
included in the EXTraS database. This is fully retrievable via an
online web form (see Sect. 7.1).

4.5. Statistical properties

In order to validate the reliability of the catalogue parameters,
a number of statistical checks were made and the results are
briefly outlined below. As a first step, the distribution of all sig-
nals found within the whole 3XMM-DR4 dataset by the pipeline
was extracted. This is shown in Fig. 15 (blue region). The main
feature is the relatively large and high (in terms of number) peak
at ~100 s, which is mainly composed of spurious signals that are
due to the counting-mode switch that still affects the results. This
is also emphasised by superimposing the distribution of peri-

% http://simbad.u-strasbg.fr/simbad/
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Fig. 16. Distribution of the average 30 upper limits to the pulsed frac-
tion (defined as the semi-amplitude of the sinusoid divided by the source
average count rate) as inferred for the single-interval FFTs where no
signals have been detected.

ods detected in observations that are not affected (or are slightly
affected) by counting-mode switches (red region). The spurious
signals are present in the pn and pn plus MOS time series FFTs
(see also Sect. 4.7). The second less evident feature in the sig-
nal distribution is for long periods above about 5.000-10.000s.
These candidate signals are partly due to spurious detections due
to intrinsic aperiodic variability of the sources (affecting the low-
frequency part of the FFTs) and partly due to time intervals that
are affected by high particle background (often related to the
counting-mode switch). However, after inspecting a large sam-
ple of these signals, we found that there are also genuine signals,
although the spurious peaks constitute the majority. The third
distribution peak is in the range of 5-15s and is dominated by
XMM observations of known rapid pulsators (mainly magne-
tars). In all cases, a visual inspection is strongly recommended.

For all the FFTs (in the maximum Fourier resolution mode)
for which no signal was detected, the timing analysis capabil-
ity of obtaining meaningful constraints on the average values
(above all the Fourier frequencies) of the 30~ upper limits were
derived and stored in the catalogue. The distribution of the aver-
age values of the 30 upper limits is shown in the bottom left
panel of Fig. 16. About 38% of all the FFTs have PF upper lim-
its (ULs) below 100%. In the best (a few) cases, ULs close to
1% are obtained (for the pulsed fraction, we adopted the defini-
tion of the semi-amplitude of the sinusoid divided by the source
average count rate).

Finally, the above defined pulsed fractions of detected sig-
nals were plotted with respect to the total counts (of the cor-
responding time series) for periods in observations with none
or moderate counting-mode switches (red dots and histograms
in the bottom right panel of Fig. 17) and for periods in obser-
vations that are highly affected by the problem (blue dots and
histograms). The comparison of the two samples clearly shows
that for time series with decreasing statistics, the spurious signals
have large pulsed fractions. Although these findings confirm that
the majority of signal detection in the ~20-200s range is from
spurious signals, genuine signals in the same period interval can-
not be excluded. Correspondingly, we decided to keep all the
detections in the catalogue. We did not reject any period range.
More in general, these findings further strengthen the need of
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Fig. 17. Distribution of all detected period pulsed fractions (defined as
the semi-amplitude of the sinusoid divided by the source average count
rate) vs. source counts. The blue dots correspond to observations that are
affected by counting-mode switches. The red dots correspond to peri-
ods detected in observations that are not (or almost not) affected by the
counting-mode switch. Histograms of the PFs and counts are presented
at the top and left, respectively, for the two datasets.

carefully inspecting the signal(s) in the catalogue that one might
be interested in.

A final check concerns the capability of the smoothing algo-
rithm to recover a white-noise FFT from a noisy FFT in which
additional non-Poissonian noise components are present. This
control was conducted by means of a Kolmogorov—Smirnoff
(K-S) test in which the original FFT was locally (for each
Fourier frequency) normalised to the obtained smoothed power
spectrum continuum and multiplied by 2N (where N is the num-
ber of averaged FFTs) and finally compared with the statistical
properties of a pure white-noise FFT (see Israel & Stella 1996
for extensive simulations and checks). In this framework, K-S
numbers of the statistics close to 1 mark a good agreement, that
is, the capability of the smoothing algorithm to model the power
spectrum continuum well. As expected, the greatest part of the
smoothed FFTs has K-S probabilities close to one. The num-
ber decreases for decreasing probability values. We note that the
FFTs in which signals are detected are less cleaned on average.
the smoothing algorithm is less efficient in modelling the peaks
themselves (as expected). Correspondingly, it is worth empha-
sising that a low K-S value in the catalogue for an FFT with a
signal does not necessarily mark a failure of the smoothing algo-
rithm. We emphasise that the K-S is mainly used as a control
test to confirm whether there are substantial issues in running
the algorithm, and it does not affect the solidity of the results in
any way.

4.6. The case of M31

The EXTraS catalogue for periodic variability has a huge poten-
tial for new discoveries, as demonstrated by our detection of pul-
sations in the ultraluminous X-ray sources (ULXs) NGC 7793
P13 (Israel et al. 2017b) and NGC 5907 ULX-1. The latter is
the most extreme accreting pulsar ever observed (Israel et al.
2017a). We do not describe these findings in this section, but
show and briefly discuss the case of the nearby Galaxy M31.
With tens of XMM archival observations, its relatively large

number of X-ray sources, and properties similar to those of the
Milky Way, M31 is one of the best regions of the sky in which
to search for X-ray pulsations. In particular, despite the sim-
ilarities with the Milky Way and the extensive monitoring of
M31 since the Einstein mission, no accreting X-ray pulsar was
found before the beginning of the EXTraS project. Within the
project, 85 pointings of M31 have been analysed, and signals
were searched for among 14438 detections (with more than 50
counts) and 36584 FFTs. About 860 peaks above the 3.50 limit
have been found for 498 sources. When objects with known
periodicities (mainly orbital periods) were removed, only two
sources showed convincing signals in their power spectra. These
objects are 3XMM J004301.4+413017 (hereafter J004301) with
aperiod of about 1.2 s and 3XMM J004222.9+411535 (hereafter
J004222) with a period of about 464 s. No periodicity is reported
for them in the literature. In Table 2 we list the main parame-
ters of the EXTraS catalogue for the filtered signals detected by
the pipeline in M31 (see also Sect. 4.7 for a comment on the
low-probability values of J004222). The “Prob.” column reports
the probability of the detected peak to belong to the power esti-
mate noise distribution. Values above 1 are often due to the pres-
ence of strong non-Poissonian noise components lying below the
peak(s). Below we report the main characteristics of the latter
two sources and the corresponding signals.

3XMM J004301.4+413017. The 1.2s period signal from
this source testifies to the spin of the first accreting X-ray pulsar
ever discovered in M31 (Esposito et al. 2016). The 1.2's coher-
ent signal is affected by the Doppler motion of the neutron star
around its companion in a 1.27-day orbit. Seven further detec-
tions of the 1.2s signal were obtained after correcting for the
orbital motion in the event files of all the M31 pointings where
J004301 was detected (see also Fig. 18 and the upper left inset).
This allowed the timing parameters to be sampled as a func-
tion of time over a baseline of about 11 years. The nature of the
binary system is still unclear and ranges from an intermediate-
mass X-ray binary similar to Her X-1 in our Galaxy to a pecu-
liar low-mass X-ray binary such as 4U1822-37 or 4U1626—
67 to the slowest spinning neutron star in a globular cluster
(Esposito et al. 2016; Zolotukhin et al. 2017). Regardless of its
real nature, J004301 represents a milestone in the study of extra-
galactic X-ray pulsars.

3XMM J004222.9+411535. The nature of this source is
unclear. In particular, it might be a super-Eddington accreting
neutron star or black hole at the distance of M31 or a foreground
closer cataclysmic variable. Correspondingly, the ~464 s signal
might be ascribed to the spin of an X-ray pulsar or the orbital
period of a compact low-mass X-ray binary, if at the distance of
M31, or to the spin of an accreting white dwarf (likely an inter-
mediate polar) if within the Milky Way (see Fig. 18 and upper
right panel of Fig. 19). A more detailed analysis of the whole
sample of XMM data for J004222 has revealed that the modu-
lation is detected at high confidence level in three observations
over a baseline of one year, during which the flux was signif-
icantly higher than the remaining pointings and with virtually
no change in the period over the same time interval. All these
findings together disfavour the super-Eddington accreting X-ray
pulsar scenario.

During the last year of the EXTraS project, we followed
two distinct data analysis approaches. We started analysing the
new archival XMM observations of M31 that are not included in
the 3XMM-DR4 release, and we developed more sophisticated
timing analysis pipelines aimed at taking the possible presence
of a strong period first derivative of the putative signal and/or
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Table 2. M31 EXTraS signals.

Obsld Inst. N, Peaks  Period  Frequency PF Prob. Power
# # (s) (Hz) (X100 %)
3XMM J004301.4+413017
0650560301 EPXPN 1286 1 1.2038 0.8307 0.44 3x 1078  60.07
0505720301 EPXPN 870 1 1.2036 0.8309 0.42 3x 107 46.45
3XMM J004222.9+411535
0600660501 EPXPN 13463 1 457.9091 0.00218 0.16 87.63 7091
— EPXPNMIM2 22843 1 463.0261 0.00216 0.51 1.17 149.61
0650560601 EPXPN 10623 2 469.0776  0.00213 0.15 0.30 82.35
— EPXPN 10623 2 463.4261 0.00216 0.18 31.74 124.56
— EPXPNMIM2 18042 3 468.1143  0.00214 0.42 0.39 133.64
— EPXPNMIM2 18042 3 463.0261 0.00216 0.48 4.08 176.06
— EPXPNMIM2 18042 3 232.7782 0.00430 0.34 4.30 86.55
§ Corrected
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Fig. 18. XMM pn plus MOSs cleaned image of Obsld 0112570101 (64 ks effective exposure time) for the galaxy M31. The insets show the
pn power spectra (solid black lines) together with the local 3.50 detection threshold (solid blue lines) obtained from the unbinned event lists
of the three pulsating sources discovered during the EXTraS project and discussed in Sect. 4.6: J004301 (Obsld 050572030), J004222 (Obsld
0600660401, 0600660501, and 0650560601 together) and J004232 (ObsId 0764030301) from top to bottom. In the cases of J004301 and J004232,
the discovered X-ray pulsars revolve around a companion star. In the corresponding insets we show the power spectra with (corrected) and without
(raw) the best inferred orbital corrections (shifted by 100 in power on the y-axis for clarity).

an orbital motion of the compact object (causing the signal)
around its companion star into account. During this process, we
detected a new signal from the same source, namely 3XMM
J004232.1+411314 (hereafter J004232) by using the EXTraS
pipeline on new archival data and by applying the newly devel-
oped pipelines to old data. Although this result is not included in
the EXTraS catalogue, we briefly comment on it because it is a
natural evolution of the project.
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3XMM J004232.1+411314. Pulsations at about 3s have
been detected from this bright hard X-ray source located at 3.7
from the bulge of M31, and it is known to show dips with a
likely orbital period of about 4.01h (Rodriguez Castillo et al.
2018; Marelli et al. 2017). By correcting the archival data for
the unknown orbital parameters, we detected the 3 s signals from
nine datasets over a baseline of 16 years (see also Fig. 18).
J004232 is another milestone in the study of extragalactic X-ray
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Fig. 19. Cumulative power spectrum of pn plus MOSs data for observa-
tions 0600660401, 0600660501, and 0650560601 of J004222. Superim-
posed, we show the local 3.50 detection threshold (solid red line): both
the 464 s fundamental and first harmonic peaks are detected at a ~60
confidence level. The light curve folded to the best period is shown in
the inset for the same data.

pulsars. It is the first low-mass X-ray binary hosting a young
magnetised neutron star (rotating at or close to its equilibrium
period Peqy) outside the Milky Way, a rare evolutionary path for
a binary system. Alternatively, it might be a mildly magnetised
NS (rotating close to P.q; Rodriguez Castillo et al. 2018).

4.7. Known problems

As for any adopted approach or algorithm, a number of assump-
tions and/or approximations potentially affect the signal search
capability in this case as well. We discuss these below.

Background. FFTs have been obtained without taking into
account the background component, mainly because a relatively
constant count rate background level, even when it represents a
significant fraction of the periodic source count rate, does not
affect the powers of the noise and of the signal. The statistical
significance of the signal is not affected either. What is affected
is the pulsed fraction of the signal, which must be evaluated
in a different way by the catalogue user. The situation is dif-
ferent for a highly variable background (proton flares), which
introduces non-Poissonian components in the power spectra.
Nonetheless, the detection algorithm we used takes into account
any additional noise components (regardless of their instrumen-
tal or source-intrinsic origin). On the other hand, the advantage
of considering the whole observation length is reflected in a
higher Fourier resolution (important in the search for coherent
signals). Correspondingly, the pulsed fractions stored in the cata-
logue represent a lower limit and need to be carefully inferred by
the catalogue user by subtracting the corresponding background
level.

Number of trials. In principle, the number of trial periods
that should be considered to infer the probability of each candi-
date signal to be a noise fluctuation is the total number of Fourier
frequencies in all the FFTs carried out in the whole project. How-
ever, this precept cannot be applied for two main reasons. One is
that the total number of searched sources and Fourier frequen-

cies are unknown until the end of the project (the search for
coherent signals in the XMM archive is an ongoing project, and
the total number of final trials is therefore still unknown). More
importantly, the second reason is that a good number of sources
has been observed more than once with Chandra and/or XMM-
Newton (or with other missions). We therefore preferred to select
the candidate signals based solely on the statistical properties
of each individual time series so as to leave open the possi-
bility to later confirm the recurrence of the same signal within
the project or confirm based on data from other missions (Swift,
NuSTAR, Suzaku, ASCA, etc.). This recipe has been adopted for
a similar project on the Chandra archive, namely CATS@BAR
in Israel et al. (2016), and it proved to be rather efficient, with
about 10 signals confirmed by further Chandra pointings car-
ried out during the 20-year interval of the project, and about 20
signals confirmed by archival data from other missions and/or
follow-up observations. Furthermore, in the case of XMM, the
goodness of a candidate signal detected in the time series of one
EPIC detector can also be verified by means of the other cameras
within the same observation.

Spurious Signals. As already discussed above (see
Sect. 4.2), independently of the other work packages of the
EXTraS project, we found several spurious signals in those
observations during which EPIC cameras switched to the so-
called counting mode. Correspondingly, in order to minimise
the spurious signal and maximise the signal detection capabil-
ity of the pipelines in the affected period interval (mainly in
the ~20-200s interval), we relied upon reprocessed data pro-
vided within the project. This solved the problem for the great-
est majority of the time series. Still, a significant fraction of
spurious detections occurred within the same period interval for
reprocessed data due to the timing properties (distribution and/or
length) of the GTIs introduced to correct for the counting-mode
switches. Nonetheless, these spurious signals are relatively easy
to spot: First, in most cases they present a very wide profile in the
PSD (similar to a QPO component), and second, they are often
present in other sources of the given observation. Generally, we
urge users to carefully inspect the corresponding PSDs of the
signal under investigation (verifying if similar signals have been
detected in PSDs of other sources of the pointing).

Low-frequency signal sensitivity. The FFT capability of
recovering the signal power, and therefore the intrinsic signal
detection efficiency, is known to be maximum towards the first
Fourier frequencies due to the (x*/sin’ x) term in the pulsed
fraction formula (see Eq. (10) and Fig. 3 in Leahy et al. 1983;
x = mj/N, where N is the number of time bins and j the jth
Fourier frequency). However, the logarithmic smoothing algo-
rithm adopted here (in order to cope with the low-frequency
noise) is such that there is a significant decrease in signal detec-
tion sensitivity in the same frequency interval if low-frequency
noise components are present in the FFT. Correspondingly, it
is very likely that many low-frequency signals have not been
detected by the algorithm, even though they can easily be spotted
by a visual inspection. Moreover, the algorithm provides under-
estimated probability values for detected signals at low frequen-
cies, in particular when low-frequency noise components are
present. Correspondingly, no probability filter has been applied
to the detected signals and all the detections have been stored in
the catalogue. Therefore low-probability values in the catalogue
for detected signals at low frequencies do not necessarily imply a
weak or spurious detection: A visual inspection is strongly sug-
gested in this case as well.
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Finally, we note that different new versions of the catalogue
and products have been obtained with the aim to mitigate some
of the aspects and limits we have presented in this section. In par-
ticular, we mitigated the counting mode effects and increased the
capability of detecting low-frequency signals (see also Fig. 15).
Relying upon a personal effort basis, we will try in the future to
update and upgrade the EXTraS database.

5. Search for new transients
5.1. Aims and scope

The goal is to find new X-ray transient sources, that is, sources
that can be detected in a short time interval, but not by a time-
integrated analysis of the whole XMM observation. This hap-
pens to strongly variable sources that are too dim to emerge from
the background of a long observation or that are bright enough
only during periods of high particle background that is removed
by the standard analysis. Such sources are thus not listed in
the XMM serendipitous source catalogue. We implemented a
detection algorithm that (i) applies existing source detection
tools to time-resolved images, and (ii) compares the positions
of the detected sources with those of the source list included in
the PPS products of the full observation. To identify the time
intervals containing the flare candidates, we applied a Bayesian
block analysis (Scargle et al. 2013) of time variability in differ-
ent regions of the EPIC detectors. The search for short X-ray
transients was performed by systematically running our software
pipeline on all the XMM-Newton observations from which the
3XMM-DRS5 catalogue (Rosen et al. 2016) was derived. After
this step, we carefully selected the high-confidence transients
through visual screening of the pipeline products in order to dis-
tinguish astrophysical transients from spurious transient candi-
dates and to study them in detail. Our search can be divided into
different steps that we describe below.
(i) Data cleaning and preparation. The aim is to select, filter, and
format the data of the observations for the analysis.
(i) Time interval construction and source detection to be applied
to these intervals. Depending on the selected options, the
time intervals can have a fixed or variable (optimised through
a Bayesian block analysis) duration, and the detection algo-
rithm can also operate with different parameters with respect
to the full observation.
Position matching to identify transient sources. The aim is
to compare the source lists obtained in the full observation
(list present in the PPS products) and in each time interval in
order to identify new sources, which we define as transients.
(iv) Position matching to compare results in different instru-
ments, bands, and catalogues. They are needed to identify
the presence of the same transient or variable object in dif-
ferent lists of candidates obtained in the same observation
with different options.

(iii)

5.2. Overview of the pipeline

The software tools run by our pipeline are combinations of C-
shell scripts, C++, and Python programs and already existing
FTOOLS (HEASOFT version 6.15.1), and SAS (version 14.0)
tasks. The datasets selected for our analysis include observations
of different durations, operating modes (full frame, extended full
frame and large window for the pn, full frame and, partially, any
other mode for the two MOSs), and targets (young star clusters,
nearby galaxies, and extragalactic fields, including multiple vis-
its of the same objects, in some cases at different off-axis posi-
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tions). Several fields are very crowded and contain regions of
bright diffuse emission.
Here is a summary of the main steps of the pipeline:

Step 1. Production and standard cleaning (PATTERN 04
for the pn and 0-12 for the MOS, FLAG =0 to avoid pixels
close to CCD boundaries and dead columns) of the event file.
The pn raw data (at ODF level) were reprocessed in order to
correct the PPS event files for the counting-mode bug reported
in Appendix A. The time intervals with a high background rate
were not filtered out. In order to maintain consistency with other
work-packages, we decided to barycenter the data, that is, cor-
rect the arrival time of each event for the satellite orbit, as if
it were detected in the reference frame of the Solar System
barycenter.

Step 2. Source detection based on the SAS emldetect task
was performed on snapshot images obtained by dividing the
observations into adjacent time intervals of a fixed duration,
or into variable time intervals optimised through a Bayesian
block analysis. To maximise the sensitivity, we decided to anal-
yse the data of the combination of the three EPIC cameras,
selecting the seven energy bands included in the 3XMM-DRS
catalogue (Rosen et al. 2016): 0.2-0.5keV; 0.5-1 keV; 1-2keV;,
2-4.5keV; 4.5-12keV; 0.5-4.5keV; and 0.2-12 keV.

Step 3. Matching positions of all point-like sources (i.e. with
null extension according to emldetect) detected at step 2 with the
reference sources available from PPS products. When no coun-
terpart (within a given tolerance accounting for both statistical
and systematic uncertainties) is found, a “’transient”flag is set.

Step 4. Identification of transient sources, avoiding duplica-
tions within the same observation (transient sources with con-
sistent positions detected in different snapshots are considered
the same object, and the time intervals of these snapshots are
registered). A transient is defined as any source flagged as
“transient”? at step 3 and with a detection likelihood above a
given threshold (DET_ML > 6, the standard detection threshold
adopted for the XMM-Newton source catalogues).

5.3. Time intervals with fixed duration

As a first step, we implemented a software pipeline to perform
the source detection on images of fixed time duration and com-
pare its output with the source list of the full observation that
is included in the PPS products. We define transient candidates
as all the sources detected in at least one time interval, but with
no counterpart in the PPS source list. This pipeline was system-
atically run on all EPIC observations included in the 3XMM-
DRS5 catalogue (Rosen et al. 2016) with time intervals of 1000
and 5000s. This analysis required more than 45000 comput-
ing hours, and produced a very large number of transient candi-
dates: 104 583 and 95 410 sources for the 1 ks and 5 ks time bins,
respectively. Because only point-like sources are expected to be
variable, we could consider as promising transient candidates
only those with EXT =0, but their number was still very large
(80211 for 1ks and 60883 for 5ks) and the manual screening
of a random sample unveiled a very high fraction of false posi-
tives (mainly spurious detections close to bright and/or extended
sources).

7 http://xmm-tools.cosmos.esa.int/external/sas/
current/doc/emldetect/node3.html
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5.4. Variable time intervals

Instead of searching for transients by dividing the observations
into many intervals of equal duration and analysing the point
sources in each of these snapshots, it is more convenient to per-
form this analysis only for those time intervals that contain an
indication for the presence of a variable source. Determining
the best interval for the analysis is indeed a key aspect for the
detection of transient sources. For this purpose, we used the
Bayesian block algorithm (Scargle et al. 2013). Bayesian block
is a well-known adaptive-binning algorithm that finds the statis-
tically significant count rate change-points by maximising the
fitness function for a piecewise-constant representation of the
data, starting from an event list. The time interval of an active
transient is then identified by two count-rate change points.
Specifically, for each observation we divided the active FoV into
many small partially overlapping regions, with a size comparable
to the EPIC PSF (about 10000 30" x 30" regions in the current
version). For each region, we independently ran the Bayesian
block algorithm, finding change points in which the count rate
varied significantly. We defined A as the average rate of the whole
signal during a block; in the case of an ideal background with a
constant count rate when there is no active transient, A = Ag (A,
this parameter represents the background average rate of events
during the block). In the case of EPIC data, the background sig-
nal is variable and its count rate is seldom constant, especially
over long time intervals, that is, Ag = Ag(¢). We therefore modi-
fied the Bayesian block algorithm to remove the effects of back-
ground variations. We started by noting that a non-stationary
Poisson signal with a time-dependent count rate A= Ap(f) can
be transformed into a stationary Poisson signal by introducing
the time transformation

7t = f Ap(z)dz. (1
0

We defined #; the ith time series of the arrival times of n Poisson
events detected between the start time <#; and the stop time >7,.
When we start from the time series ¢; and transform it in the
time series #; using Eq. (1), the count rate of the Poisson sig-
nal is constant in the new system if the only source of events is
the background. Any variation in count rate found in this space
corresponds to a variation with respect to the background count
rate. It is clear that the accuracy with which the variability of the
background is measured becomes fundamental to finding these
change points. We can then run the normal Bayesian block algo-
rithm in this transformed space. When we found a block corre-
sponding to a possible transient, we transformed it back into the
original time reference and obtained the optimal time window.

Regions with no significant variability with respect to the
local background light curve return only one block covering the
whole observation, while regions containing candidate transients
return more blocks. Our modified version of Bayesian block
takes time-varying exposure into account, resulting, for exam-
ple, from changes in attitude or gaps or defects of the CCD,
and highly variable background such as that found during proton
flares in XMM-Newton data.

To properly evaluate the background light curve and to min-
imise the contribution from the possible variability of known
sources, the Bayesian block algorithm was applied only to the
events that are not included in sufficiently large (depending on
the source intensity) regions around the point sources detected
in the full observation. To examine these regions as well, where
interesting transients might be hidden (especially in crowded
X-ray fields, such as star-forming regions and nearby galaxies),

we developed a dedicated algorithm (dubbed the close-to-source
algorithm). For each observation, it creates images integrated
over a fixed time interval (1000 s in the official EXTraS pipeline
run) of regions with a side of 40” around the sources excluded
from the analysis performed using the Bayesian block algo-
rithm and tests for the presence of excesses in addition to known
sources on a grid of fixed positions using a sliding cell. After
performing this analysis on each time bin, all intervals where
the same source was active are merged. From the time inter-
vals identified either in this way or by the Bayesian block
analysis, we selected only those with a duration shorter than
5ks (the minimum duration of standard EPIC exposures) and
triggered by regions with a spatial distribution of the events
that are better fit (at a >50 confidence level) with the addi-
tion of a point-source model rather than by a simple isotropic
background.

In every observation, the identification of transient source
candidates is based on the comparison with the reference source
list present in the PPS products. Because of statistical and sys-
tematic uncertainties in the object coordinates, it is necessary to
allow a coordinate tolerance to match the positions and identify
different sources as the same object. The tolerance is determined
by two parameters, called the sigma value (the minimum number
of sigmas separating the candidate transient from any catalogue
source) and the systematic error (a fixed value representing the
EPIC astrometric accuracy).

All the sources detected in (at least) a time interval and
within the region from which the time interval was generated
by the Bayesian block algorithm, but that are not detected in the
full observation, are defined as transient candidates. The same
object can be detected as a transient candidate in more than one
time interval: In this case, it is identified as a single source, and
these time intervals are registered.

5.5. Candidate transient sources

The analysis was performed with the Bayesian block algorithm
(with 5000s as the maximum time interval duration), using a
computer cluster made available by the University of Leices-
ter. The total number of transient candidates is 41 881, but only
4254 of them were detected within the triggering region of the
Bayesian block algorithm. Most false transients produced by
bright columns and particle tracks were removed from the tran-
sient candidate list by an automatic tool, which identified the
sources formed by events aligned along a straight line that is
inconsistent with the instrumental PSF. The screening of the
remaining candidates was mainly performed using a visuali-
sation tool with the support of TOPCAT® and on-line multi-
wavelength catalogues and images. Because a careful screening
was possible only for a maximum of several hundred sources,
we limited this analysis to ~50% of the transient candidates by
selecting the sources detected with the highest confidence by the
detection algorithm (DET_ML > 15 in the 0.2-12keV band in
all the active EPIC cameras). We defined nine different quality
groups that identify spurious detections (produced e.g., by out-
of-time events or straylight rings of bright sources, or by a poor
satellite attitude reconstruction) or encapsulate the confidence
level of the transient nature of the candidate (high if a flare and a
point source are visible in all active instruments, but much lower
for marginally variable or confused X-ray sources). In the final
transient catalogue we included only the candidates classified in

8 Seehttp://www.star.bris.ac.uk/~mbt/topcat/
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Fig. 20. Differential (left panel) and cumulative (right panel) distribution of transient durations (in seconds), defined as the length of the time
interval where the source was most significantly detected. The subset of transients discovered using the Bayesian block algorithm is indicated
(blue) to exclude the sources discovered with the close-to-source algorithm, whose durations can only be integer multiples of 1000s.

the first two groups (high and good reliability) for a resulting list
of 136 new X-ray sources).

5.6. Products

The output of the EXTraS search analysis for short X-ray tran-
sients consists of (i) a catalogue that lists all parameters for all
the 136 transient sources — the catalogue is available as a FITS
file and is also included in the EXTraS database; (ii) a set of
BITMAP, FITS, and ASCII files for each source (Bitmap image,
all detected sources marked; Bitmap image, transient marked;
EPIC background image of the interval; EPIC exposure map of
the interval; EPIC image of the interval; region file, all detected
sources; region file, transient).

A list of the 136 transients with their basic properties is
shown in Appendix B in Table B.1. The full transient source cat-
alogue and all products are available online and can be searched
via a dedicated web form®.

5.7. Transient catalogue statistics

The final catalogue of transients includes 136 X-ray sources.
Most of them (122) were discovered with the Bayesian block
algorithm and 14 were discovered through the analysis of the
regions close to 3XMM sources using the close-to-source algo-
rithm with 1ks time bins.

5.7.1. Transient time durations

The (differential and cumulative) distribution of the transient
duration, defined as the length of the time interval where the
source was most significantly detected (BINO), is shown in
Fig. 20. The transients discovered using the Bayesian block
pipeline are also separately considered because the total distri-
bution also contains the 14 sources that were discovered with
the close-to-source algorithm. These sources are associated with
time intervals that are integer multiples of 1ks. The sharp cut-

% See https://www88.lamp.le.ac.uk/extras/adv-query/
extras_transients
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off of the distribution at 5ks is also an artefact of the analysis
pipeline, which rejects all time intervals with longer durations.
We note that only a few transients are shorter than 700 s (and
none are shorter than 5 minutes), as expected for a population
dominated by X-ray flares of active stars (see e.g., Fig. 20 in
Pye et al. 2015). This interpretation is confirmed by the posi-
tional coincidence of a large number of these transients with rel-
atively bright optical and near-infrared stars (see Sect. 5.7.4).

5.7.2. Transient counts and detection likelihood

The left panel of Fig. 21 displays the number of counts
detected in all the active instruments in the 0.2-12keV band
(EP_0O_SCTS) as a function of the transient duration (defined
as in Sect. 5.7.1). A mild positive correlation is visible, which
can be explained by the fact that faint transients in longer time
intervals are more difficult to distinguish from the background
and that transients with many counts in short time intervals are
intrinsically brighter and therefore less frequent.

The expected correlation between counts and detection like-
lihood is clearly visible in the right panel of Fig. 21 for different
data samples. The black points are all the sources of the 3XMM-
DRS5 catalogue (Rosen et al. 2016), and the green points indicate
only the clean (SUM_FLAG = 0), point-like (EP_EXTENT = 0)
detections with DET_ML > 15. For this subsample, selected
according to the same criteria as the sources in the transient cat-
alogue, the correlation between the number of counts and the
detection likelihood is even more striking than in the global sam-
ple because almost all the sources that were detected with a large
number of counts but relatively low detection likelihood were
either extended or displayed some anomaly in the screening per-
formed by the Survey Science Center (SSC).

Similar considerations also apply to the comparison of the
yellow points, which are all the transient candidates before the
screening process, and the 136 transients included from the
EXTraS catalogue (red points). A remarkable difference with
respect to the 3XMM sources is the group of yellow points
located below the region of clean sources: All these transient
candidates, with a particularly high ratio of their detection likeli-
hood over the number of counts, were detected in very short time
intervals (from a fraction of a second to several dozen seconds)
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Fig. 21. Source counts as a function of transient durations (left panel) and detection likelihoods (right panel) in all active instruments and in
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transient sources in the EXTraS catalogue. In the right panel, yellow points represent all transient candidates before selection and screening, black
points are all 3XMM-DRS sources, and green points their subsample with EP_EXTENT =0, DET_ML > 15 and SUM_FLAG =0.

and only in one EPIC camera, and turned out to be either bright
or flickering pixels or short tracks of high-energy particles.

5.7.3. Sky distribution of the transients

To estimate the sky coverage of our systematic search, we pro-
duced and merged the exposure maps for each instrument (with-
out correcting for the telescope vignetting) for all the observa-
tions that we processed with the EXTraS pipeline. The global
exposure maps of the pn, MOS1, and MOS?2 instruments corre-
spond to the observation of the full sky (41 253 square degrees)
for 8.7, 12.4 and 13.9 minutes, respectively.

To evaluate the sky coverage of the Bayesian block pipeline
without considering the close-to-source algorithm, which has a
different sensitivity, we also created so-called cheesed exposure
maps by removing the regions that were used to exclude the
3XMM sources from the Bayesian block analysis. In this case,
our search for transients corresponded to an all-sky survey last-
ing 8.2, 11.9, and 13.3 minutes for the pn, MOS1, and MOS2,
respectively.

The distribution of XMM-Newton pointings is far from being
isotropic, however, and therefore we computed the same spa-
tially averaged exposure times in ~12 000 sky regions with a size
of ~3.5 square degrees. The corresponding map of the time cov-
erage of the EXTraS search for transients with the pn camera
(without removing the regions around 3XMM sources) is shown
in Fig. 22, together with the positions of the 136 transients in
Galactic coordinates. The sky distribution of EXTraS transients
is clearly clustered on the Galactic plane, in particular, in its cen-
tral part. To understand whether this effect is due to the longer
exposure time dedicated by XMM-Newton to the study of Galac-
tic objects, we compare in Fig. 23 the caumulative distribution of
(the absolute value of) the Galactic latitude of the EXTraS tran-
sients with that of the clean sample of 3XMM-DRS sources. The
striking difference between these two distributions indicates that
the newly discovered transients mainly have a Galactic origin,
whereas the fraction of extra-galactic objects in the 3XMM-DRS
catalogue is significantly larger. This is another confirmation that
the majority of the EXTraS transients are very likely flares from
relatively nearby stars (see Sect. 5.7.4), whereas the 3XMM cat-
alogue contains a large number of active galactic nuclei, whose
X-ray variability on timescales <5 ks is much less prominent.

On the other hand, the position of the shortest EXTraS tran-
sient (EXMM J023135.0-603743, with BINO =315 s) is consis-

tent with a galaxy at redshift z = 0.092 and has been interpreted
as the X-ray flare of a core collapse supernova (Novara et al.
2020). The same transient has independently been discovered in
a systematic search for supernova shock break-out candidates in
XMM-Newton archival data (Alp & Larsson 2020). The other 11
candidates listed in Alp & Larsson (2020) could not have been
detected by the algorithm described in this section because they
were either already included in the 3XMM-DRS catalogue or
occurred in more recent observations that were not covered by
our analysis.

5.7.4. Cross-match with the Gaia source catalogue

To estimate the fraction of EXTraS transients with stellar coun-
terparts, we used TOPCAT to cross-match their positions with
the Gaia DR2 catalogue of stars with well-determined paral-
lax (Bailer-Jones et al. 2018). Specifically, we found that 58 out
of 136 transients in the EXTraS catalogue are located within
5 arcsec from a Gaia star with parallax/parallax_error > 5, which
can be considered a very robust indicator of stellar nature (see
e.g., Baietal. 2018). By counting the number of these stars
within 3 arcminutes from each transient, we evaluated a <10%
chance coincidence probability even for the most crowded fields,
and therefore only a few false associations are expected.

On the other hand, the majority of the transients with no clear
stellar counterpart are also consistent with stellar flare shape and
duration. They might be produced by farther and/or fainter stars,
whose parallax could not be precisely measured by Gaia.

5.7.5. Comparison with the 4XMM-DR9 and 3XMM-DR5
serendipitous source catalogue

After the release of the 4XMM-DR9 catalogue, we verified
whether this more complete catalogue included a fraction of the
136 new transients detected by the EXTraS algorithm. Although
the positions of 29 EXTraS transients are within 5 arcsec of a
4XMM-DR9 source, only 15 of them were detected during the
same observation. One of them (EXMM J162714.7-245135),
detected with the close-to source algorithm, is ~4 arcsec from
a source that is also included in the 3XMM-DRS catalogue,
but this catalogue source and the EXTraS transient are very
likely produced by two distinct bright stars in the Rho Ophi-
uchus open cluster, with Gaia parallaxes of 7.24 + 0.05 mas and
7.3 +£0.07 mas, respectively. In the remaining cases, the transient
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Fig. 22. Sky distribution of transients (red circles) over the map of pn sky coverage (~3.5 square degree regions with the total exposure indicated

by the colour bar) is clearly visible.
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Fig. 23. Cumulative distribution of the absolute value of the Galac-
tic latitudes of the EXTraS transients (red) and of the point sources
(EP_EXTENT =0) with DET_ML > 15 and SUM_FLAG =0 in the
3XMM-DRS catalogue (green). The excess of transients at low latitudes
is clearly visible.

emission detected through the EXTraS analysis was missed by
the standard detection procedure, which instead detected either
the persistent emission or a different flaring episode from the
same sky position. Both cases would not be surprising for stars
that can emit multiple flares and typically have faint persistent
X-ray emission that might only be detectable during relatively
long XMM-Newton exposures.

We note that of the 14 EXTraS transient events that were gen-
uinely detected by the standard analysis, only 2 are classified as
variable sources in the 4XMM-DRO catalogue. The high sensi-
tivity of the EXTraS algorithm in detecting fast transients is also
confirmed by the fact that an independent search for X-ray tran-
sients in the XMM-Newton archive, using a different approach,
did not discover additional sources with respect to the 4XMM-
DRO catalogue (Pastor-Marazuela et al. 2020).
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To further explore the advantages of the EXTraS search
for transients in comparison with the variability study of cat-
alogue sources, we can take advantage of the simulations per-
formed in Novara et al. (2020) to evaluate the sensitivity of the
EXTraS algorithm to short transients. Taking as a template the
spectrum and light curve of the ~5-min X-ray flare associated
with SN 2008D (Soderberg et al. 2008), we simulated the events
of ~48000 transients with different fluxes as they would be
observed by the three EPIC cameras at different off-axis angles,
and added them to the event files of a randomly selected sample
of the XMM-Newton observations that were used to extract the
EXTrasS transient catalogue. The simulations took the instrumen-
tal configuration (operating mode, filter, and good time intervals)
and pointing direction (to correct the simulated spectrum accord-
ing to the total Galactic absorption expected along the line of
sight) of each observation into account (more details of the sim-
ulation can be found in Novara et al. 2020).

We then applied the EXTraS transient algorithm and the
same detection pipeline as was used to obtain the 3XMM-DRS
source catalogue to these data. By matching the known positions
of the simulated sources with those of the sources detected by
the two pipelines, we found that 34 476 of the simulated sources
were detected (with DET_ML > 15) by the EXTraS algorithm
and that the standard pipeline detected 24 296 of them in the full
observation as well. As shown in Fig. 24, the fraction of sources
that was detected in the full observations as well is much larger
for the brightest simulated transients.

As anticipated in Sect. 5.1, the new transients in the EXTraS
catalogue are missed by standard analysis because their X-ray
signal is either too faint to significantly emerge from the back-
ground of the full observation or because it occurred during
a time period of high background, which is filtered out by
the standard detection procedure. The relative importance of
these two effects can be evaluated by exploring the parame-
ter SPCLEAN_FLAG, which for each transient detected by the
EXTraS algorithm is defined as the fraction of the time inter-
val where the source was most significantly detected (BINO)
that would not be excluded by the 3XMM-DRS5 pipeline, which
removes high particle background time intervals. As shown in
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Fig. 25, ~90% of the simulated transients that were also detected
in the full observations occurred during a time interval that
was not affected by soft protons flares (SPCLEAN_FLAG = 1),
whereas this fraction decreases to 77% and 57% for the total
sample of the simulated sources and the EXTraS transients,
respectively. On the other hand, 11% of the simulated tran-
sients that were detected by the EXTraS algorithm and 14%
of the 136 EXTraS transients occurred in a time interval
that was completely excluded by the 3XMM-DRS5 pipeline
(SPCLEAN_FLAG =0).

6. Long-term variability (LTV)
6.1. Aims and scope

Many parts of the sky have been observed at least twice by
XMM-Newton in pointed mode and/or during slews between
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Fig. 26. Numbers of sources in the LTV catalogue comprising a given
number of observations for pointed data only (red), slew data only
(blue), and both (black). The latter histogram starts at 2 because sources
comprising only one data point in total are not counted.

pointings. The LTV component of the EXTraS project exploits
X-ray photometry of a subset of sources that were multiply
observed by XMM-Newton together with upper-limit data to
facilitate the study of potential long-term (inter-observation)
variability. As scheduling of XMM-Newton observations cov-
ering a given source is generally random, the data sampling
for most sources is sparse and very non-uniform, so that only
simple measures are employed to characterise potential vari-
ability. Figure 26 shows the frequency distribution of repeat
observations.

The EXTraS LTV -catalogue is based on the set of
7781 pointed observations from the 3XMM-DRS catalogue
(Rosen etal. 2016) and a new processing of 2059 available
XMM-Newton slews that form a large subset of the XMMSL2
slew catalogue'®. The pointed data span 14.9 years, from 03
February 2000 to 20 December 2013, and cover ~2% of the
unique sky, while the slew data cover 13.35 years, from 27
August 2001 to 31 December 2014, and image around 84%
of unique sky. All photometric measurements are observation-
integrated snapshots of sources. Pointed observation exposures
are generally in the range ~1ks to ~130ks, while slew obser-
vations typically amass an exposure of about 10s. The median
0.2-12.0keV (total band =band 8) source fluxes are ~2.1 X
107" ergem™2s7! and ~2.7 x 1072 ergcm™2 s~! for pointed and
slew data, respectively.

6.2. Slew data processing

Slew data are only obtained with the pn camera in the prime full
window, prime full window extended, or prime large window
modes, and always with the medium filter. The new slew pro-
cessing exploits improvements in both software and calibration
since the XMMSLI catalogue (Saxton et al. 2008), still broadly
following the approach described there but with upgrades to
the pipeline that were partly undertaken within the remit of the
EXTraS project and that incorporate three significant changes to
slew processing. We outline them below.

10 https://www.cosmos.esa.int/web/xmm-newton/xmms12-ug
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First, a ~0.25° overlap region is now included between
adjacent ~1° % 0.5° sub-images along the slew, ensuring that a
detected source can always be adequately fitted with the PSF
in at least one sub-image (if a source is detected in both sub-
images, its photometry is taken from the image in which the
source is closer to the centre).

Second, a new PSF, averaged over the whole FoV, is used in
obtaining slew photometry, replacing the previous single on-axis
point PSF that did not account for the varying PSF of a source
image as it crosses the FoV'!!. The new PSF matches source pro-
files better than the simple on-axis PSF.

Third, the filtering of periods of high background is applied
on an individual sub-image basis; previously, all data were
rejected from any slew that was affected by high background.
This allows including data from many more slews.

The better slew PSF yields systematic increases in the recov-
ered source counts and count rates (by ~2%) compared to
the XMMSLI1 catalogue and corresponding increases in the
detection likelihoods, along with an ~07”35 improvement in
the astrometric accuracy (by comparing to astrometric cata-
logues). Photometry (count rates and fluxes) of slew detections
is obtained in the broad soft (0.2-2.0keV =band 6), hard (2.0-
12.0keV =band 7), and total (0.2-12.0keV =band 8) energy
bands. Fluxes (F;) are computed, in each band, i, from the count
rate, R;, as F; = R,E;, where E; is the energy conversion factor
(ECF) (see Saxton et al. 2008!2).

6.3. Pointed data photometry

Standard pipeline processing of pointed data determines count
rates in five energy bands by fitting energy-band-dependent PSFs
to source images in all five bands simultaneously, as described
in Watson et al. (2009) (see also Rosen et al. 2016). Because of
the much shorter exposure times (thus lower counts), as noted
above, slew data are binned into three broad bands. Slew pro-
cessing also fits sources separately in each band and uses PSFs
extracted at a fixed (1.5keV) energy in all three bands. Conse-
quently, simply combining narrow-band pointed data count rates
into the broad slew bands for comparison with the slew measure-
ments can yield discrepancies of several percent in count rate.
Furthermore, the use of ECFs based on a fixed spectral profile
for sources that often deviate from that profile can yield much
larger discrepancies in fluxes. The effect is largest in the broad-
est (i.e. hard and total) bands. To maximise the consistency of
pointed and slew data in long-term light curves, we re-extracted
the pointed data in the broad bands in the same way as used for
slew processing.

The analysis of pointed data was performed for all source
detections in the 3XMM-DRS5 catalogue. Images for each avail-
able instrument were created directly in bands 6, 7, and 8, with
count rates separately derived in each from fitting of the relevant
instrument PSF model, extracted at 1.5keV (hereafter referred
to as the direct approach). The PSF normalisation (related to
the count rate) was fitted for each detection, but its position and
extent were fixed at its 3XMM-DRS5 catalogue values. ECF val-
ues used for computing fluxes are given in Appendix C.

6.4. Matching of pointed and slew sources

To build long-term light curves, astrometric information was
first used to associate pointed and slew detections with unique

I https://www.cosmos.esa.int/web/xmm-newton/xmmsl2-ug
12 https://www.cosmos.esa.int/web/xmm-newton/
xmms12-ug#Fluxes
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sources on the sky. Detections from the 3XMM-DRS cata-
logue are already matched into unique sources as described
in Rosen et al. (2016), exploiting the Bayesian algorithm of
Budavari & Szalay (2008). Slew detections were separately
matched into unique sources as follows:

— Detections in the same band within 30" of each other in two
consecutive slew sub-images are considered to be the same
source, and the detection farthest from its sub-image centre
is removed from the source list.

— Detections in the total and soft bands within 30" of each
other in the same sub-image are deemed to be the same
source and are merged into one record per source. Any hard-
band detection, also within 30” of them and from the same
image, is then associated with them.

— The slew source is then identified with the detection in the
band that has the highest detection likelihood.

— A further check is made for sources that lie in consecutive
images with a separation of <30”, which have detections in
different bands. These are joined.

— Finally, sources seen in two or more slews are combined to
set the UNIQUE_SRCNAME to the one with the highest
detection likelihood (in any band).

Pointed source positions reflect the position-error-weighted
average of the detections involved. Where possible, slew sources
were then matched to existing pointed sources using the above-
mentioned Bayesian approach to decide on the association.
Some 6.3% of the slew sources are associated with pointed
sources. Where a single match is found (76% of cases), the con-
stituent slew detections acquire the source identifier (SRCID) of
the pointed source. Where a slew source matches more than one
candidate pointed source (i.e. an ambiguity), it is assigned to
the pointed source with the highest match probability, but a flag
(NPMATCH) is set, indicating how many other pointed sources
it matches. Where a slew source has no match with a pointed
source, a new source is established in the LTV catalogue with
the IAUNAME of the slew source.

Pointed data astrometry is generally more precise (mean sta-
tistical uncertainty, o, ~1’74) than slew data (o0 ~ 5/3) because
of (i) better statistics from the longer exposures, (ii) the tighter
PSF, and (iii) because pointed detections are generally recti-
fied against an astrometric reference catalogue (see Rosen et al.
2016 and references therein), which is not possible for slew data.
Thus, the position of a source that contains both pointed and
slew detections is taken as that of the original pointed source.
Sources containing only pointed detections or only slew detec-
tions acquire the positions of the respective pointed or slew
source.

6.5. Upper limits

Where a source is covered by an observation but is not detected,
upper-limit data can still provide useful constraints on the source
brightness. Upper limits were obtained from all pointed and slew
images covering source positions described in Sect. 6.4, even
where the source was detected, broadly following the approach
used in the FLIX tool'?, but tailored to the LTV data and energy
bands. Upper-limit count rates were extracted for a detection
likelihood, L = 10 (corresponding approximately to a Gaussian
sigma of 3.9), for each band and available instrument.

All available count rate and flux upper limits are provided
in a dedicated row in the LTV catalogue for any observation
of a source where it is not detected in any band or instrument.

3 http://www.ledas.ac.uk/flix/flix_dr5.html
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Its detection identifier, DETID, comprises the observation ID
(OBS_ID), followed by the relevant source identifier (SRCID).
For observations where a source is detected but not in all avail-
able bands or instruments, upper limits are inserted for the bands
or instruments with non-detections. In addition, where the detec-
tion likelihood, L;, in band i of a real detection is <8.0 for
any instrument, we replace the relevant photometric informa-
tion with the upper limits. Upper-limit values appear as nega-
tive numbers in the catalogue, and the error columns for these
quantities contain nulls. Where an all-EPIC detection likelihood
is <8.0, the EPIC photometric value is replaced by the highest
upper limit from the available individual instruments because the
calculation of all-EPIC upper limits is not trivial and the upper-
limit software does not compute them.

6.6. Long-term variability characterisation

The generally limited quantity and sparseness of the data for
each source and the presence of upper limits makes a detailed
systematic analysis difficult. The analysis of long-term variabil-
ity therefore involves some simple variability tests and a set of
measurements that characterise the scale and timescale of vari-
ability. All quantities are provided for each instrument and for
each of bands 6, 7, and 8 where possible.

Three primary measures are computed for variability. One of
these is a reduced y> (DRCHISQ columns), that is,

2

and the associated probability (DPROB columns) for the null
hypothesis of the data being constant, where F; is the flux of the
ith data point in a light curve comprising »n data points, o7 is its
error, and F is the variance-weighted mean flux.

The second measure is the largest error-normalised flux
change (MDDE columns) between any pair of points, i and j,
in the light curve, that is, max[(F; — F';)/o;], where o7; is the
quadrature sum of the flux errors on the two points. Both quan-
tities are only based on detections.

A third quantity is the ratio of the maximum flux to the min-
imum flux and its error (MR and MRE columns). The minimum
flux point can be a detection or upper limit value; if it is an upper
limit, the result is essentially a lower limit on the MR ratio. If
the maximum value is an upper limit, it is not used. The error
(MRE) on the maximum flux ratio (MR = Fyax/Fmin) is simply
computed as

2 2
MRE = MR[(—AF m’“) + (—AF m‘“) ] A3)
F max F min

where Fp;, and Fp.x are the fluxes of the minimum and maxi-
mum points, respectively. If the lower point is an upper limit, the
flux is taken as the upper limit (see Sect. 6.5). In these cases, we
ascribe a 1o equivalent Gaussian uncertainty to the upper limit
of AFpin = Fin/3.9.

While these quantities are provided in the LTV catalogue, no
attempt is made to impose a threshold and thus identify sources
as variable or not. This is left to the user. These three measures
are augmented by a number of additional quantities that provide
information about the scale and timescales of variations in the
long-term light curves. These are listed below.

(i) The time-span (TMDDE) over which the largest error-
normalised flux change (MDDE see Sect. 6.6 above) occurs.

Runs(det): ~3.02

5_262733_EP_B
T T
2t10u: 548.84 (4,5)

Nut: 5.

mr: 22587 +/- =57.79 (5,1) red.chisq(wm, det): 1727.65
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Flux (erg/ern2/5)
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Fig. 27. Example long-term light curve of a source (SRCID =262733)
in the LTV catalogue. The main measures and points involved are indi-
cated in the plots by connecting lines, e.g., dashed blue lines join points
used in the MR and EMFU/EMFD quantities, while dashed orange and
red lines signify changes by a factor 2 and factor 10 in flux between
pairs of points. Some of the key LTV measurement values are printed in
the graphic for convenience. In some cases, high slew upper limits are
not displayed where they suppress the visibility of low-level changes in
other data.

(i) The error-weighted mean flux (WMEAN and DWMEAN).
Quantities that are preceded by a ‘D’ involve only detec-
tions.

The maximum upward (EMFU) and downward (EMFD)
flux ratios as measured between (F — 0")max and (F + 0)in,
that is, a conservative measure of the largest change.

The timescales over which the largest upward (TEMFU) and
downward (TEMFD) flux transitions occur.

The shortest timescales between two points, i (bright) and
Jj (faint), in which the flux increases (ET2U) and decreases
(ET2D) by at least a factor 2, that is, where (F — 0);/(F +
o) >2.

(E"]FIOU) and (ET10D): as for (ET2U) and (ET2D), but for
changes by a factor >10.

The significance associated with a runs (Wald-Wolfowitz)
test (Bradley 1968) to gauge the degree of any systematic
variations in a time series (DSIGNIF)!4.

(iii)

(iv)
)

(vi)
(vii)

6.7. LTV catalogue and its basic properties

The LTV catalogue format is broadly modelled on the 3XMM
catalogues but (i) contains only a subset of the most important
columns, (ii) includes the aforementioned upper-limit data, and
(iii) includes the long-term variability measures (see Sect. 6.6)
and some additional quality information. Each row of the cata-
logue refers to one of a pointed detection, a slew detection, or a
pointed or slew upper limit, with identifiers for the sources they
are associated with. Information is provided for each instrument
(and all-EPIC) and per energy band.

The contents of the LTV catalogue (410 columns) are
described by descriptors in the EXTraS database (see Sect. 7.1).
For each source, a graphic (gif) LTV light-curve product is also
created for each instrument and energy band. URL links to the
graphics are contained within the FITS LTV catalogue file. They

14 The statistic is computed as Z = (R — R)/s, where R is the number of
observed runs, R = 2n,n_/(n + 1), is the expected number of runs, and
s is the standard deviation of the number of runs (s* = 2n,n_(2n.n_ —
n)/[n*(n—1)]): n, and n_ are the number of positive and negative runs,
respectively, and n = (n, + n_). A run is a sequence of consecutive
points above or below the mean flux. It only has relevance to time series
with ~10 or more points.
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Table 3. Overview of catalogue properties.

Detections and upper limits 2030040
Pointed(slew) detections 565962 (29944)
Unique sources 419240
Unique sources with > 1 EPIC band 8 measurement 357178
Unique sources with > 1 EPIC band 8 measurement 286215

& >1 detection

Unique sources with EPIC band 8 MDDE > 5 10980
Cleanest unique sources with EPIC band 8 MDDE > 5 2954

Notes. The cleanest sources are those in which any or all constituent
pointed detections have a summary flag of 0, are point-like and not piled
up, and none (nor any constituent slew detections) show indications of
astrometry problems.
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Fig. 28. Distribution of the EPIC band 8 MDDE parameter for all the
LTV catalogue sources with valid values (red) and for a clean sub-
set (black). Including sources affected by data quality issues shifts the
distribution to higher values, suggesting quality issues may lead to
increased detections of spurious variability.

are also accessible within the EXTraS database. An example
graphic is shown in Fig. 27.

A summary of the catalogue contents is given in Table 3.

In Fig. 28 we show the area-normalised distribution of the
EPIC band 8 MDDE parameter for all LTV catalogue data and a
clean subset. Including data with quality issues shifts the distri-
bution of each quantity in a direction that indicates more sources
might be deemed long-term variable, that is, sources whose long-
term light curves involve lower quality data are more likely to
yield spurious detections of variability. Quality filtering is thus
an important step when the catalogue is used.

A number of simulations were pursued to gauge the level of
spurious variability detection in good-quality sources in the LTV
catalogue. A simple approach was adopted in which each source
in the catalogue was considered to be constant, with a flux, F,,
equal to the error-weighted mean of its flux values. Each simu-
lated point took the 1o error associated with the real detection
or upper limit, and its flux was randomly drawn from a Gaussian
distribution with F as its mean and standard deviation, o. Points
assigned a negative flux, however, were set equal to the upper
limit value estimated from the image at the source location. For
each source, 10 000 simulations were run and the simulated data
from each run were processed using the same analysis approach
as for the real data. We find that for clean sources, we expect a
false-positive rate of detecting variability of <0.1% when adopt-
ing AF/o (MDDE) > 5 as the definition that a source is variable.
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6.8. Quality issues

A number of issues can affect the quality and reliability of
detections and upper limits, such as image artefacts, problems
arising from inadequately characterised extended sources, high
background levels, imperfections in the PSF model description,
astrometry errors, and event pile-up in bright sources. In the worst-
case scenarios, these can give rise to spurious detections or reduce
the accuracy of photometric data in other cases. It is important to
identify sources that contain one or more detection or upper-limit
data compromised by such issues because inaccurate photometry
can lead to erroneous detections of (or missed) variability.

For pointed data, the 3XMM-DRS5 catalogue already con-
tains multi-element flag sets per detection that reflect issues that
are automatically identified by the processing pipeline together
with the results of manual screening which sought to identify
problems associated with complex regions, high source densi-
ties, bright sources, and image artefacts, for example. The multi-
element flags are subsequently collapsed into a summary flag
SUM_FLAG, ranging from 0 (cleanest) to 4. All these flags are
explained in Watson et al. (2009), see also Rosen et al. (2016).
For user convenience, this flag information is propagated to the
LTV catalogue for pointed data. For slew data, the main quality
issue arises where attitude reconstruction is less reliable, poten-
tially affecting astrometric information. This is reported with the
VER_PSUSP flag.

Pile-up in pointed detections is identified by testing whether
the total band count rate exceeds a tabulated threshold value'”
for the instrument or mode. Thresholds for untabulated modes
are estimated from tabulated modes by scaling by the inverse of
the frame time. Where a mode involves CCDs operating with
different frame times, the adopted threshold applies to the CCD
in which the source appears. For slew data, the slew motion
reduces pile-up, and a higher count rate of 4.0ctss~! is adopted
as the pile-up limit for all slew detections. Where the total-band
count rate of a detection exceeds the relevant pile-up threshold
in a given instrument (<inst> (=PN, M1, M2 or EP)), a logical
flag (<inst>_PU_FLAG) is set for that instrument. For a given
detection, if any of the instrument pile-up flags are set, a further
flag, EP_PU_FLAG, is set.

Together with detection-level flags, the LTV catalogue con-
tains additional flags to highlight sources that contain detections
with potential issues. These values are set the same for all rows
associated with a source, whether pointed or slew detections or
upper limits. We list them below.

— WORST_SF: The worst SUM_FLAG value of any con-
stituent pointed detection.

— FRAC_EP_PU: Indicates the fraction of detections (pointed
and/or slew) with set EP_PU_FLAG. This highlights sources
where pile-up may be a causing one or more underestimated
detection count rates.

— FRAC_EXT: Quantifies the fraction of detections whose all-
EPIC band 8 (or for slew, band 6, 7 or 8) intrinsic extent is
>6".

— SLEW_FLAG: Indicates sources containing one or more slew
detections where the VER_PSUSP flag is set'®.

5 https://heasarc.gsfc.nasa.gov/docs/xmm/uhb/epicmode.
html

16 The LTV catalogue excludes all upper limits from slew observations
that might be affected by astrometry issues (i.e. those that would have
VER_PSUSP =T). This is because when they are included, they trig-
ger the setting of the SLEW_FLAG in 7900 sources, but in the vast
majority of cases, it is a single slew upper limit entry that causes the
SLEW_FLAG to be set, but the slew upper limit entry usually adds no
useful value to the light curve of the source.
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Table 4. Six clean sources (lowest summary flag <1) in the LTV catalogue with EPIC band-8 luminosities above the threshold adopted by E19 to
be considered as ULX candidates, and with maximum-to-minimum flux ratios >10 (values in the EP_MRS column).

Source EP_MR8 EP_ET2u8 EP_ET2d8 EP_ET10u8 EP_ETI0d8 in E18 list
013636.4+155036 13.2 339.5 339.46805 Y
022134.1-053105 10.4 0.14 1078.1

073650.0+653603 115.2 133.7 367.7 133.7 367.7
121847.6+472054 34.8 156.7 1640.0 339.3 1640.0 Y
213631.9-543357 21.9 1239.6 1239.6

230457.6+122028 11.4 1465.7 Y
132953.3+471042 29.3 1839.6 4.1 1839.6 327.1 Y
203500.1+600908 7.5 502.7 518.6 Y

Notes. All measurement quantities refer to EPIC band-8 data. The EP_ET quantities are the shortest timescales (in days), in which factor 2 or
factor 10 up (u) or down (d) changes of flux are seen in their LTV data. The last two rows are for two of the five sources from E18 that do not
appear in the LTV set. The reasons are discussed in the text. For 022134.1-053105 and 230457.6+122028, the EP_ET10u8 and EP_ET10d8 values
are absent because with the more conservative definition of these measures (see Sect. 6.6), which include the errors, the changes are smaller than

a factor of 10.

— FRAC_STV: The fraction of pointed detections show-
ing evidence of short-term variability (identified by their
VAR_FLAG being set in 3XMM-DRS). Such short-term
variability (e.g., short-lived flares) could be a contributing
factor to any apparent long-term changes. Because pipeline
processing only extracts exposure-level light curves for
detections with >100 EPIC counts, there is no informa-
tion on short-term variability available from the 3XMM-
DRS5 catalogue in many cases. More sensitive information on
short-term variability can be explored through EXTraS (see
Sect. 3), however.

— N_NEARSRC: The number of other sources within 20" of
the source. This alerts users to cases with increased risk that
the assignment of detections to sources may be suspect.

— FRAC_POSCOROK: Provides the fraction of pointed detec-
tions with POSCOROK =T, that is, where astrometric recti-
fication was considered successful.

6.9. Example usage

Long-term X-ray variability data can provide key insights into
astrophysical sources, such as tidal disruption events, the flar-
ing activity in active galaxy nuclei, the cause of accretion rate
changes in X-ray binaries and cataclysmic variables, flare fre-
quencies and intensities in active stars, and outbursts from ultra-
luminous X-ray (ULX) sources. Here, we briefly illustrate the
potential of the LTV catalogue data for studies of ULX sources.

We take as one example the catalogue of 2139 detections of
sources from 3XMM-DR4 that were identified as having non-
nuclear associations with bright galaxies (Earnshaw et al. 2019;
hereafter E19). Converting the LTV catalogue EPIC band 8
fluxes of these detections into luminosity, Lg (and 1o error, ALg),
using the same flux-to-luminosity factors as E19, and apply-
ing their criteria for selecting ULX candidates (i.e. Lgv > 10°°
ergs s™! or Lg + ALg > 10% ergs s7!), we isolated 351 sources
that met the criteria. This compares with 384 found by E19. We
find 330 sources in common that meet the criteria, that is, 86%
of the E19 sample. Fifty-six sources in the E19 catalogue have
no match in the LTV sources and 23 LTV sources have no match
in the E19 sources. The differences stem from the difference in
the determination of the count rates and the ECFs used to con-
vert count rates to fluxes. While the EPIC band 8 fluxes used
by E19 (from 3XMM-DR4) and the LTV band 8 fluxes broadly

follow a one-to-one relation, there is significant scatter due to
this difference in method.

Earnshaw et al. (2018) (hereafter E18) selected an initial
subsample of 12 candidate transient ULX sources from the 384-
source superset of E19 based on those showing at least a factor
10 change in luminosity amongst the detections or upper limits.
Subsequently, this was filtered down to 5 sources with a secure
factor >10 variability, following careful scrutiny of the data.

We used the 351 LTV candidate ULX sources mentioned
above to perform a similar selection based on EP_MRS8 > 10.
This selected 15 sources. After we applied a quality threshold
to the LTV subset, requiring the lowest summary flag to be <1,
10 sources remained. As in E18, 4 sources are a consequence
of a duplication of catalogue identifiers associated with a pair of
close sources that are incorrectly identified as a single but dif-
ferent source in two separate observations. These are excluded.
The resulting subset of 6 sources are the first 6 entries shown in
Table 4. The table includes where measurable the fastest factor
2 and factor 10 upward and downward changes in flux observed
in the available LTV data. This subset includes 3 of those in the
final subset of 5 ULX transient sources discussed by E18, but
does not include NGC 6946 ULX-1 (203500.1+600908) from
the E18 final subset of 5 sources because in the LTV catalogue,
the maximum/minimum ratio is 7.5, which is below the factor 10
variation threshold. The maximum/minimum of the XMM EPIC
band 8 luminosity data provided in the E19 catalogue is also
below the threshold. Another of the final 5 sources of E18, M51
ULX-4 (132953.3+471042), passes the EP_MRS8 >10 threshold
but is also absent from the list because it has three LTV detec-
tions with a summary flag of 3. These two E18 cases are shown
at the end of Table 4. The 5 sources in the E18 ULX transient
list are indicated by a ‘Y’ in the last column.

Three of the 6 LTV sources are not in the E18 list. The
first, 022134.1-053105, is a marginal case of a factor 10 change.
In the two observations where it is detected, both are short
(2ks) exposures with very few counts in the MOS cameras,
while the pn data has a high background. Furthermore, one
of the two EPIC band-8 detections is characterised as slightly
extended, rendering the flux less reliable. For the second source,
073650.0+653603, the variation (a single detection and two
upper limits) is clear and real. This is likely to be one of the
sources considered as a blend by E18 as there is a faint source
about 20” away. Based on the high (>100)max/min ratio of
073650.0+653603, however, accounting for contamination by
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the faint source would be very unlikely to reduce the ratio to
below 10. The third source, 213631.9-543357, is likely to be the
other blended case that E18 excluded. Again, this source com-
prises one EPIC band-8 detection and two upper limits in the
LTV catalogue. One of the observations yielding an upper limit
is affected by high background in all three cameras, but in the
observation where the detection is claimed, the source is clearly
present in the available (pn, MOS2) cameras. The LTV catalogue
indicates the presence of another source within 20" so that some
contamination is likely.

The above very simple process, which mimicks the analy-
sis of the XMM-Newton data performed by E19 and E18 and
broadly confirms their sources as long-term variable, shows the
merit of the LTV catalogue in quickly finding potential long-
term variable X-ray sources in the 3XMM-DRS5 catalogue data
from user-defined samples, exploiting the auxiliary global source
quality information to filter or check the data. Nevertheless, we
urge users always to inspect the data (including the image data)
because use of the quality information alone may be not good
enough.

6.10. Known problems and issues

Whilst the photometric measurements of detections are gener-
ally robust, problems can arise in some circumstances. We dis-
cuss some residual points that are relevant to the LTV data and
analysis.

6.10.1. Spatially extended detections of point sources

Point sources can sometimes be erroneously characterised as
extended, which can yield incorrect photometry. This might
lead to spurious identification of variability or failure to detect
real variability. While we could forcibly characterise sources
as point-like (because the LTV catalogue is mainly about point
sources), but this can also produce incorrect photometry in some
cases. Instead, the FRAC_EXT flag is used to indicate the frac-
tion of detections of a source that are characterised as extended.
Less than 1.5% of ~27 000 otherwise clean sources'” comprising
two or more pn detections have one or more of those detections
(but not all) measured as extended.

6.10.2. Slew upper limits

Pointed and slew upper limits are estimated by aperture photom-
etry (circular with 28” radius), centred on the source position
in each observation covering the position and effectively cor-
rected for the encircled energy fraction (EEF) using an empirical
approach (Carrera et al. 2007). The empirical correction factors,
however, were derived from pointed sources, but for slew upper
limits, should instead reflect the slew-specific PSF discussed in
Sect. 6.2. As a result, we estimate that the slew upper limits in
the LTV catalogue are ~5% lower than when correction factors
based on slew data were used.

6.10.3. Spectral effects

Because the ECFs used to convert count rates into fluxes (see
Sect. 6.3) assume a fixed spectral profile, spectral changes in

17 Clean here means detections whose slew flag is not set and whose
lowest summary flag <1, which are not piled up and have no other
source within 30”.
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a source between epochs can introduce or mask variations in
source flux. Simulations of a power-law model whose slope is
changed by +0.6 from the nominal 1.7 used to create ECFs sug-
gest that such spectral changes can leave the count rates unal-
tered but yield flux changes up to ~20%, 35%, and 70% in the
soft, hard, and total bands, respectively (see also Mateos et al.
2009). Furthermore, until the time of creating the 3XMM-DRS5
catalogue, while the pn camera sensitivity and thus its ECFs had
been deemed stable, the sensitivities of the MOS cameras had
evolved, being effectively characterised by 13 time-dependent
ECFs. The LTV catalogue MOS fluxes are, like 3XMM-DRS5,
based on epoch-13 MOS ECFs. Rosen et al. (2016) outlined
the effect of using a fixed MOS ECEF, but for most sources
away from the central ~40” degraded patch, the worst devia-
tions from using the most relevant time-dependent MOS ECF are
<2.5%. The band-8 MOS|1 long-term light curve of the modestly
extended (assumed flux-stable) supernova remnant calibration
source, 1IES0102-72.2, shows a declining trend in measured flux
of ~6.5% over the mission duration, supporting this conclusion.
As a soft X-ray source, usually observed within the degraded
central patch, it is subject to a greater change in sensitivity than
sources outside the patch.

6.10.4. EPIC upper limits

Although all-EPIC (combined instrument) count rates (the sum
of the instrument count rates) and fluxes (the error-weighted
average of the instrument fluxes) are computed in each band,
computing equivalent all-EPIC upper limits is not straightfor-
ward, and they are not calculated by the upper-limit software.
EPIC flux upper limits provided in the LTV catalogue for pointed
data are instead the highest of the available instrument upper-
limit values. This means that they are generally a conservative
(high) estimate of the rate and flux upper limit. All-EPIC upper
limits based on more than one instrument would generally be
lower due to the lower statistical noise. In addition, instrument
upper limits (where available) also replace EPIC flux and rate
values when the all-EPIC detection likelihood value is <8.0.

6.10.5. Systematic uncertainties

For the per-instrument, per-band long-term light curves, sys-
tematic errors between photometric data from a given instru-
ment are not relevant, other than the ECF issues discussed in
Sects. 6.2, 6.3, and 6.10.3. Systematics affect the all-EPIC data,
however, which is a combination (weighted average) of the avail-
able instrument fluxes for a given observation. Comparing simul-
taneously observed pn and MOS fluxes for clean sources follow-
ing a similar approach to Lin et al. (2012), we estimated system-
atic errors of 0.13, 0.13, and 0.16 (as fractions of the MOS flux)
between pn and MOS (average of MOS1 and MOS2) in bands
6, 7, and 8, respectively. These systematics, however, are not
integrated into EPIC flux error values or used in the LTV anal-
yses. Another potential systematic uncertainty is that between
the pointed and slew flux data. This is difficult to estimate,
however, because measurements of sources in pointed and slew
mode can never be simultaneous. Based on very limited (<10)
sources observed in a slew and in a pointed observation within
a day of each other, it proved impossible to determine any such
systematics.

6.10.6. Short-term variability

Short-term variability within an observation can contribute to the
appearance of long-term variability. To explore this, the subset of
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LTV sources containing one or more individual pointed detec-
tions that are known to show variability within the observa-
tion (i.e. where the var_flag is set in the 3XMM-DRS cata-
logue), were isolated and the LTV analysis run on their LTV
pn band-8 light curves, with any short-term-variable detections
excluded. We find that when all detections are included, the
AF/o (MDDE) values are notably shifted to higher MDDE val-
ues than when detections affected by short-term variability are
excluded. The same effect is seen in clean sources. The median
MDDE values are 9.72 (7.58 for the clean subset) when short-
term variability detections are included, compared to 4.50 (3.22)
when they are excluded. Corresponding medians for the MR
parameter are 5.29 (2.64) and 2.66 (1.93), and for the DRCHISQ
parameter, are 43.68 (32.11) and 9.78 (5.70). When all detec-
tions are included, 224 out of 1163 sources (19.3%) have pn
band 8 MDDE > 5, while when short-term variability detections
are excluded, 65 out of 758 sources (8.6%) have pn band 8
MDDE >5.

We note that the indication of short-term variability, that is,
that the var_flag is set, does not exclude the possibility that some
points in the real data light curves exhibit short-term variability
but are not flagged as such. Observation-level light curves are
only produced for sources with >100 EPIC counts in their XMM-
Newton light curves, so that any detection that is fainter than this
will not have a light curve, hence short-term variability cannot
be tested.

6.10.7. Variability detection: alternative approaches

The analysis applied to the LTV data computes the flux ratio,
which makes use of detections and upper limits, and the max-
imum significance and chi-square values, which are restricted
to detections. The computations assume a Gaussian error anal-
ysis. Importantly, those involving upper limits effectively treat
them as data points with uncertainties (as outlined in Sect. 6.6),
but this is evidently a simplifying approximation. An alternative
likelihood approach that more formally takes the non-detections
and the Poissonian nature of the data into account, was consid-
ered late in the project, broadly following the approach devel-
oped as part of the STV analysis within the EXTraS project.
This requires raw count information, however, which was not
originally envisaged as part of the LTV work and was not pur-
sued.

7. Online resources
7.1. The EXTraS public data archive

The EXTraS public data archive can be accessed online'8. It
is the primary online repository for all data generated by the
project, supporting a wide range of products such as X-ray light
curves, hardness ratios, power spectra, and source catalogues
with measures of variability. We summarise the basic function-
alities below. For technical details regarding the software imple-
mentation, we refer to D’ Agostino et al. (2019a).

The archive is an outgrowth of the existing Leicester
Database and Archive Service (LEDAS'® at the University of
Leicester, which hosts data from several major X-ray missions.
Within the EXTraS project, the core archive system originally
developed for LEDAS has been fully rewritten to current soft-
ware development standards. Catalogues and bulk products for
all EXTraS data analysis pipelines have been incorporated in

8 http://www.extras-fp7.eu/index.php/archive
9 https://www.ledas.ac.uk
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Fig. 29. Advanced catalogue search form.

LEDAS. A total of 18 TB of EXTraS data is currently held in
the LEDAS central archival storage.

The main page of the archive provides a top-level menu to
access EXTraS data products by analysis line: short-term aperi-
odic variability, search for periodicity, transients, long-term vari-
ability. Results of multiwavelength characterisation and classifi-
cation (not described in this paper, see Sect. 2) are also included.
A combined catalogue allowing simultaneous source search-
ing across all EXTraS catalogues and a basic catalogue cross-
matching facility are also provided. Online help is available for
all catalogues.

The catalogue basic search form allows searches in a given
sky region (using either a cone, box, or rectangle search area),
or by identifier (resolved by the Simbad database, Wenger et al.
2000). The catalogue advanced search form, shown in Fig. 29,
allows users in addition to position searches to search for sources
by setting filters on any parameter in the EXTraS catalogues. A
filter search can be performed either as a match (i.e. selecting
database entries where a specific parameter is equal to a desired
value) or over a range (i.e. select all database entries where a
specific parameter lies in a desired range). Filter searches can be
performed as inclusive or exclusive filters by selecting the appro-
priate option. In the basic and advanced searches, a minimum or
full set of output table columns can be selected and a variety of
output formats (HTML, ASCII table, CSV, VOTable etc) can be
displayed.

In addition to the download of the results data, an expanding
set of dynamic interactive visualisations for the EXTraS cata-
logue and bulk product data is provided. The visualisations are
generated directly in the browser (i.e. by clicking on the blue
“PREVIEW” button at the left links in Fig. 30) and require no
additional software installation.

Examples of EXTraS Public Data Archive visualisation out-
put are shown in Figs. 31 and 32. The user can zoom and pan the
plot, read values and uncertainties by clicking on data points,
overplot best-fit models, and save the customised plot.

7.2. The EXTraS portal for online analysis

Different strategies can be adopted to provide the scientific com-
munity with software tools. The first, basic solution is to release
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» Archive Files (24)

Sascta F Search:

Proview Filo “ instrument  Filesize  Description Updated

Summary Files

EPIC 200779 Summary of Source-related products 01 February 2017 23:18:14

EPIC 1273 Summary of Exposure-related products 01 February 2017 23:18:37

‘Source-related Products

EPIC-MOS1 8640 Rate COF (Bayesian Blocks) 01 February 2017 23:18:29

EPIC-MOS1 8840 Rate COF (Bayoesian Blocks) 01 February 2017 23:17:59

EPIC-MOS1 20160 Light Curve (Bayesian Blocks) 01 February 2017 23:18:13

EPIC-MOS1 2750 Light Curve (Bayesian Blocks) (1-2keV) 01 February 2017 23:18:39

EPIC-MOS1 20160 Light Curve (Bayesian Blocks) 01 February 2017 23:18:15

'Eii

EPIC-MOS1 2751 Light Curve (Bayesian Blocks) (1-2keV) 01 February 2017 23:18:17

EPIG-MOS1 289 Source Region File 01 February 2017 23:18:36

EPIG-MOS1 8640 Parameter File 01 February 2017 23:18:05

EPIG-MOS1 8640 Parameter Fie (1-2 keV) 01 February 2017 23:18:40

EPIC-MOS1 200 Basic Background Region File 01 February 2017 23:18:06

EPIC-MOS1 262080 Fast Fourior Transform 01 February 2017 23:18:16

EPIG-MOS1 48960 Basic Source Light Gurve (500s) 01 February 2017 23:18:08

EPIC-MOS1 11520 Rate COF (Urniform Binning) (500s) 01 February 2017 23:18:15

EPIC-MOS1 256320 Fast Fourior Transform 01 February 2017 23:18:13

EPIG-MOS1 11520 Light Curve (Uniform Binning) (Sks) 01 February 2017 23:18:16

EPIC-MOS1 17280 Light Curve (Uniform Binning) (500s) 01 February 2017 23:17:58

EPIC-MOS1 2122 Light Curve (Uniform Binning) (1-2keV) 01 February 2017 23:18:16

EPIG-MOS1 17280 Light Curve (Uniform Binning) (Optimised) 01 February 2017 23:18:19

EPIC-MOS1 1611 Light Curve (Uniform Binning) (1-2keV) 01 February 2017 23:18:15

Exposure-related Products

i Eiii'ii'i

EPIC-MOS1 17280 Background Light Curve [Bayosian Blocks) 01 February 2017 23:18:09

bkg_0001730201_M1_S001.req EPIC-MOS1 1605 Background Region File 01 February 2017 23:18:16

Fig. 30. Summary page of the catalogue results for each single source.
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Fig. 31. Interactive visualisation of products from the short-term ape-
riodic variability analysis. The case of a light curve with uniform time
binning is shown. By using command buttons on top of the window, the
user can e.g., zoom or pan, read count rate and errors by clicking on
data points, and overplot best-fit models.

an installer or an archive, containing all the files required to com-
pile and run the analysis tool. This approach has been adopted
for some important tools for the astronomical community, such
as the XMM-Newton SAS. A second solution is to make the soft-
ware available by exporting the corresponding workflows, which
can thus be executed using a workflow management system. This
solution has commonly been adopted by the astronomical com-
munity (Ruiz et al. 2014). The third solution is to release a vir-
tual machine with all the software installed on it. This is possi-
bly the most effective solution for non-expert astronomers, who
wish to run a few experiments, and for dissemination purposes,
for example for educational programs or citizen scientists. It is
worth noting that the SAS is also made available as a Linux vir-
tual machine. The fourth solution is to release the software as a
set of services through a Web portal designed following the sci-
ence gateway paradigm (Kacsuk 2014). We adopted this strategy
because science gateways are gaining increasing interest in many
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Fig. 33. Jobs management module interface.

communities (Lawrence et al. 2015), such as the astronomical
one (Becciani et al. 2015).

The EXTraS portal (D’Agostino et al. 2019b) has the goal
of providing users with a seamless environment to process the
observations made available from the XSA with the EXTraS
pipelines, hereafter called ’experiments’. A user-friendly inter-
face is available, with no need for the installation of any soft-
ware.

The main page, shown in Fig. 33, is a web app (Galizia et al.
2019) that provides users with the possibility of creating, submit-
ting, and managing the different analysis experiments based on
the software developed within the EXTraS project. In particular,
it presents all the submitted or configured analyses, offering the
possibility of creating a new analysis starting from an existing
configuration or share results with other users. After the parame-
ter definition (see Fig. 34) and the selection of the observation to
be analysed, the analysis job is managed by the portal, based on
computing resources provided by EGI Fedcloud (Wallom et al.
2015) to virtual organisations (VO), i.e.groups of users where
members are usually in related research activities. In particular
it can be used also for citizen science activities, as discussed in
D’ Agostino et al. (2019a).

All the information related to a job (e.g., the configuration
parameters, the logs, the results, the ownership or sharing of
information and possible comments) are stored in the portal
database via the Persistence API until it is deleted by the user
who owns it.

The EXTraS portal offers two further key features: The pos-
sibility of sharing an analysis (i.e. the namelist and possibly the
results), and support for the interaction and discussion (in terms
of comments) among the users sharing it. Sharing a completed
job means not only that the experiment results are visible to other
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users, but also that the configuration is shared and can be used as
a starting point for re-submitting the experiment on a new set of
data. Thus, a job execution can be replicated by other users that
can, for example, validate the experiment results or explore the
behaviour by changing one or a few parameter values.

Any result computed within the portal is not automatically
transferred to the public data archive. It has to be validated by the
project community, who can use the portal to publicly discuss it.

8. Summary and conclusions

The EXTraS project produced the most sensitive and thorough
search for and characterisation of temporal variability in the soft
X-ray sky.

We produced a complete characterisation of short-term ape-
riodic variability (on timescales shorter than the exposure time)
for about 420000 point sources included in the 3XMM cat-
alogue. This was based on modelling of time-averaged prop-
erties of point sources in 3XMM and on careful modelling
and characterisation of the variable EPIC background noise.
For each source we generated (i) background-subtracted light
curves with uniform time binning at 500 s, optimal, and 5 ks, (ii)
background-subtracted light curves with adaptive time binning
based on the Bayesian block approach, with different (sensitive
and robust) segmentations, and (iii) power spectra. Starting from
these products, we computed a set of synthetic parameters quan-
tifying different aspects of each source’s variability. We ran a
simplified version of the pipeline to extract light curves for the
same set of sources in three energy sub-ranges and to generate
hardness ratios. A set of simulations and statistical tests were
used to confirm and validate our products and results.

We systematically searched for periodic modulations in more
than 300 000 sources in the 3XMM catalogue, running a pipeline
based on a generalisation of the FFT approach accounting for
non-Poissonian noise components. For each detected signal, a
refined search was performed using the Rayleigh technique. Dif-
ferent parameters were computed (e.g., significance level, pulsed
fraction) and several products were generated (e.g., light curves,
folded light curves, power spectra, periodograms). If no pulsa-
tions were found, the 3.50 upper limit to the pulsed fraction was
evaluated. Statistical tests were performed to confirm the validity
of the analysis and its sensitivity.

We ran a blind search for transients and highly variable faint
sources. Two approaches were implemented. In the first, a source
detection was run on short time intervals of uniform length. In

the second, promising time intervals of optimised duration were
spotted by searching for count rate changes (using a Bayesian
block approach) in spatially independent portions of the FoV,
and a standard source detection was performed on the selected
intervals. Different runs were carried out on the whole sample
of EPIC observations using different pipelines with different set-
tings. Cross-check and statistical analysis of results together with
a complete visual screening allowed us to identify a robust sub-
sample of 136 short-duration highly-significant transient sources
that are not listed in the 3XMM catalogue.

We systematically investigated long-term variability (on
timescales longer than XMM exposures) in all detected EPIC
sources from pointed and slew observations. The analysis was
performed in three different energy ranges (total, soft, and hard)
and was based on (i) an improved slew data processing pipeline,
resulting in an updated slew survey catalogue, (ii) a consistent
computation of upper limits in slew and pointed data, (iii) a col-
lation of slew and pointed photometry together with upper lim-
its, and extraction of long- term light curves, and (iv) a search
for and characterisation of variability in the resulting typically
very sparse time series. Particular attention was devoted to the
study of the compatibility of flux measurements in slew and
pointed data. The main output was an LTV catalogue includ-
ing more than two million photometric measurements for about
420000 unique sources together with meta-data for the obser-
vations used, quality information, and a number of variability
parameters that gauge the level and timescales of variability.

All results have been released to the community in early
2017 in a public archive, including a database of variability
parameters and more than 20 million products. A user-friendly
interface for accessing data is operational. A visualisation server
was implemented to provide users with a powerful facility for
interactive display of all archived data and metadata. We also
released the source code of the software tools developed by
EXTraS to perform searches for and characterisation of short-
term aperiodic variability, searches for periodicity, search for
new transients, and characterisation of long-term variability. We
implemented the EXTraS Science portal, a new science gateway,
for providing search for short-term aperiodic variability, search
for pulsations, and search for new transients on EPIC data. Users
can select their dataset from the XMM-Newton archive and run
selected EXTraS pipelines via a simplified interface, with no
need to install any software. All jobs are managed by the portal
based on computing resources provided by the European Grid
Infrastructure.

EXTraS results and products are proving to be a very rich
resource for investigations in almost all fields of astrophysics,
with applications ranging from the search for rare events and
peculiar objects to the study of the properties of large sam-
ples of sources. We encourage the community to explore the
EXTraS archive and to develop projects based on our results and
tools. The outcome of EXTraS will also serve as a learning case
for new experiments focusing on the X-ray variable sky, from
SVOM to eROSITA to Athena.

At a different level, our project also offers an extensive test
for different data analysis approaches and methods that could be
directly applied to the analysis of data from other current and
future experiments. We list a few examples below.

First, the overall strategy we devised to measure source and
background contributions, including new recipes for (i) optimi-
sation of the source region (Sect. 3.4), (ii) modelling the spatial
distribution of a constant and of a variable background compo-
nent (Sect. 3.5), and (iii) optimisation of a background region to
extract a representative background light curve (Sect. 3.6). This
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might be adopted to compute accurate time-dependent photom-
etry in any imaging photon-counting instrument.

Second, our implementation of the Bayesian block algorithm
(Sect. 3.8), designed to take the highly variable background rate
of the EPIC instrument into account, might easily be used for
the production of adaptive binning light curves from any other
photon-counting detector, using time-resolved photometric data,
on-source (source + background) and off-source (background)
measurements.

Third, our periodicity search algorithm that takes the prop-
erties of broad-band noise into account (Sect. 4.3, Step 2), as
designed by Israel & Stella (1996), can be applied to the analy-
sis of power density spectra independent of the detector that was
used to collect the time series. It has already proved to be suc-
cessful in searching for pulsations in a range of different cases
(ROSAT, Chandra, XRT, NuSTAR; see e.g., Israel et al. 2016).

Fourth, the core of the algorithm we developed to search for
new transients is based on the segmentation of the field of view in
angularly independent regions and on the Bayesian block anal-
ysis of time series from each region to select time intervals dis-
playing deviations from the background count rate (Sect. 5.4).
This could be used for any imaging photon-counting detector
and could also be implemented as a (near) real-time monitor for
transients in future experiments.

EXTraS results, products, and tools are also proving to have
great potential for the popularisation of science in general and
of astronomy in particular, offering excellent opportunities to
promote exciting science to students and to a general public
audience. With this in mind, an experimental didactic program
was designed within the project and was implemented in sev-
eral workshops for high-school students in Italy, Germany, and
the UK. The final goal of the program is to engage the students
(and in perspective, citizen scientists) by involving them in a
research program. Based on the use of EXTraS online resources,
they examine the data and try to select new phenomena, or to
characterise already known sources. To do this, they follow the
whole validation process. One of these workshops resulted in a
very interesting discovery: a peculiar flaring source in the globu-
lar cluster NGC6540 (Mereghetti et al. 2018)%°. Our educational
activity will also turn to an experiment of citizen science, allow-
ing us to assess the viability of involving non-expert (but trained)
people in a complex classification task. See D’Agostino et al.
(2019a) and references therein for more details.
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Appendix A: XMM science analysis software
counting-mode issue

|

obs. 0560181301 - pn camera

PPS - MJD 54924.99364 to 54924.99465

PPS - MJD 54924.99465 to 54925.00210

ODF - MJD 54924.99364 to 54924.99465

L
ODF - MJD 54924.99465 to 54925.00210

Fig. A.1. Comparison between pn images obtained for the same time period starting from PPS and ODF event files (left and right panels,
respectively). In the upper panels we extracted events from the last former GTI listed in the PPS event file, while in the lower panels we extracted
events after that time period.
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Fig. A.2. Comparison between two light curves of different pn quadrants (left panel: first, right panel: third) of the same observation (obs.id
0560181301), obtained from the PPS event file.

We describe the bug that is present in old versions of the SAS
software. It produces incorrect time-tagging of events. The prob-
lem was found to affect a significant fraction of PPS event files
at the time of the EXTraS project. The recent bulk reprocessing
of XMM data in late 2019 fixed the problem in all PPS files.

At the beginning of the project, we compared event files in
PPS products to event files generated using SAS v14, starting
from observation data files (ODF) in order to select the start-
ing point for the analysis. We recall that ODF files are level-0
products that require a time-consuming pre-processing to obtain
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a level-1 event file. We used SAS v14.0. PPS files instead that
contain level-1 event files processed with a specific configuration
(i.e. specific version of SAS tools) that is usually updated on a
yearly basis®!. We found large differences between event files
from PPS (hereafter ‘PPS’) and event files generated from ODF
(hereafter ‘reprocessed’) for a number of test cases.

Good time intervals in PPS and reprocessed files can be dif-
ferent, with reprocessed files listing additional GTI and events
after the last ones in PPS (see Fig. A.1). Moreover, in PPS event
files we found time intervals that were included in GTIs with
no recorded photons, with durations up to a kilosecond. Finally,
the background light curves taken from different CCDs (quad-
rants for pn) from the PPS event file can display a progressive
shift of flares with time (see Fig. A.2) up to few kiloseconds at
the end of long exposures. These differences are only seen in
event files that are affected by high-background time intervals.
When the telemetry rate is exceeded by the data rate in one CCD
(or quadrant in the case of the pn), the so-called counting mode
is triggered and that CCD (quadrant) stops recording individ-
ual events for a few time intervals. Only the number of dropped
events is then transmitted. It is apparent that the software used
to produce PPS can make an incorrect reconstruction of time-of-
arrival of events after counting-mode occurrences. Then, events
with incorrect time of arrivals that fall outside GTIs are deleted.

This software problem has a potentially strong effect on the
timing analysis of XMM-Newton data, which is the main focus of
EXTraS. Analysis of aperiodic variability is mostly impacted by
an incorrect characterisation and subtraction of the background.
The search for pulsations can be hampered by incorrect times
of arrival. The absolute time at which new X-ray transients are
detected can be incorrect.

We evaluated the number of exposures that are affected by
this problem. Starting from PPS event files, we produced light
curves with 50 s time bins for each CCD of MOSs and with 20
s time bins for each quadrant of pn. We selected these time bins
in order to have at least 25 counts s~! per bin from the quiescent
background, and thus a lower than a 50 probability of zero-count
bins. When the flaring background and the celestial sources that
are not subtracted in this exercise are also taken into account, the
probability of a zero-count bin is negligible. Thus, we produced
new bad time intervals from time bins with zero counts. These
were compared with the GTIs reported in the PPS event files.
We obtained differences for at least one quadrant in 27% of pn
exposures and 3% of MOSs exposures. For pn, time shifts of
>100s (up to few kiloseconds) at the end of the observation are
registered for at least one quadrant in 15% of exposures. These
figures were computed for the PPS archive at the epoch of the
EXTraS project. As already stated, the current archive is free
from this problem.

The summary of changes from SAS v13.0 to 13.5 reports
a change in the FIFO resets that would cause an underesti-
mated deadtime due to FIFO losses and resets in the epframes
package, which is part of the pre-processing pipeline. This can
explain the incorrect time reconstruction for SAS versions before
13.5.

Appendix B: Catalogue of new transients

We give in Table B.1 the full list of the 136 new transients
discovered by the dedicated analysis described in Sect. 5.

Table B.1. 136 new transient sources discovered by the dedicated analysis described in Sect. 5.

Transient Observation 1 b Error Duration  EPIC counts
ID ID (degrees)  (degrees)  (arcsec) (s)

EXMM J023135.0-603743 0675010401  283.0184 —52.4543 1.4 315.1 54+9
EXMM J083215.8-452454 0672040101 263.4212  —-3.3647 2.7 322.5 18+5
EXMM J061723.5+225537 0600110101  188.7580 3.2281 1.5 359.3 38+7
EXMM J070900.0-492415 0653510501  260.0442 —-17.5718 2.3 388.9 13+4
EXMM J174033.7-310504 0301730101  357.5970  —-0.1976 1.8 431.3 215
EXMM J215653.6-114708 0103860501  44.7440  —46.3584 2.1 494.8 225
EXMM J164340.4-542138 0603220201  332.7182  —5.5218 1.5 600.2 45+8
EXMM J003954.6+401810 0402560601  120.5529 -22.5156 2.3 717.7 12+4
EXMM J174535.5-285929 0674601101  359.9495  —0.0234 1.0 741.1 7611
EXMM J161510.5-224401 0555650301  352.5542 19.9434 1.6 761.6 32+6
EXMM J174628.4-290617 0202670701  359.9531  —0.2471 1.5 784.4 42 +7
EXMM J171042.4-280452 0206990401 356.4635 6.8619 2.1 797.6 23+6
EXMM J173613.1-353035 0606200101  353.3705  —1.7951 1.3 808.6 38+7
EXMM J181008.1-194543 0301270501 10.7321 -0.2319 1.8 833.3 235
EXMM J111245.2-603617 0051550101  291.1095  —0.0183 1.3 856.6 60+9
EXMM J203347.9+601124 0401360101 95.6707 11.8029 1.5 859.6 69+12
EXMM J111653.2+440231 0651330301 165.0809  64.5643 1.5 903.1 38+7
EXMM J104620.4+524822 0200480201 156.4753  55.3929 1.1 921.5 80«11
EXMM J151033.9+333059 0303930101 53.5763 59.4535 1.1 922.2 61+12

Notes. Basic properties of each source are shown: the EXTraS transient name, the XMM Observation ID, Galactic longitude (1) and latitude (b)
in degrees, overall uncertainty on the position (arcsec), transient duration (s), and EPIC counts (0.1-12keV). Sources are sorted by increasing
duration of the transient. See Sect. 5 for more details. A full version of the catalogue is available online at https://www88.lamp.le.ac.uk/

extras/archive

2l See https://www.cosmos.esa.int/web/xmm-newton/
pipeline-configurations

A167, page 36 of 39


https://www88.lamp.le.ac.uk/extras/archive
https://www88.lamp.le.ac.uk/extras/archive
https://www.cosmos.esa.int/web/xmm-newton/pipeline-configurations
https://www.cosmos.esa.int/web/xmm-newton/pipeline-configurations

A. De Luca et al.: The EXTraS project: Exploring the X-ray transient and variable sky

Table B.1. continued.

Transient Observation 1 b Error Duration  EPIC counts
1D ID (degrees)  (degrees)  (arcsec) (s)

EXMM J163547.9-472914 0502140101  337.0444  —-0.0340 2.2 939.6 28+7
EXMM J182806.2+063510 0201730301  36.1774 8.1730 1.1 997.1 89+ 11
EXMM J182903.1+003008 0402820101  30.8220 5.2091 1.0 1000.0 59+9
EXMM J174544.9-290504 0202670601  359.8882  —0.1012 1.7 1000.0 85+11
EXMM J162721.5-244146 0305541101  352.9841 16.5582 1.1 1000.0 66+ 10
EXMM J162714.7-245135 0305540701  352.8380 16.4694 0.7 1000.0 253+ 18
EXMM J154227.2-522431 0152780201  327.4138  2.1399 1.4 1000.0 52+11
EXMM J141328.4-651755 0111240101  311.3692 -3.7796 1.3 1000.0 72+9
EXMM J031659.2-663214 0405090101  283.5192 —-44.7121 0.9 1000.0 116 11
EXMM J180041.1-224343 0135742601  7.0675 0.2362 1.4 1064.7 62+ 10
EXMM J092441.0-213122 0065940501  251.8552  20.2413 2.5 1134.9 42 +8
EXMM J183205.9-191433 0404720201  13.6242 —4.5572 2.1 1138.2 23+5
EXMM J212805.1-651052 0670380101  328.2836  —40.5255 1.0 1142.5 9+12
EXMM J103154.4-142301 0203770101  259.4147  36.4357 1.9 1143.0 28+7
EXMM J002115.2+592518 0693390101  119.0952  —3.2250 1.2 1150.1 74+ 10
EXMM J124840.7-055437 0153450101  301.6735 56.9547 1.3 1203.8 58+9
EXMM J203222.9+414045 0305560201  80.4210 1.1353 1.9 1258.1 36+8
EXMM J111939.8-611834 0672790201  292.1454  —-0.3745 1.1 1292.5 94 +11
EXMM J025737.3+132247 0112260201  164.0056  —-39.2247 1.9 1328.5 27+6
EXMM J232545.2+613150 0404720301  112.9056  0.3380 1.7 1362.0 28+6
EXMM J174553.3-290445 0604300801  359.9087 -0.1246 0.7 1396.0 243 +20
EXMM J224259.1+530613 0654030101  104.2452  —5.0432 0.6 1419.1 238+ 19
EXMM J213452.0+473048 0650591701  92.1561 -3.2663 1.9 1428.4 41+7
EXMM J080344.1-400619 0159360501  256.0783  —4.7350 1.4 1433.2 48 +7
EXMM J180452.2-274315 0305970101  3.1866 —3.0451 0.7 1435.7 185 £ 15
EXMM J084839.3-453548 0159760301  265.3207 -1.2019 1.3 1486.7 118+ 18
EXMM J063553.4+054141 0146870401  206.0927 —0.8473 1.0 1497.9 97+ 14
EXMM J104439.0-593700 0112560201  287.5195  —0.5937 1.4 1515.9 61+10
EXMM J230201.7+584917 0057540301  109.1685 —1.0956 1.4 1520.5 59+11
EXMM J171420.6-381830 0670330101  348.6015 0.2541 0.7 1536.9 218+ 19
EXMM J141157.0-651343 0111240101  311.2392  -3.6635 1.4 1622.7 55+8
EXMM J165415.0-415314 0109490401  343.4259  1.1329 1.5 1724.0 64+ 10
EXMM J164709.7-455034 0505290201  339.5665 —-0.4111 1.0 1724.4 113+ 13
EXMM J131233.2-624631 0510980101  305.3441 -0.0024 1.3 1863.9 61+9
EXMM J161132.6-603430 0550451101  325.2074 —6.6767 1.9 1874.0 39+8
EXMM J224401.5+531513 0654030101  104.4542  —4.9850 1.7 1907.4 36+7
EXMM J144350.6-621945 0504810301  315.5771  -2.2495 1.2 1923.5 95+12
EXMM J065442.8-240004 0652250601  234.8727 —-10.0120 0.7 1929.5 195+ 16
EXMM J170213.4-295801 0205580201  353.8250  7.2331 1.0 1940.3 96+ 13
EXMM J022701.8-053144 0404964801  173.7029 -58.6311 2.8 1951.0 23+6
EXMM J191119.6+045739 0694870201  39.6172 —2.1445 1.9 1972.5 25+6
EXMM J215645.3-074944 0404910701  49.6538 —-44.4155 2.1 1973.8 40+8
EXMM J181836.6-134818 0605130101  16.9337 0.8349 1.2 2000.0 69+ 12
EXMM J164707.0-455158 0410580601  339.5437 -0.4203 1.3 2000.0 88+ 14
EXMM J053546.1-051051 0134531701 208.8725 -19.1798 0.7 2000.0 215+19
EXMM J053521.8-055403 0112660101  209.5052 —-19.5948 0.8 2000.0 272 +£20
EXMM J142517.6+225545 0143652301  26.9391 68.3630 1.0 2012.2 148 + 17
EXMM J203304.8+410048 0165360101  79.9632 0.6342 1.6 2035.8 40+9
EXMM J023126.0-712906 0510181701  292.2680 —43.5134 1.1 2177.0 144+ 18
EXMM J203254.4+410638 0505110401  80.0220 0.7184 0.6 2225.2 513+31
EXMM J020825.7+352826 0084140101  140.1353 248127 1.6 2228.2 40+7
EXMM J161753.9-505650 0113050701  332.5270 —0.3394 1.2 23259 39+8
EXMM J181243.3-104054 0500030101  19.0002 3.5845 1.1 2361.5 82+11
EXMM J051723.2-685921 0113000501  279.6914 -33.5711 2.2 2379.1 28+6
EXMM J061751.0-325214 0092360101  240.1367 -20.8940 1.2 2443.7 66+9
EXMM J104421.4-593453 0112560201  287.4701  —0.5800 1.2 2474.6 89+13
EXMM J203400.9+412801 0505110401  80.4322 0.7634 1.4 2493.1 45+8
EXMM J042225.1+281148 0101440701  169.5137 -15.0331 1.5 2503.4 56+ 10
EXMM J170208.5-485246 0204730301  338.7994 —4.2920 1.1 2545.8 74+13
EXMM J230219.5+583338 0057540101  109.0973  —1.3493 1.5 2603.8 51+9
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Transient Observation 1 b Error Duration  EPIC counts
1D ID (degrees)  (degrees)  (arcsec) (s)

EXMM J151552.5+561021 0673920301 91.3784 51.1752 1.7 2615.8 31+7
EXMM J183630.3-064816 0503320601  25.1775 0.2015 1.6 2723.9 41 +8
EXMM J180614.4-212650 0673690101  8.8161 —0.2533 2.0 2763.5 34+8
EXMM J150230.1-413335 0555630301  327.7098 14.9210 1.8 2804.4 57+11
EXMM J053219.8-072932 0690200201  210.6656  —20.9786 0.8 2813.7 142+ 16
EXMM J190757.0-205142 0671850301  15.8578 —-12.8410 0.7 2818.3 263 +22
EXMM J070206.1-111429 0654880301  224.1490 -2.7677 1.9 2902.3 54+9
EXMM J170759.6-410042 0406580101  345.6993  —0.3605 1.6 2962.7 30+7
EXMM J104450.1-594208 0160160901  287.5800 —0.6585 1.1 3000.0 39+8
EXMM J203317.5+411303 0200450201  80.1510 0.7238 1.6 3016.7 52+10
EXMM J201744.3+372759 0670480401  75.3524 1.0094 1.6 3030.8 42 +8
EXMM J180152.2-231706 0145970401  6.7192 -0.2759 1.3 3075.0 40+9
EXMM J171924.9+264033 0500670201  49.2190 31.0319 1.6 3100.6 52+12
EXMM J072837.7+674629 0302400301  148.0559  28.4566 1.5 3106.6 41 +8
EXMM J083916.3-454613 0603510701  264.4420 —-2.5964 1.3 3206.9 65+11
EXMM J175954.5-240928 0503850101  5.7387 -0.3190 1.4 3239.6 49+ 10
EXMM J070238.9-114145 0654880401 224.6152 -2.8557 2.0 3250.2 32+8
EXMM J151819.8-615757 0555690901  319.2918 -3.8536 0.6 32523 381 +31
EXMM J173602.1-444555 0146420101  345.5071 -6.7156 1.2 3290.6 70+ 11
EXMM J083833.5-355215 0303230301  256.4936  3.3111 2.0 3301.4 36+8
EXMM J113835.0+170650 0066950201 239.9104 70.4156 1.3 3410.4 55+10
EXMM J235822.8+563209 0553510301  115.6285 —5.5817 0.8 3507.2 183+ 18
EXMM J004449.9+415244 0109270301  121.6149 -20.9759 1.0 35314 114+ 14
EXMM J113622.2-613751 0201160401  294.1390 -0.0474 1.2 3615.3 74+ 12
EXMM J082521.5+261559 0603500301  197.2481 31.3173 1.0 3641.7 69+ 10
EXMM J184100.9-053819 0604820301  26.7275 -0.2600 1.6 3740.9 51+9
EXMM J104520.8-593254 0311990101  287.5656  —0.4922 1.7 3760.1 36+8
EXMM J035849.7+541255 0112200301  148.1860  0.8005 2.3 3815.0 29+6
EXMM J174617.8-291150 0505670101  359.8540 —0.2621 1.4 3977.8 62+12
EXMM J053508.2+095532 0402050101  195.0594 -11.9997 0.6 4000.0 554 +37
EXMM J100422.2-701215 0099020301  289.6087 —11.7843 1.4 4030.8 52+8
EXMM J173432.0-255552 0202680101  1.2433 3.6790 0.9 4037.2 163+ 18
EXMM J174537.2-285500 0506291201  0.0167 0.0102 1.3 4128.7 55+ 9
EXMM J203138.2+413027 0305560201  80.2001 1.1458 1.3 4131.8 59+10
EXMM J203352.8+412516 0505110301  80.3804 0.7564 0.9 4174.3 144 + 18
EXMM J165430.4-415455 0109490601  343.4343  1.0781 1.2 4193.9 57+10
EXMM J132724.8-620703 0036140201  307.1246  0.4610 2.1 4215.2 23+6
EXMM J104435.8-593120 0112580601  287.4694  —0.5135 1.3 4275.8 66+ 11
EXMM J004322.3+413432 0690600401  121.3132 -21.2708 1.5 4313.4 53+10
EXMM J045638.4+302913 0671960101  172.6676  —7.8720 1.8 4439.7 30+7
EXMM J162705.9-244015 0305540601  352.9629 16.6193 1.2 4538.7 60+ 11
EXMM J180542.6-211847 0405750201  8.8730 -0.0799 14 4622.2 69+ 12
EXMM J111844.6-612232 0150790101  292.0649 —0.4749 1.4 4647.0 66+ 12
EXMM J103528.6+631021 0403760401  144.9605 47.7256 1.8 4660.3 157 £22
EXMM J070810.2-492944 0653510301 260.0817 —17.7308 1.7 4677.2 45+8
EXMM J172020.7-290720 0552002601  356.8339  4.5330 0.6 4745.0 319+23
EXMM J165201.9-415313 0602020201  343.1648  1.4526 14 4746.8 51+9
EXMM J111116.9-602649 0051550101  290.8826  0.0603 1.6 4761.5 68+11
EXMM J144707.3-622053 0504810201 3159137 -2.4283 1.5 4799.5 57+10
EXMM J001930.4+591440 0693390101 118.8525 —3.3741 1.0 4809.4 120+ 14
EXMM J084638.5-525906 0201910101  270.8901 —6.0828 0.7 4861.8 223 +20
EXMM J203412.5+602046 0691570101  95.8314 11.8507 2.0 4879.6 48 +8
EXMM J203323.8+411847 0200450501  80.2396 0.7648 1.1 4916.7 61+12
EXMM J191400.9+045016 0075140401  39.8175 —2.7953 14 4942.2 55+11
EXMM J214407.1+382511 0602310101  87.3095 -11.1691 0.9 4985.2 96+ 13
EXMM J053928.4-691943 0113020201  279.7217 -31.5785 1.5 4993.5 37+8
EXMM J162729.5-243917 0305540701  353.0372  16.5628 0.7 5000.0 15114
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Appendix C: Energy conversion factors for pointed
data for the LTV analysis

The ECFs used for the pointed data analysis for the LTV cata-
logue, defined as F; = R;/E;, where F; is the flux, R; is the count
rate, and E; is the ECF (each in band i), are shown in Table C.1.

Table C.1. Energy conversion factors (in units of 10'! ctscm?erg™")
used to convert pointed data count rates into fluxes for each instrument,

filter, and energy band.

Filters
Camera Band Thin Medium Thick
pn 6 7.3868 7.030 5.4091
7 1.1089 1.0992 1.0561
8 3.3245 3.1924 2.5929
MOS1 6 1.9237 1.8492 1.5293
7 0.3745 0.3713 0.3585
8 0.9232 0.8949 0.7736
MOS2 6 1.9286 1.8536 1.5316
7 0.381 0.3775 0.3644
8 0.9292 0.9004 0.7782
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