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Abstract

There is a persistent H0-tension, now at more than 4σ level, between the local distance ladder value and the
Planck cosmic microwave background measurement, in the context of flat Lambda-cold-dark-matter (ΛCDM)
model. We reconstruct H(z) in a cosmological-model-independent way using three low-redshift distance probes
including the latest data from baryon acoustic oscillation, supernova Ia (SN Ia) and gravitational lensing time-delay
(GLTD) observations. We adopt general parametric models of H(z) and assume a Gaussian sound horizon at drag
epoch, rs, from Planck measurement. The reconstructed Hubble constant H0,rec using Pantheon SN Ia and Baryon
Acoustic Oscillations (BAO) data are consistent with the Planck flat ΛCDM value. When including the GLTD
data, H0,rec increases mildly, yet remains discrepant with the local measurement at ∼2.2σ level. With our
reconstructions being blind to the dark sectors at low redshift, we reaffirm the earlier claims that the Hubble tension
is not likely to be solved by modifying the energy budget of the low-redshift universe. We further forecast the
constraining ability of future realistic mock BAO data from Dark Energy Spectroscopic Instrument and GLTD data
from Large Synoptic Survey Telescope, combining which, we anticipate that the uncertainty of H0,rec would be
improved by ∼27%, reaching s » 0.67H0,rec uncertainty level.

Unified Astronomy Thesaurus concepts: Observational cosmology (1146); Distance indicators (394); Strong
gravitational lensing (1643); Type Ia supernovae (1728)

1. Introduction

The flat Lambda-cold-dark-matter (ΛCDM) model is a
remarkably successful cosmological model. It describes many
observational results well, especially at large scales, including
the cosmic microwave background (CMB) radiation, light
element abundance as the relic of big bang nucleosynthesis,
galaxy clustering, Lyα forest observations and also distance
from low-redshift probes. However, there exists a strong
tension for the present Hubble expansion rate (H0), between the
direct measurement using distance ladder of local universe
(Riess et al. 2016, 2019; Yuan et al. 2019), and the Planck
estimate (Ade et al. 2016; Aghanim et al. 2018) from CMB
within the context of ΛCDM (Bernal et al. 2016; Raveri &
Hu 2019; Verde et al. 2019). One important aspect is that the
discordance, since the first release of Planck data (Ade et al.
2014), has become even more prominent due to the improved
precision of both measurements, which are at ∼9% difference,
now reaching a significance of 4σ (Riess et al. 2019). More
recent low-redshift GLTD measurements, independent of the
local distance ladder, also shows a tension at high significance
(Wong et al. 2020). The H0 tension, persisting and severely
increasing, indicates that it should not merely be regarded as a
statistical fluctuation, and is more likely to point to a failure of
the standard ΛCDM model, as also noted in Verde et al. (2019),
or due to unknown systematics in the data.

CMB provides a stringent constraint on H0 by combining the
measurements of angular location and relative height of the
acoustic oscillation of the baryon-photon fluid frozen at last
scattering surface at z≈1100. However, the measurement is

model-dependent and influenced by possible extensions to the
ΛCDM model, such as the dark energy equation of state
parameter w8 or the curvature Ωk, which as is well-known
further aggravates the tension. Thus, modifying either the early
or the local universe physics can, in principle, alter the H0

constraints from CMB measurements.
Modification to the ΛCDM model often involves ingredients

beyond the standard physics, although the existence of dark
matter and dark energy within the ΛCDM framework has
already established the necessity for “new” physics. Preferable
approaches can be to the modified dark energy model and
different gravitational field behavior (Umiltà et al. 2015;
Ballardini et al. 2016; Huang & Wang 2016; di Valentino et al.
2017a, 2018b; Zhao et al. 2017; Poulin et al. 2018;
Banihashemi et al. 2019; Choi et al. 2019; Khosravi et al.
2019; Rossi et al. 2019), such as an early dark energy (Xia &
Viel 2009; Karwal & Kamionkowski 2016; Mortsell &
Dhawan 2018; Poulin et al. 2019; Ye & Piao 2020), interaction
between dark sectors (Ko & Tang 2016; Raveri et al. 2017; di
Valentino et al. 2018a; Archidiacono et al. 2019), interacting
dark energy model (Xia et al. 2013; Kumar & Nunes 2016; di
Valentino et al. 2017b; Yang et al. 2018; Pan et al. 2019), and a
family of unified dark matter models (e.g., Camera et al. 2019
and references therein). Apart from the cosmological models,
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8 One possible way to relieve the Hubble tension is allowing phantom dark
energy (di Valentino et al. 2017a; Vagnozzi 2020). This might, however, have
a discrepancy with the low-redshift BAO measurements, which constraints
better the w−1 range, see, e.g., Bernal et al. (2016), Aubourg et al. (2015),
Haridasu et al. (2018b), and Park & Ratra (2019).
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local gravitational potential (Marra et al. 2013), specifically a
local void (Keenan et al. 2013; Whitbourn & Shanks 2014) can
also partially relieve H0 tension (Hoscheit & Barger 2017;
Shanks et al. 2019), yet there are studies utilizing supernova
(SN) data sets (Kenworthy et al. 2019; Luković et al. 2020),
which show that the local structure does not significantly
impact the measurement of H0.

Before we turn to revamp the standard ΛCDM model, it is
necessary to get some insight from low-redshift cosmological
probes, whose variability and observational accuracy can
provide us an integrated and precise understanding of the late
universe. In this work, we perform a cosmological-model-
independent reconstruction of H(z), an inverse distance ladder
analysis using the SNe Ia, Baryon Acoustic Oscillations
(BAO), and GLTD data, which are able to impose a strong
constraint on the shape of H(z). We include the GLTD data as it
is independent of BAO and SN Ia. Although its current
uncertainties are not comparable to the latter, it has the
advantage of measuring the absolute distances, unlike the SN
Ia, which needs marginalization of the nuisance parameter, i.e.,
standardized absolute luminosity.

Our analyses are closely related to the recent work by
(Lemos et al. 2019; hereafter L18) while we update the BAO
data and include the GLTD data into analyses. We found no
evidence of non-zero curvature and deviation from the ΛCDM
model in terms of the reconstructed H(z) while in fact the
ΛCDM model performs better according to the Deviance
Information Criterion (DIC). Our inferred H0 when combining
all three probes is slightly higher than the primary results
of L18, which is mostly due to the inclusion of GLTD data
whose estimate of H0 is higher than the one from the Planck
ΛCDM. As a more important extension, we forecast the
performance of future BAO data from the Dark Energy
Spectroscopic Instrument (DESI; Levi et al. 2013) and GLTD
data from the Large Synoptic Survey Telescope (LSST; Ivezic
et al. 2019). We conservatively expect the constraint on H0,rec

can reach up to ≈0.67 uncertainty level when combining the
forthcoming data from these two surveys.
The paper is organized as follows: in Section 2 we introduce

the parametric form of H(z). In Section 3, we present the data
used for reconstruction as well as the inference method. We
show the final results using the current and future data in
Section 4 and then follow the discussion and summary in
Section 5.

2. Model and Equations

First, we parameterize H(z) in the following two ways:
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which are the same as in L18, and denote them as Epsilon
model and Log model, respectively. While these models serve
the purpose of being blind to the dark energy equation of state,
they are clearly inadequate to account for the curvature
freedom. Moreover, ignoring the curvature would induce error
that grows rapidly with redshift in reconstructing the dark
energy equation of state (Clarkson et al. 2007). To accom-
modate for this we also implement two additional models:
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They are denoted as the Log2 model and ΩkΛCDM model,
respectively. We substitute the term ∝z with a ∝(1+z)2 term

Figure 1. Left panel: parameter constraints for the the Epsilon model at the 68% and 95% confidence levels (CLs). Right panel: same as left, but for the Log model. In
both the panels we also show H0,rec, which is a derived quantity.
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for theoretical and practical reasons: (i) the latter has
cosmological implication for the curvature of the universe,
(ii) as shown in the right panel of Figure 1, the parameters C2

and D2 are strongly correlated, which is primarily due to
+ »z zln 1( ) at small redshifts. We also implement the

ΩkΛCDM model, which we write in a similar parametric form
while putting two restrictions on its parameters: (i) H0 is a free
parameter, which is a different implementation from other
models where H0,rec is a derived quantity, (ii) A4+B4+
D4=1, which is in fact the consistency relation when rewritten
in terms of standard density parameters (Ωm+Ωk+ ΩΛ=1).
We adopt a fiducial Hubble constant value of =H0,fid

- -67.0, km s Mpc1 1. The reconstructed H0, denoted as H0,rec,
for each model is deduced at z=0 after extrapolation. The
choice of H0,fid does not alter H0,rec.

9

In both Log2 and ΩkΛCDM model, having the explicit
(1+z)2 term, which has the interpretation of cosmic curvature,
the transverse comoving distance DM becomes

=

W >

W =

W <

W

W

-W

-W

D z D z

sinh , 0

, 0,

sin , 0

5

D D z

D

C

D D z

D

M

k

k

k

H C

H

H C

H

k

k

k

k

⎧

⎨
⎪⎪

⎩
⎪⎪

( )
( )

( ) ( ) ( )

( )

( )

where the comoving distance ò= ¢
¢

D c
z dz

H zC 0 ( )
and =DH

c H0,rec, c is the speed of light. For the Log2 model, Ωk
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2
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2 and for ΩkΛCDM it is B4. Thus,

the luminosity distance Dd and angular diameter distance
DA are
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and the effective volume averaged distance, denoted as DV,
which often appears in BAO measurements, is defined as:
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The sound velocity cs is a function of the ratio of baryon to
photon energy density (r rgb ). Our purpose here is to
reconstruct H(z) in a model-independent way, having minimum
involvement with the physics of the early universe. Therefore,
we use the measurement of rs from the Planck (Ade et al.
2016), which implies we assume the universe before zs is the
same as depicted by the ΛCDM model. Also, it has been shown
that the dark energy and curvature degree of freedom do not
modify the expectation of rs(zs) (Verde et al. 2017a, 2017b).
The H(z) parameterizations in Equations (1)–(3) are valid only
in the late universe.

In a strong lens system, light from a background object is
bent by an intervening mass (lens), and multiple images are
generated. Usually, these light rays go through different optical

paths when passing the gravitational potential of the lens due to
complicate morphologies of the system. If the source happens
to have a variation in flux, then the difference in optical paths
finally turn out to be the difference in the arrival time, i.e., the
time delay, of the photon from the images to us. This time
delay conveys a combination of distance information of the
lens system, which is called as the time-delay distance and
denoted as DΔt (Narayan 1991; Treu & Marshall 2016), reads

= +DD z
D D

D
1 , 9t l

d s

ls
( ) ( )

where zl is the redshift of the lens, and Dd and Ds are the
angular diameter distance from us to the lens and source,
respectively. DΔt has the dimension of distance and conse-
quently is inversely proportioned to H0. Moreover, with a
proper assumption of lens mass density profile, one can extract
Dd by combining the lens stellar velocity dispersion measure-
ments and time-delay measurements (Paraficz & Hjorth 2009;
Jee et al. 2015).

3. Data Sets and Inference Method

Our work is based on the following three probes: SN Ia,
BAO, and GLTD. In this section, we first summarize in detail
the data used here and then we present the inference method for
our reconstruction of H(z).

3.1. Data Sets

1. SN Ia from the Pantheon sample (Scolnic et al. 2018)
which contains a total of 1048 SN Ia spanning the redshift
range from 0.01<z<2.3. The Pantheon sample is a
large combination of SN Ia from various surveys and has
unique advantages in its large sample number and wide
redshift range for studying the expansion history, and it
has consistent constraints on physics of the late universe,
such as the dark energy, with that from the joint light-
curve analysis SN Ia (Betoule et al. 2014) and also the
latest Dark Energy Survey Supernova Program SN Ia
sample (Abbott et al. 2019).

2. Table 1 summarizes the latest BAO measurements used in
this paper. They are measurements from 6dF Galaxy
Survey (6dFGS; Beutler et al. 2011), BOSS DR12 in three
redshift bands (Alam et al. 2017) and three high-redshift
BAO measurements from eBOSS DR14 quasar (Zarrouk
et al. 2018), Lyα absorption in the quasar spectrum
(Blomqvist et al. 2019), and Lyα-quasar cross-correlation
(de Sainte Agathe et al. 2019). Measurements from eBOSS
DR14 luminosity red galaxies at =z 0.72eff (IcazaLizaola
et al. 2020) are excluded for the relative low constraining
power and small correlation of ∼0.16 (Bautista et al. 2018)
with the last data point in BOSS DR12.

The BOSS DR14 Lyα and QSO×Lyα data has been
included in the current version of CosmoMC package (later
introduced in Section 3.2) where the likelihoods for BAO
peak-position parameters αP and α⊥ are used. The H(zeff)s
listed in Table 1 are used to plot Figure 3. However, for the
eBOSS DR14 QSO, since its likelihoods is still unavailable,
we keep in line with L18, i.e., assume its measurements of
H(zeff) and DM are Gaussian and independent.

3. We use six GLTD distance measurements as summarized
in Table 2. They are, respectively, the analytic fit of
P(DΔt) (Suyu et al. 2010) and P(Dd) (Jee et al. 2019) of

9 We verify that a different assumption of H0,fid hardly varies the inferred
H0,rec if we replace = - -H 67.0, km s Mpc0,fid

1 1 with a different value, such
as = - -H 73.0, km s Mpc0,fid

1 1.
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B1608+656, the MCMC (Monte Carlo Markov chains)
chains of DD t (if available) and Dd for RXJ1131-1231
(Suyu et al. 2014; Chen et al. 2019), SDSS 1206+4332
(Birrer et al. 2019), HE 0435-1223 (Wong et al. 2016;
Chen et al. 2019), WFI2033-4723 (Rusu et al. 2020) and
PG 1115+080 (Chen et al. 2019). The GLTD data can
be obtained from the H0LiCOW website.10

The analytic likelihood function of distance D (DΔt

or Dd) can be approximated as skewed log-normal
distribution. The general expression is:

q
p l s

l n
s
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whereθ is the model parameter vector. x is the model
prediction of -D 1 Mpc 1( ) . For B1608+656, lD, nD and
sD for DΔt are 4000.0, 7.053 and 0.228 while for Dd they
are 334.2, 6.79671 and 0.1836. qDP D t( ∣ ) and qP Dd( ∣ ) are
uncorrelated and can be multiplied directly (Wong et al.
2020).

For the other five GLTD observations, we first want
to get the posterior probability density function (PDF)
at arbitrary distance(s). In Wong et al. (2020), it is
implemented via the kernel density estimator (KDE) from
MCMC chains directly while here, we need some detours:
we divide distance(s) into small bins and calculate PDF at
these divide-points using KDE, i.e., we actually transfer
those MCMC chains into discrete PDF at those points,
which allows us to obtain the PDF at any distance(s) via
interpolation. For the bin width, we adopt a value slightly
smaller than the bandwidth of KDE, which is enough to
keep as much distance distribution information from
MCMC chains as that when using KDE directly. Using
this method, for a flat ΛCDM cosmology with uniform
priors on ÌH 0, 1500 [ ] and W Ì 0.05, 0.5M [ ], we get a
consistent constraint on the marginalized H0 (= 73.22

- -1.72, km s Mpc1 111) with the one shown in Wong et al.
(2020), which further guarantees our method correctly
extracts the original distance information.

4. We use the measurement of rs from the Planck 2015 TT,
TE,EE+lowP likelihood combinations (Ade et al. 2016),

= r 147.27 0.31 Mpc 68% C.L. . 11s ( ) ( )

Table 1
Summary of BAO Data

Data Set zeff Measurements Constraint Unit Reference

6dFGS 0.106 rs/DV (zeff) 0.336±0.015 L Beutler et al. (2011)
BOSS DR12 0.38 D z r rM eff s,fid s( ) 1512±25 Mpc Alam et al. (2017)

H z r reff s s,fid( ) 81.2±2.4 - -km s Mpc1 1

0.51 D z r rM eff s,fid s( ) 1975±30 Mpc
H z r reff s s,fid( ) 90.9±2.3 - -km s Mpc1 1

0.61 D z r rM eff s,fid s( ) 2307±37 Mpc

H z r reff s s,fid( ) 99.0±2.5 - -km s Mpc1 1

eBOSS DR14 QSO 1.52 D z r rA eff s,fid s( ) -
+1850 115

90 Mpc Zarrouk et al. (2018)
H z r reff s s,fid( ) -

+159 13
12 - -km s Mpc1 1

BOSS DR14 Lyα 2.34 D z rM eff s( ) 37.41±1.86 L Blomqvist et al. (2019)
c H z reff s( ( ) ) 8.86±0.29 L

BOSS DR14 QSO×Lyα 2.35 DM (zeff)/rs 36.3±1.8 L de Sainte Agathe et al. (2019)
c/(H(zeff)rs) 9.20±0.36 L

Note. zeff is the effective redshift of the BAO measurement. rs, fid=147.78 Mpc is the fiducial sound horizon. We use the BAO peak-position parameters αP and α⊥

of the BOSS DR14 Lyα and QSO×Lyα data from CosmoMC while for eBOSS DR14 QSO, since its inaccessibility of likelihood, we use the measurements list here
directly.

Table 2
Summary of GLTD Data

Lens Name zd zs DΔt (Mpc) D Mpcd ( ) Type of Data Reference(s)

B1608+656 0.6304 1.394 -
+5156 236

296
-
+1228 151

177 analytic fit Suyu et al. (2010), Jee et al. (2019)

RXJ1131-1231 0.295 0.654 -
+2096 83

98
-
+804 112

141 MCMC chains Suyu et al. (2014), Chen et al. (2019)
SDSS 1206+4332 0.7545 1.789 -

+5769 471
589

-
+1805 398

555 Birrer et al. (2019)
HE 0435-1223 0.4546 1.693 -

+2707 168
183 L Wong et al. (2016), Chen et al. (2019)

WFI2033-4723 0.6575 1.662 -
+4784 248

399 L Rusu et al. (2020)
PG 1115+080 0.311 1.722 -

+1470 127
137

-
+697 144

186 Chen et al. (2019)

Note. Units of distances are all Mpc (Jee et al. 2019).

10 H0LiCOWData Products (https://shsuyu.github.io/H0LiCOW/site/h0licow_
data.html) and a snapshot (https://github.com/yooahin/HZ-reconstruction) in
GitHub.

11 We quote error with the format of mean value ±68% CL limit throughout
this work if not additionally annotated.
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We do not use the rs estimates from WMAP9 and the
latest Planck 18 because they are consistent with that
from Planck 15 and the reconstruction results does not
change as also manifested in L18. Please also note that
our way of including the rs information is different
from L18 where they imposed a Gaussian prior, while we
regard it as a free parameter with a flat prior.

3.2. Inference Method

Our constraints on the reconstruction parameters are
obtained by minimizing the χ2 function using the July 2018
version of Cosmological MonteCarlo (CosmoMC)12 (Lewis &
Bridle 2002; Lewis 2013) and the resulting MCMC chains are
analyzed mainly using the GetDist package13 (Lewis 2019).
We adopt the Gelman–Rubin convergence criterion that
R−1<0.1. In practice, all the MCMC chains that we used
to analyze have R−1∼0.02.

For a given a posterior likelihood function (PLF), the general
form of χ2 is

d dc = - = -C2 ln PLF , 122 1( ) ( )†

whereC is the covariance matrix of the data, and d is the
difference between the data and the theoretical predictions. The
second expression is valid only when the PLF are Gaussian or
approximately Gaussian. If PLF is non-Gaussian, such as the
GLTD data mentioned in the Section 3, then we use the general
expression, i.e., the first equation.

We use the DIC to estimate the performance of the four
reconstruction models. DIC combines heritage both from
Akaike Information Criterion and Bayesian Information
Criterion and allow for parameter degeneracy (Spiegelhalter
et al. 2002; Liddle 2007). DIC is defined via

q= +D pDIC , 13D( ) ( )

where q = - +D C2 lnL( ) and q q= -p D DD ( ) ( ). L is
the PLF and C is a constant that only depends on data. The bars
indicate averages over the posterior distribution. This definition
of DIC has a clear Bayesian interpretation that deals with the
average of lnL rather than the maximum values. Again, pD
has its indication that it approximately equals the effective
number of parameters constrained by the data. If pD is less than
the number of free parameters of a model (pM), then it suggests
that these model parameters are highly degenerate. For this
purpose, in Table 4, we also list pD/pM for each models.

4. Results and Discussion

We impose flat priors on the model parameters, as
summarized in Table 3. The constraint results are graphically
presented in Figures 1–3 and the mock results are shown in
Figure 5. All the numerical results are summarized in Table 4,
along with three statistical quantities for model selection that
are pD/pM, DIC, and χ2 at best-fitting value. While pD is a part
of DIC estimate, we list it separately as it estimates the model
parameter degeneracy.

4.1. Constraints from Current Data

We first update the constraints on the Epsilon and Log
models using the new BAO and Pantheon SN Ia. We find:

=  - -H 68.57 0.89, km s Mpc 68% C.L. , 140,rec
1 1 ( ) ( )

for the Epsilon model and

=  - -H 68.69 0.87, km s Mpc 68% C.L. , 150,rec
1 1 ( ) ( )

for the Log model. Compared to those reported in L18, the
constraints on H0 are almost alike. Although two high-redshift
BAO measurements are updated to the latest BOSS DR14, we
do not find improvement in the accuracy mainly due to the
correlation between H zeff( ) and DM.
Although the BAO data along with the large number of SN Ia

samples can place tight constraints on the shape of H(z), the
correlations among model parameters are compelling, as shown
in Figure 1, which indicates substantial redundancy of these
parameters. The degeneracy in the Epsilon model is driven by the
parameter ò, with a double peak in the marginalized posteriors
(especially obvious in Figure 1 in L18 while in our case it flattens
partly because we have expand the prior range of B1 and D1 to
negative ranges). Overall, the Log model shows highly correlated,
however much simpler, Gaussian constraints than the Epsilon
model. As indeed listed in Table 4, the effective number of the
parameters in the Epsilon model is always less (by ∼1) than
the number of free parameters in the likelihood analysis, i.e.,

<p p 1D M . For the Log model and other two models as well, the
effective number of parameters is almost equivalent to the number
of free parameters. This in turn is one of the motivations to utilize
the Log model to perform the mock analysis, elaborated later.
When including the GLTD data, we find a mild shift in the

posteriors distribution of parameters globally. Constraints on H0

become

= 

= 

- -

- -

H

H

69.17 0.90, km s Mpc 68% C.L. ,

69.26 0.91, km s Mpc 68% C.L. , 16
0,rec

1 1

0,rec
1 1

( )
( ) ( )

for the Epsilon model and Log model, respectively. For both
models, the marginalized values of H0,rec increase, drawing
toward the constraint for ¹ -w 1 extension of ΛCDM using the
same data set, recently reported in Wong et al. (2020; see also
Taubenberger et al. 2019). Preference for a higher (w.r.t CMB)
value of Hubble constant from GLTD is clearly in line with other
reports (e.g., Figure 2 and Table 5 in Wong et al. 2020), again in
cases where the Hubble constant is determined via calibrated SNe
using absolute distances from GLTD (Jee et al. 2019) and in
cosmology-model-independent manners (Liao et al. 2019, 2020).
However, including GLTD does not tighten the constraints on

H0,rec. We expect that this is because H0,rec from GLTD alone has
large uncertainty and mild tension with H0,rec from BAO+rs+SN

Table 3
Summary of the Priors Imposed on Free Parameters for the Four Models

Model Epsilon Log Log2 ΩkΛCDM

A [0.0, 2.0] [0.0, 2.0] [0.1, 0.6] [0.1, 1.0]
B [−2.0, 2.0] [0.0, 2.0] [−0.6, 0.6] [−0.3, 0.3]
C [−5.0, 8.0] [−5.0, 8.0] [0.15, 2.00] 0
D [−2.0, 2.0] [−10.0, 6.0] [−1.0, 5.0] [0.5, 1.2]
ò [−5.0, 5.0] L L L
rs [130, 160] [130, 160] [130, 160] [130, 160]

12 https://github.com/cmbant/CosmoMC
13 https://github.com/cmbant/getdist/releases/tag/1.0.0. We also acknowl-
edge the use of ChainConsumer package (Hinton 2016), available at https://
github.com/Samreay/ChainConsumer/tree/Final-Paper.
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Ia. Both GLTD and BAO+rs can independently determine H0

while in the flat ΛCDM model their inference shows some
discrepancies (Aghanim et al. 2018; Wong et al. 2020), which
should be the same for the Epsilon and Log model. For example,
using the Log model we plot the constraints on three parameters of
interest: A2, B2, and H0,rec from GLTD and BAO+rs, as well as
their respective combination with SN, i.e., GLTD+SN and
BAO+rs+SN in Figure 4. As expected, the constraints from
GLTD are far less stringent and numerically we get =H0,rec

 - -82.98 4.77, km s Mpc1 1.14 Please note that the above result
are different from the results for the flat ΛCDM model shown in
Section 3 because here all reconstruction parameters are free. The
constraints from GLTD alone on A2 and B2 are consistent with
those from BAO+rs within the 1σ region while onH0,rec, we find a
mild tension, which becomes more eye-catching when BAO+rs is
combined with SNe since the error bar shrinks significantly.

As shown in Figure 4, when contrasting the constraints from
BAO+rs (pink) against SN+GLTD (orange), it is noticeable that
the correlation between A2, which scales as the matter density and
H0,rec, is negative (i.e., A2→0, for higher values of H0,rec) for the
former and positive for the latter data set. This results in a lower
value of H0,rec in their joint analysis and demonstrates why a low-
redshift modification, as in the case of a parametric Log model
cannot resolve the H0-tension. Similar behavior was also earlier
noted in Bernal et al. (2016; see their Table 4 therein), using
spline based reconstructions, where the SN data along with a
Planck rs disfavored higher values of H0, also validating the
adequate utility of parametric reconstructions employed here.

Next, we consider the Log2 and ΩkΛCDM models with a
curvature term in both of their parametric expressions. Figure 2
shows the constraint contours for Log2 model, which are quite
similar yet with a reduced degeneracy in comparison to the Log
model due to the replacement of the linear term with the
quadrature/curvature term. The shape of H(z) for the Log and
Log2 model show a major difference at high redshifts, where the
Log model falls faster with its error bars tending to diverge.
While it is not visible when plotting with the z-axis in
logarithmic, we find that the Log model is, in fact, better driven
by the data, which is not the case for the Log2 model, whose H(z)

evolves more gradually at both extremes of redshift range. This
data driven behavior further affirms the aforementioned motiv-
ation based on an effective number of constrained parameters to
utilize the Log model to perform the mock analyses. Also for the
Log model we find almost no variation in pD/pM∼1 with the
inclusion of the GLTD data set being very close to the number of
free parameters in the likelihood analysis. However, we notice
that the Log model provides slightly conservative constraints on
H0,rec, owing to its different behavior with the GLTD data set.
The ΩkΛCDM model is the most optimal fit with the smallest

DIC if we only consider BAO+rs+SN Ia, essentially due to the
smallest number of free parameters while having only slightly
larger χ2 values than the other models. If including the GLTD,
then the Log2 model is optimal by a narrow margin, whose best-
fit χ2 value becomes small enough to offset the penalty in DIC
due to one more extra parameter than the ΩkΛCDM model. We
further find that for the first three models, pD always becomes
smaller when GLTD is included, which is mostly due to the fact
that GLTD is in mild tension with BAO+rs+SN Ia, as shown in
Figure 4. Including GLTD would actually increase the freedom,
i.e., the degeneracy of free parameters allowed solely by BAO and
SN Ia.

4.2. Discussion of the Current Constraints

The constraining ability of combined data sets on the four
models is even, having negligible difference in H0,rec estimates.
For the Log model, the H0,rec in comparison to the Planck
ΛCDM15 and local measurement16 are at ∼1.3σ17 using SN
+BAO (1.8σ using SN+BAO+GLTD) and ∼2.6σ (2.2σ),
respectively. Although the value of H0,rec is slightly raised by
GLTD, the increment is too small to be consistent with the

Table 4
Summary of the Marginalized Constraints on the Reconstruction Parameters and rs with Upper and Lower Uncertainties at the 68% Confidence Level (CL)

Model Epsilon Log Log2 ΩkΛCDM

Data Set SN+BAO +GLTD SN+BAO +GLTD SN+BAO +GLTD SN+BAO +GLTD

A -
+0.29 0.05

0.05
-
+0.30 0.06

0.04
-
+0.24 0.08

0.08
-
+0.28 0.07

0.07
-
+0.31 0.03

0.03
-
+0.33 0.03

0.03
-
+0.30 0.03

0.03
-
+0.31 0.03

0.03

B -
+0.32 0.87

0.70
-
+0.44 0.80

0.92
-
+0.81 0.09

0.08
-
+0.79 0.08

0.08 - -
+0.02 0.17

0.13 - -
+0.13 0.12

0.09
-
+0.01 0.09

0.09 - -
+0.05 0.09

0.07

C -
+0.08 0.64

1.01 - -
+0.05 0.66

0.95
-
+2.01 2.10

2.14
-
+0.77 1.97

2.03
-
+0.76 0.13

0.15
-
+0.87 0.08

0.11 L L
D -

+0.43 0.83
0.85

-
+0.32 0.99

0.84 - -
+2.00 2.16

2.13 - -
+0.74 2.04

1.99
-
+0.08 0.26

0.27
-
+0.22 0.19

0.22
-
+0.69 0.07

0.07* -
+0.75 0.05

0.07*

ò - -
+0.17 1.53

2.23
-
+0.13 1.37

1.97 L L L L L L
rs -

+147.26 0.31
0.30

-
+147.21 0.30

0.30
-
+147.28 0.32

0.31
-
+147.26 0.29

0.28
-
+147.26 0.33

0.32
-
+147.24 0.28

0.29
-
+147.29 0.30

0.32
-
+147.21 0.32

0.33

H0 -
+68.57 0.90

0.89* -
+69.17 0.90

0.89* -
+68.69 0.84

0.86* -
+69.26 0.93

0.89* -
+68.53 0.88

0.86* -
+69.28 0.89

0.91* -
+68.43 0.90

0.91
-
+69.48 0.80

0.97

p pD M 0.81 0.71 0.97 0.94 0.97 0.99 1.01 1.06

ΔDIC(DIC) +0.66 +0.27 +0.67 +1.27 +1.49 −0.04 1047.95 1064.47
Δχ2(χ2) −0.98 0.26 −0.88 0.36 −0.05 −1.37 1039.84 1055.95

Note.We impose flat prior on reconstruction parameters. We also list p pD M,ΔDICm andΔχ2 w.r.t the ΩkΛCDM model. All derived quantities are indicated with *.
For the reference model we show the DIC and χ2, for which ΔDIC=Δχ2=0.

14 For other three models, i.e., the Epsilon, Log2, and W LCDMK , H0,rec with
its corresponding 68% CL are  - -80.61 5.53, km s Mpc1 1, 76.58

- -3.46, km s Mpc1 1, and  - -74.26 2.57, km s Mpc1 1, respectively.

15 For the same Planck likelihood combination utilized for estimating rs here,
the corresponding 68 % CL limit is =  - -H 67.27 0.66, km s Mpc0

1 1, for the
ΛCDM model.
16 We adopt the value of =  - -H 73.45 1.66, km s Mpc0

1 1, from Riess et al.
(2018; hereafter R18).
17 As is the usual practice in an inverse distance ladder comparison, we assume
no correlation between our H0,rec and Planck H0, however, the Planck rs is
strongly (+0.79) correlated to the latter and our rs posterior is mildly (−0.14)
anti-correlated with the former while being equivalent to the estimate. Implying
∼−0.12 anti-correlation between the two H0 quantities and is expected to
increase the deviation and might have a role to play with more precise future
data, for instance, increasing to −0.27, in the forecast analysis presented in
Section 4.3.
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local measurement of H0. While this situation would change if
the GLTD becomes more accurate and precise, at the current
stage, our reconstructed Hubble constant still favors the Planck
estimate, which is in agreement with other earlier analyses
(Aubourg et al. 2015; Bernal et al. 2016; Feeney et al. 2018).
We also notice that the H0 estimates in our analyses, driven by
the combination of GLTD data and Planck rs are extremely
consistent with those reported in Haridasu et al. (2018a),
Gómez-Valent & Amendola (2018), Mukherjee et al. (2019),
and Dutta et al. (2019),18 which were driven by Cosmic
Chronometers (CC) data sets. These earlier results are also
model-independent, being very different from the approach
implemented here. The low-redshift model-independent (see,
e.g., Haridasu et al. 2018a) constraint on the compound
parameter ´ - -r H r h100, km s Mpcs 0

1 1
s[ ]( ) is consistent with

the Planck estimate within 1σ.
We notice that if we put any information from CMB aside and

just use the three low-redshift data (SN, BAO, and GLTD), thanks
to the sensitivity of GLTD data to H0, which is used to break the
degeneracy between rs and H0 existing in the BAO data, we can
obtain an estimate of rs that is completely independent of physics

of the early universe. Then for the Log model, the constraints on
H0 and rsh are  - -74.74 2.01, km s Mpc1 1 and 101.29±
1.34Mpc, respectively, while the former is consistent with the
local measurement and the latter is only off the Planck estimate
(rsh=99.069± 1.598 Mpc, obtained from the same combination
of Planck likelihood as rs) at ∼1σ level. The resulting rs is
135.60±3.64Mpc. This result is very similar to Aylor et al.
(2019) while in our case we also combined with the GLTD and as
also suggested in Knox &Millea (2020) such results imply a lower
sound horizon from CMB data.
Please note that fixing rs from CMB will be equivalent to a

one-parameter extension such as, W ¹ 0k or ¹ -w 1, i.e., it
will result in the same early-time behavior. We utilize the
same rs value for all models implemented here with different
late-time behavior, ideally expecting a different rsh w.r.t.
ΛCDM. On the other hand, the rsh would imply a correlated
early (rs) and late-time (H0) behavior while fixing the angular
scales measured by CMB. An agreement on rsh constraint
from these three low-redshift data and high-redshift CMB,
alongside the conformity of higher (than CMB) H0 values
from local distance ladder (R18, Riess et al. 2019) and GLTD
(Wong et al. 2020) data sets19 at a face value indicates a need

Figure 2. Parameter constraints for the Log2 model at 68% and 95% CL limits. Here the parameter B3 corresponds to curvature. We also show the reconstructed H0,rec.

18 See for example, other works driven by CC based H0 estimations (Luković
et al. 2016, 2018; Yu et al. 2018; Park & Ratra 2019), which at times do not
account for the systematics within CC data.

19 Please see Verde et al. (2019) and Riess (2019) for a summary of other low-
redshifts probes which imply similar H0 estimates.
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for modification of early-time physics (see Knox & Millea
(2020) for a more detailed discussion) as a desirable solution
for the H0-tension.

4.3. Constraints from Future Data

While the analyses so far, with the up-to-date BAO and GLTD
data, reaffirm the inferences of L18, we are now more interested
in forecasting the constraining ability of future BAO and GLTD
data sets on H0 through the model-independent formalism. While
several surveys in contemplation such as Euclid (Amendola et al.
2018) and the Square Kilometre Array (Bacon et al. 2018) can
provide precise measurements on BAO (Obuljen et al. 2018;
Bengaly et al. 2019), here we focus on BAO from DESI. As for
the GLTD simulation, we consider the LSST.

DESI is a Stage IV ground-based experiment that started in
2019.20 It aims at studying BAO and the growth of structure
through measuring spectra from four target tracers, including
luminous red galaxies up to z∼1.0, bright [O II] emission line
galaxies up to z∼1.7, quasars and Lyα forest absorption
feature in their spectrum up to z=3.5. Following Aghamousa
et al. (2016), we use 18 DESI BAO measurements from their
baseline 14K survey, which are quoted as DA(z)/rs and H(z)rs,
15 of which come from the basic galaxy and quasar BAO
distance measurement projections (Table 2.3 therein) and the
remaining 5 from the bright galaxy survey (Table 2.5).21 We

assume a correlation coefficient of 0.4 between DA(z)/rs and
H(z)rs as proposed in Aghamousa et al. (2016).
LSST is an ambitious wide-deep-fast sky survey that plans

for regular survey operations by 2022 (Ivezic et al. 2019).
Oguri & Marshall (2010) made predictions of the numbers of
time-variable sources that should be found by LSST and
reported a very positive result that around 3000 lensed quasars
will have well-measured time delays. Based on the catalog of
mock lenses in Oguri & Marshall (2010), Jee et al. (2016)
further forecast that ∼55 high-quality quadruple lens systems
would have sufficiently good measurements of both DΔt and
Dd and in turn, could put strong cosmographic constraints.
However, this number may vary due to various limitations such
as the telescope observation strategy (Liao 2019). Furthermore,
there should be correlations between the measured DΔt and Dd

estimates or otherwise one of the distances will have much
uncertainty. Due to the lack of correlation information, in their
paper, here we assume that only DΔt is available. According to
the current six GLTD observations, the uncertainty on DΔt

varies within ∼4.0%−8.0%. A 5% uncertainty level is
practically achievable as long as we select the lens systems
following the same criteria as Jee et al. (2016). The number of
forecasted lens systems is conservatively reduced to 40.
The top panel of Figure 5 shows the 1D marginalized

posterior of inferred H0 when combining the current data with
the future BAO and GLTD data for the Log model, with the
Planck rs estimate, where the relative heights are also indicative
of the constraining ability of the data. For convenient
comparison, we plot the current constraint in dotted gray. We
do not analyze the other three models in detail, as they are not
expected to exhibit much difference, and we verify that the

Figure 3. Evolution of reconstructed H(z) with the z-axis in log scale with truncation at z=4.5. The shaded region is the 1σ and 2σ error range of the joint constraint
from Pantheon SN Ia+BAO+GLTD. The light blue points are the BAO estimates of H(z) with its 1σ error. The blue point is the local H0 measurements and its lower
1σ limit from the distance ladder (Riess et al. 2018). When including GLTD, a rise of H(z) in the low-redshift range appears for all models, which results in a slightly
higher H0,rec of the orderD ~H 0.60,rec , which is in accordance with the fact that BAO data along with the Planck rs supersedes the precision with which the GLTD
data constrain the present expansion rate.

20 https://www.desi.lbl.gov/
21 We found that, if only the BAO data is simulated, the accuracy of Hrec,0 is
only improved by ∼3% if after including the Lyα forest data assuming that
these two measurements are independent. Also, we do not find information
about the correlation coefficient in the literature. So we do not use DESI Lyα
forest data.
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improvement in percentages will remain the same. However,
testing the Epsilon model we find that it is less reliable to
reproduce the model utilized to create the mock data set, due to
stronger intrinsic degeneracy among the parameters.

With the fiducial model being the best-fitting value
constrained by the current BAO data with the Planck rs
estimate, we forecast the performance of upcoming DESI data.
We find the uncertainty on H0,rec shrinks by a factor of ∼2.3
(from 3.1 to 1.4), i.e., reduces by ∼56%, which is quite
encouraging. The improvement in the uncertainty of H0,rec

when the current data (SN+BAO+GLTD) are combined with
LSST GLTD, DESI BAO, and LSST GLTD+DESI BAO
are ∼13.0%, 24.4%, and 26.7%, respectively, reaching s »H0,rec

0.67 uncertainty level finally. Our estimate of the improved
s » 0.80H0,rec with the inclusion of forecasted GLTD data alone
is in agreement with the analysis in Jee et al. (2016).22

Tentatively, the improved precision obtained with the future
data (DESI+LSST) around the current best-fit model would
imply similar disagreements at the level of ∼2.1σ higher and
∼2.3σ lower than the Planck ΛCDM and R18 H0 derived
values, respectively. This could imply a possibility for low-
redshift (  z0.1 2.5) H0 estimate that lies between the local (z�0.15) and high-redshift CMB estimate. As also shown in

the top panel of Figure 5, the DESI BAO data contribute most
to reducing the uncertainty. The LSST GLDT data are
important as well, but they are overwhelmed by the BAO data

Figure 4. Comparison of constraint results of different data sets for the Log model. All parameters of the Log model are free. Here we only report parameters of most
interest, A2, B2, and H0,rec (see the discussion in the text).

Figure 5. Forecasts of marginalized H0 using the future data, i.e., BAO from
DESI and GLTD data from LSST. We choose the fiducial model following the
best-fitting of the joint constraint from Pantheon SN Ia, BAO, and GLTD (i.e.,
current data). The vertical dashed line represents the mean value from the
posterior.

22 A more recent analysis in Shiralilou et al. (2020) forecasts GLTD performance
in an ideal scenario, which we do not compare with here.
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when combined. Please note that we have not considered the
additional distance information of Dd from the future GLTD
measurements. According to Jee et al. (2016), including the Dd

distance would improve the constraint significantly. An earlier
forecast shows about 400 systems of robust measured time
delay should be discovered by LSST (Liao et al. 2015). We
expect the future GLTD data will have a better performance
than our relatively conservative anticipation. In addition, please
note that with the the fiducial cosmology to create the mock
data sets being the best-fit of Log model to the current data, we
do not study the contest between the GLTD and BAO data sets,
but only forecast the precision of the joint constraint from the
future low-redshift data.

5. Summary

In the current work, we reconstruct the late-time expansion
history of the universe in a cosmological-model-independent
way, focusing on the Hubble constant H0, using the latest
SN Ia, BAO, and GLTD data, implementing four different
parametric forms. A summary of our results is as follows:

1. Assuming the Gaussian rs from the high-redshift Planck
estimate for ΛCDM, our deduced value of Hubble
constant for the four models are more consistent with
the Planck ΛCDM, e.g., for the Log model, at ∼1.3σ
using SN+BAO (1.8σ using SN+BAO+GLTD) esti-
mate than with the higher-valued local measurement at
∼2.6σ (2.2σ using SN+BAO+GLTD). We assess the
performance of the parametric models and find no
preference among models having comparable values
of DIC.

2. With the updated data and also a curvature freedom
(Log2 model), we reaffirm the conclusions of L18, that
the Hubble tension possibly originates from the early
universe. However, as the reconstructed H(z), and hence
H0,rec, is driven by the data (within the available freedom
of the parametric models), conclusions remain to be
verified with more stringent future data.

3. Inclusion of GLTD data only mildly increases the best-
fitting value of H0,rec, hardly improving uncertainty, due
to the considerably lower constraining power of GLTD
data. We assess mild disagreements among low-redshift
data combinations. It is expected to yield possibly
increased disagreements with the updated GLTD data
set in Wong et al. (2020).

4. More importantly, we anticipate the performance of
future BAO and GLTD data from two upcoming
experiments, DESI and LSST. When combined with the
current data, we infer an improvement in the uncertainty
of H0 by ∼13.0% and ∼24.4%, with GLTD and BAO
data, respectively. Combining these two future data will
provide an improvement in precision by ∼26.7%, and
might incite a need for agreement between local
(z�0.15), low-redshift (0.10�z�2.5), and high-red-
shift (CMB) H0 estimates, indicating moderate-level
(=9% of current difference) modifications to both the
CMB and local H0 estimates.

Implementing a multitude of contrasting analyses in a
model-independent inverse distance ladder framework, we
expect to find a strong degree of complementarity between
BAO and GLTD data sets in the near future, which will provide
tighter constraints on cosmological models, and also highlight

much-needed prospects to resolve the H0-tension and further
important evidence to test physically motivated extensions to
the ΛCDM model.
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