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Abstract

We describe an implementation of a particle physics module available for the PLUTO code appropriate for the
dynamical evolution of a plasma consisting of a thermal fluid and a nonthermal component represented by
relativistic charged particles or cosmic rays (CRs). While the fluid is approached using standard numerical schemes
for magnetohydrodynamics, CR particles are treated kinetically using conventional Particle-In-Cell (PIC)
techniques. The module can be used either to describe test-particle motion in the fluid electromagnetic field or to
solve the fully coupled magnetohydrodynamics (MHD)–PIC system of equations with particle backreaction on the
fluid as originally introduced by Bai et al. Particle backreaction on the fluid is included in the form of momentum–

energy feedback and by introducing the CR-induced Hall term in Ohm’s law. The hybrid MHD–PIC module can
be employed to study CR kinetic effects on scales larger than the (ion) skin depth provided that the Larmor
gyration scale is properly resolved. When applicable, this formulation avoids resolving microscopic scales, offering
substantial computational savings with respect to PIC simulations. We present a fully conservative formulation that
is second-order accurate in time and space, and extends to either the Runge–Kutta (RK) or the corner transport
upwind time-stepping schemes (for the fluid), while a standard Boris integrator is employed for the particles. For
highly energetic relativistic CRs and in order to overcome the time-step restriction, a novel subcycling strategy that
retains second-order accuracy in time is presented. Numerical benchmarks and applications including Bell
instability, diffusive shock acceleration, and test-particle acceleration in reconnecting layers are discussed.

Key words: acceleration of particles – instabilities – magnetohydrodynamics (MHD) – methods: numerical –
plasmas – shock waves

1. Introduction

High-energy astrophysical phenomena are connected to
environments where matter exists under extreme conditions,
leading to powerful releases of electromagnetic radiation from
the radio to the optical, X-ray, and γ-ray wavebands. Typical
examples are found in blazar jets (Böttcher 2007; Giannios
2013), gamma-ray bursts (GRBs; see, e.g., Giannios 2008;
McKinney & Uzdensky 2012; Beniamini & Piran 2014;
Beniamini & Giannios 2017), pulsar wind nebulae (PWNe; see,
e.g., Bucciantini et al. 2011; Kargaltsev et al. 2015; Olmi et al.
2016, and references therein), and supernova remnants (SNRs;
see e.g., Amato & Blasi 2009; Morlino et al. 2013; Caprioli &
Spitkovsky 2014b, and references therein), among others. The
observed radiation presents typical signatures of nonthermal
emission processes, such as synchrotron and inverse Compton,
typically arising from charged particles accelerated by electro-
magnetic fields.

A comprehensive modeling of such systems is a challenging
task because physical mechanisms operate over an enormous
range of spatial and temporal scales stretching from the
microphysical—where energy dissipation occurs and emission
originates—to the macroscopic—where dynamics trigger
dissipation. Owing to the complexity of the interactions,
state-of-the-art modeling and key achievements in this field
have been obtained mostly through time-dependent numerical
computations. For these reasons, our current understanding of
astrophysical systems is limited by the range of scales beyond
which one or more model assumptions breaks down or when
computational resources become prohibitive.

On the one hand, fluid models such as magnetohydrody-
namics (MHD) have been extensively used to investigate
the large-scale dynamics of high-energy astrophysical environ-
ments in jets (e.g., Rossi et al. 2008; Mignone et al.
2010a, 2013; Mizuno et al. 2012; Porth 2013; English
et al. 2016; Barniol Duran et al. 2017), PWNe (e.g., Del
Zanna et al. 2006), and also SNRs (Orlando et al. 2009; Miceli
et al. 2016). Because of its nature, however, the fluid approach
is applicable on scales much larger than the Larmor radius, and
it cannot capture important kinetic effects relevant to the
microscale. On the other hand, Particle-in-Cell (PIC; see the
book by Birdsall & Langdon 2004) codes provide the most
self-consistent approach to modeling plasma dynamics at small
scales (e.g., Chang et al. 2008; Sironi et al. 2013; Sironi &
Spitkovsky 2014). However, PIC codes must resolve the
electron skin depth, which, in most cases, is several orders of
magnitude smaller than the overall size of a typical
astrophysical system. Even with the most powerful super-
computers, PIC simulations become prohibitively expensive for
describing astrophysical systems at larger scales. Alternatively,
hybrid codes that treat ions as particles and electrons as fluid
(Gargaté et al. 2007; Kunz et al. 2014) are commonly used in
space physics and laboratory plasma. Hybrid methods cannot
capture kinetic effects at the electron scale, and the temporal
and spatial scales are limited in resolution by the ion inertial
length.
Recently, Bai et al. (2015) have proposed yet another

approach, called the MHD–PIC method, to describe the
interaction between a collisionless thermal plasma and a
population of nonthermal cosmic-ray particles (CRs; typically
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ions). The same approach has also been recently employed in
the work by van Marle et al. (2018) to study magnetic field
amplification and particle acceleration near nonrelativistic
astrophysical shocks. In that study, the authors generalize the
MHD–PIC approach to any type of suprathermal particle
(electrons and ions). The MHD–PIC model, which can be
formally derived by considering a three-component plasma in
which thermal electrons are massless, does not capture the
electron physics, and it can be used to describe the kinetic
effects of nonthermal ions on scales that are tied only to the
gyration radius and not to the inertial skin depth.

In the present work, we describe the numerical implementa-
tion of the MHD–PIC particle module in the PLUTO code for
astrophysical fluid dynamics (Mignone et al. 2007, 2012) while
providing, at the same time, some new implementation
strategies that allow our hybrid framework to be employed
with more general second-order time-stepping schemes and to
improve in terms of accuracy. In addition, the presented
module can also be used to model the dynamics of charged test
particles in a time-dependent magnetized fluid with straightfor-
ward generalization to the relativistic case. Our numerical
framework is part of a more general fluid–particle module, and
a companion work (Vaidya et al. 2018, hereafter Paper II)
presents a different hybrid scheme for the modeling of
nonthermal spectral signatures from highly energetic electrons
embedded in a thermal MHD plasma using Lagrangian
particles with a time-dependent energy distribution. A brief
description, together with applications to astrophysical jets, has
been presented in Vaidya et al. (2016).

This paper is organized as follows. The MHD–PIC equations
describing the evolution of the composite fluid+CR system are
discussed in Section 2, while the numerical implementation is
described in Section 3. Numerical benchmarks and applica-
tions, for both the full MHD–PIC composite system (including
feedback) and the test-particle implementation (without feed-
back), are presented in Section 4. A summary is given in
Section 5.

2. The MHD–PIC Equations

The MHD–PIC approach was recently developed by Bai
et al. (2015) to describe the dynamical interaction between a
thermal plasma and a nonthermal population of collisionless
CRs. While the thermal component, which comprises ions and
massless electrons, is described through a fluid approach using
shock-capturing MHD methods, CR particles (representing
energetic ions or electrons) are treated kinetically using
conventional PIC techniques. This formalism aims to capture
the kinetic effects of CR particles without the need to resolve
the plasma skin depth, as is typically required by PIC codes.
In the MHD–PIC formalism, only the Larmor (gyration) scale
must be properly resolved instead. This extends the range of
applicability to much larger spatial (and temporal) scales when
compared to the standard PIC approach, inasmuch as the
particle gyroradius largely exceeds the plasma skin
depth, w » ´c n2.27 10 cmpi i

7 .
The thermal plasma is described by the single-fluid model,

which is obtained by averaging the two fluid equations for ions
and massless electrons. The derivation, which can also
be found in many plasma physics textbooks, is given in
Appendix A because of its length. The relevant Equations,
(91)–(93), include the effect of CRs via the condition of charge
neutrality for the composite system (fluid+CR) and the

definition of the total current density,

+ = + + = ( )q q q q q 0, 1g e iCR CR

p
+ = =  ´ ( )J J J B

c

4
, 2g CR

where = +q q qg i e is the charge density of the thermal plasma
(Equation (95)), qCR is the CR charge density, while

ºJ vqCR CR CR is the CR current density.
Ignoring contributions from the heat flux vector and the

viscous stress tensor and taking advantage of Equations (1) and
(2) and a straightforward manipulation of Equations (91)–(93),
which are properly augmented by Faraday’s law of induction,
lead to the quasi-conservative form of the MHD–PIC
equations:
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Here, ρ and vg represent, respectively, the single-fluid density
and velocity (Equations (94) and (89)), which, in the limit of
massless electrons, can be trivially identified with those of the
ions, i.e., r r ( )i and  ( )v vg

i . The total energy density Eg is
expressed as the sum of kinetic, thermal, and magnetic
contributions,

r
p

= + + ( )v
B

E p
1

2

3

2 8
, 7g g

2
2

while rH is the gas enthalpy,

r r= +⎜ ⎟⎛
⎝

⎞
⎠ ( )v vH p

1

2

5

2
. 8g g

2

The gas pressure p, as shown in Appendix A, can be expressed
as the sum of the ion and pressure terms of the original two-
fluid equations. Finally, Tm defines the momentum flux tensor,

T Ir
p p

= - + +
⎛
⎝⎜

⎞
⎠⎟ ( )v v

BB B
p

4 8
, 9m g g

2

where I is the unit tensor, B is the magnetic field,
p= ´S E Bc 4 is the Poynting vector, and E is the

electric field.
The force experienced by the fluid from the CR appears on

the right-hand side of Equation (4), and it is the opposite of the
Lorentz force experienced by the particles,

= + ´ ( )F E J Bq
c

1
. 10CR CR CR

Thus, the last term on the right-hand side of Equation (6) is
interpreted as the opposite of the energy gained by the CRs due
to the work done by the Lorentz force (see Equation (17) in Bai
et al. 2015).
The electric field E can be directly obtained from Ohm’s

law, which is expressed through the electron equation of
motion, Equation (85), in the limit r ( ) 0e . Using the

2
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definition of the total current, Equation (2); the second equation
in Equation (95); and the definition of JCR, together with the
fact that ( )v vi

g, yields



=- ´ - ´

- - ´ + 
∣ ∣

( ) · ( )( )

E v B J B

v v B

c
q

q

q

c

q

1

. 11

g
e

e
g

e

eCR
CR

In Equation (11), the first term on the right-hand side is the
standard convective term, the second is the Hall term, the third
describes the relative drift between the CRs and fluid, which
will be referred to as the CR-Hall term, and the last term is the
electron-pressure term. As noted by Bai et al. (2015), at scales
much larger than the ion skin depth, both the standard Hall
term and the electron-pressure terms can be safely ignored, and
the final form of Ohm’s law is then

= - ´ - - ´( ) ( )E v B v v Bc R , 12g gCR

where

= =
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( )R
q

q

q

q q
13

e i

CR CR

CR

is the charge density ratio between CRs and electrons, and the
regime in which the described formalism is valid demands
R 1. The second equality can be recovered with the aid of

the charge neutrality condition, Equation (1).
Using the expression for the electric field, Equation (12), the

CR force (Equation (10)) can be rewritten as

= - + ´⎜ ⎟⎛
⎝

⎞
⎠( ) ( )F E J BR q

c
1

1
, 14CR CR 0 CR

where = - ´E v B cg0 is the convective electric field.
Expression (14) is more convenient for computational
purposes. Likewise, combining Equations (10) and (14) yields
the following expression for the total electric field,

= - ( )E E
F
q

. 15
i

0
CR

The charge density of the thermal ions qi is expressed in
terms of the charge to mass ratio for the ions,

a º ⎜ ⎟⎛
⎝

⎞
⎠ ( )e

mc
, 16i

i

so that a r=q ci i , where ρ is the gas density. A similar
expression holds for the CR charge density; see Section 2.1.

2.1. Particle Equations of Motion

According to the PIC formalism (for a review, see, e.g.,
Lapenta 2012), computational particles (CRs) represent clouds
of physical particles that are close to each other in phase space.
CR particles are defined in terms of their spatial coordinates xp
and velocity vp, which are governed by the equation of motion

a

=

= + ´
g
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⎩⎪ ( )
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E v Bc
, 17
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v

d

dt p

d

dt p p

p

p

where g = - v1 1 p
2 2 is the Lorentz factor whereas

a º ⎜ ⎟⎛
⎝

⎞
⎠ ( )e

mc
18p

p

is the CR charge to mass ratio. Here and in the following, the
suffix p will be used to label a single particle. Using
Equation (18), the charge density of an individual particle qp
can be written as a=q cp p p, where ñp is the actual mass
density contribution of a single CR particle.
Since the actual speed of light does not explicitly appear in

the MHD equations, we use  to specify an artificial value for
the speed of light, which, for consistency, must be greater than
any characteristic signal velocity. The electric and magnetic
fields E and B are computed from the magnetized fluid and
must be properly interpolated at the particle position. This is
described in Section 3.3.

3. Numerical Implementation

We now provide a detailed description of the numerical
method employed to solve the MHD–PIC equations,
Equations (3)–(6), in the PLUTO code. The solution methods
feature an MHD solver already present in the code (modified
by the presence of additional terms describing the particle
backreaction onto the gas) coupled to a particle integrator.
Fluid quantities such as density, magnetic field, and so forth

are discretized on a computational grid with cell indices
º ( )i i j k, , and stored as three-dimensional arrays. By

contrast, particles (being meshless quantities) are held in
memory using a doubly linked list consisting of sequentially
linked node structures. Each node contains the particle itself
and pointers to the previous and to the next node in the
sequence. In a linked list, elements can be inserted or removed
in a straightforward way, and shuffling operations can be easily
performed by changing pointers. Besides, different types of
particle data structures can be employed. These features make
the linked list approach very flexible, and we have adopted this
as a general implementation strategy shared by all particle
modules in the PLUTO code, including the Lagrangian particle
module described in Paper II.

3.1. MHD Integrators

The numerical solution of the MHD–PIC equations has been
implemented by modifying two of the available second-order
time-stepping algorithms available in the code. The first one
features the corner transport upwind (CTU) scheme (Colella
1990; Gardiner & Stone 2005; Mignone et al. 2012) and also
presents an extension of the scheme to the standard second-
order total variation diminishing Runge–Kutta (RK2).
Both implementations are second-order accurate in time and

space, and conserve momentum and energy to machine
accuracy for the composite gas+particle system.
The magnetic field is evolved using constrained transport

(CT), although our formulation can be extended to other
divergence-cleaning methods (such as those presented in
Mignone & Tzeferacos 2010; Mignone et al. 2010b) in a
straightforward manner.

3.1.1. CTU Time Stepping

We now provide a schematic description of the the CTU
method; we refer the reader to Appendix B for a more detailed

3
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description. The scheme consists of a first predictor step where
time-centered states are constructed according to

*= +
D

+
D+ ( ) ( )FU U

t
U

t
S

2
,

2
, 19i i i i

n n
n

n
n

n
CR ,CR

1
2

where r r= ( )v BU E, , ,g g denotes the array of conserved
quantities, U* is the normal predictor state,  is a conservative
flux-difference operator,

*  å= -
D

-+ +( ) ( ) ( )ˆ ˆFU
x

,
1

, 20i i e i e
n

d d
CR d d

1
2

1
2

with =d x y z, , labeling the direction, while

= - -( · ) ( )F F vS 0, , 0, 21i i
n

g
n

, CR CRCR

accounts for the source terms in the momentum and energy
equations, Equations (4) and (6), respectively. The fluxes
  ˆi ed

1
2

in Equation (20) are computed by solving a Riemann
problem at cell interfaces and by adding the CR contribution
terms in the induction and energy equations.

The CR force term is computed using Equation (14) by
depositing individual particle charges and currents on the grid,
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where ap is defined in Equation (18) whereas ()W are weight
functions (see Section 3.3).

Particles are then evolved for a full step (see Section 3.2)
using the electromagnetic fields at the midpoint time level:

= + D
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where xp and g=u vp p p are, respectively, the spatial coordinate
and four-velocity of the pth particle. Here, ºa ap p

( )x u FU, , ,p p CR is a compact expression for the Lorentz
acceleration, given by the second equation in Equation (17),
showing its dependence on both particle and fluid quantities.
After CRs have been evolved for a full time step, the total
momentum and energy change of a single particle can be
computed as


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,

where g= -( )E 1k p p,
2 is the (specific) kinetic energy of a

single particle. We then deposit the opposite of these quantities
on the grid, allowing momentum and energy feedback to be
computed from the particle locations at the half-step:
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-
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As pointed out by Bai et al. (2015), this ensures the exact
conservation of the total momentum and energy of the
composite gas+CR system.

In the corrector step, fluid quantities are finally evolved for a
full step,

= + D

+ D

+ + +

+

( )

( )

FU U t U

t S

,

, 26

i i i

i

n n n n n

n n

1
CR

,CR

1
2

1
2

1
2

where +Fn
CR

1
2 is given by the opposite of the momentum

component of the source term, Equation (25). This completes
our derivation of the CTU scheme (more details can be found
in Appendix B).

3.1.2. Runge–Kutta Time Stepping

Runge–Kutta (RK) time-stepping methods are based on the
method of lines in which the spatial discretization is considered
separately from the temporal evolution that is left continuous in
time. Equations (3)–(6) are then discretized as regular ordinary
differential equations based on predictor–corrector steps.
We consider the second-order RK method (RK2), which

consists of a first predictor step in which the fluid is advanced
by a full step:

* = + D + D( ) ( )FU U t U t S, . 27i i i i
n n n n n n

CR ,CR

Particles are then evolved using Equation (23), where the
half-time level fluid variables are computed from the arithmetic
average of the conservative variables at level n and the
predicted ones,

*
=

++ ( )U
U U

2
. 28i

i in
n1

2

The final corrector step employs a trapezoidal rule for the
flux terms and a midpoint rule for the sources:

* * 
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+
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2

In the previous equation, * = -+F F F2 n n
CR CR CR

1
2 is obtained by

simple extrapolation while +Fn
CR

1
2 is computed using the

opposite of the momentum component in Equation (25).
Momentum and energy feedback at the half-time level are

accounted for by +S i
n

,CR

1
2 and computed as for the CTU scheme

using Equation (25).
For implementation purposes, it is more convenient to

rewrite Equation (29), using Equation (27), as

* * * *
=

+
+ D

++ ( )
( )

F
U

U U
t

U S

2

,

2
, 30i

i i i in
n

1 CR ,CR

where * = -+S S S2i i i
n n

, , ,CR CR CR

1
2 .

3.2. Particle Mover

Particles’ positions and velocities are assumed to be known
at the same time level n rather than being staggered in time.
This allows the code to employ a variable time step as is
typically the case in fluid simulations. Equation (17) is solved
by means of a standard Boris pusher, which is essentially an
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implicit-position Verlet algorithm, cast as
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where g=u vp p p is the particle four-velocity, a= Dh tp
n,

while g= + +( )b Bh 2 n n1
2

1
2 . Electromagnetic fields are inter-

polated at the particle half-step position +xn 1
2 using

Equation (45). Since interpolation at the particle position does
not necessarily preserve the orthogonality between E and B
(when the electric field is obtained from Equations (12) or
(15)), a cleaning step is required to remove non-orthogonal
components from the electric field,

¬ - ( · ) ( )E E E B
B
B

. 32
2

Note that the rotation does not change the particle energy, and
therefore g +n 1

2 is obtained directly from -up .
The time-step restriction is computed by requiring that no

particle travels more than Nmax zones and that the Larmor scale
is resolved with more than one cycle:


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where the first maximum extends to all particles, +vp
n 1

2 is the
half-time level averaged velocity, a gW =^ B̂p p p, is the
Larmor frequency, while

= -^
( · )

·
( )B

v B

v v
B 34

p

p p

2
2

is the transverse component of the magnetic field. In
Equation (33), we choose =N 1.8max and  = 0.3L as safety
factors.

3.2.1. CR Predictor Step

We note that the particle mover given by Equation (31)
requires knowledge of the electric field at the half-time step. In
the case of test particles, this is not a problem, since the electric
field depends solely on the fluid and can be easily be
determined.

However, in the MHD–PIC system, the electric field (see
Equation (12)) is comprised of the convective and CR-Hall
terms, but only the former is known at the half-time level

+ Dt t 2n n while the latter can only be computed at the base
time level t n. Formally, therefore, we expect the integration
scheme to be only first-order accurate in time. We point out that
for the conditions under which the MHD–PIC formalism is
valid ( R 1), the CR-Hall term is generally unimportant but it

may become comparable to the convective term for large CR
streaming velocities.
In order to achieve full second-order accuracy, we propose a

predictor step where particles are evolved for half a time
increment using a first-order explicit–implicit scheme,

*
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*
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,

,
,

where the notation *up
n, stands for the half-time level predicted

value while a= Dh tp . Since the ´v B term does not alter
the velocity magnitude, we compute the Lorentz factor by
first applying a kick to the particle velocity, * = +-u up p

n,

( ) Eh c2 n, and then compute

*
*
g = +

-⎛
⎝⎜

⎞
⎠⎟ ( )u

1 . 36n,
, 2

Equation (35) can then be solved to obtain

I M* * *= - - -( ) ( )u u , 37p
n n

p
, , 1 ,

where

I M
M

*
*d

- =
+ -

+
-( ) ( )

b

b b

1
, 38n

ij
ij i j ij

n
, 1

,

2

with M I= ´ b and * *g= ( )b Bh 2 n n, , . The value of the
magnetic field is interpolated at the particle position using the
half-time step magnetic field +Bn 1

2 already available from
the MHD integrator.
After the predictor step, the full electric field can be

evaluated using Equation (15), and the particle positions and
velocities can be restored to their initial values xp

n and vp
n. Note

that since only an approximate value of the solution is needed,
we do not apply a cleaning step to make E and B orthogonal
during the predictor step. We point out that the predictor step is
only used to predict the half-time level approximation to the
electromotive force but not for the actual evolution of the CR
particles, which are advanced according to the Boris pusher,
Equation (31).

3.2.2. Particle Subcycling

At large energies, the particle evolution timescale can
become considerably shorter than the fluid dynamical time,
slowing down the total computational time. To overcome this
issue, we allow multiple particle time steps to be taken during a
single fluid update. Our approach improves over that of Bai
et al. (2015) in several aspects.
Let Nsub be the number of steps involved during the

subcycling. The particle pusher Equation (31) is now applied
Nsub times over equally spaced time intervals q q+ + +[ ]( )t t,n k n k 1

of length qDt, where q = N1 sub and = ¼ -k N0, , 1sub .
During subcycling, electric and magnetic fields are kept
constant at the predicted half-time level with the exception of
the CR-Hall term (the second term in Equation (15)), which is
recomputed in order to maintain second-order accuracy.
We elaborated two forms of subcycling, taking advantage of

the momentum and energy deposition (needed for feedback)
accumulated at each fluid step.

1. The first strategy recomputes the force at each substep
and can be used with an even or odd number of steps.
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After solution values have evolved to the intermediate
level q+( )x v,p p

n k , we recompute the CR force using
Equation (14), correct the electric field using
Equation (15), and for >k 0, predict the midpoint force
value for the next substep using time extrapolation:

q
= -

D
D

q q
q

+ + +
+ -

⎜ ⎟⎛
⎝

⎞
⎠ ( )( )

( )
F F

m
t

2 , 39n k n k
n k

CR CR

1
2

1
2

where D q+ -( )mn k 1
2 is the momentum difference over the

previous subcycle. At the beginning of the cycle (k= 0),
we employ the predictor step given by Equation (37) with
qDt 2. This method is represented in the top panel of
Figure 1.

2. The second strategy recomputes the electric field every
other substep, thus leading to a more efficient scheme that
can be used with an even number of substeps. The
electric field is extrapolated in time (when = ¼k 2, 4, 6, )
by a full substep by taking advantage of the total
momentum variation accumulated until then,

åq

=
+

-
D

D

q q

q

+ + +

=

+ -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

( )

( )

F F

m

k

k

k k t

2

2 1
, 40

n k n k

j

k
n j

CR
1

CR

1

1
2

where the summation represents the total momentum
change accumulated over k substeps. Note that when k is
odd, we do not recompute FCR.

At the beginning of the cycle (k= 0), we employ the
predictor step given by Equation (37) with the time step
qDt. This method is represented in the bottom panel of
Figure 1 in the case where =N 4sub .

3.3. Connection between Grid and Particle Quantities

An important step of the algorithm requires depositing
particle quantities to the grid and interpolating fluid quantities
at the particle locations.

Let qp be a quantity associated with a particle (e.g., charge or
velocity), then the deposition in cell ( )i j k, , is achieved by a

weighted sum,

å= -
=

( ) ( )x xQ W q , 41iijk
p

N

p p
1

p

where - = - - -( ) ( ) ( ) ( )x xW W x x W y y W z zi p i p j p k p is the
product of three one-dimensional weight functions. Within
PLUTO, we have implemented traditional shape functions such
as the “Nearest Neighbor Point” (NGP), “Cloud-In-Cell”
(CIC), and “Triangular Shape Cloud” (TSC). The explicit
formula for the weight can be found, e.g., in Haugbølle et al.
(2013). In practice, since the weight functions have a finite
stencil that extends over three zones, each particle can give a
nonzero contribution only to the computational zone hosting
the particle, its left and right neighbors. If d = - D( )x x xp i is
the distance between the particle and the ith zone such that
d Î -[ ]1 2, 1 2 , the corresponding weights Wi, -Wi 1, and

+Wi 1 are computed as

1. Nearest grid point (NGP):

= = ( )W W0; 1; 42i i1

2. Cloud-in-cell (CIC):

d d
d=


= -

∣ ∣ ∣ ∣ ( )W W
2

; 1 ; 43i i1

3. Triangular Shape Cloud (TSC):

d d=  = - ⎜ ⎟⎛
⎝

⎞
⎠ ( )W W

1

2

1

2
;

3

4
; 44i i1

2
2

Note that + + =- +W W W 1i i i1 1 when d Î -[ ]1 2, 1 2 .
Particle interpolation (also referred to as field weighting) is

the opposite process of interpolating grid (fluid) quantities at a
given particle position:

å= -( ) ( )x xq W Q , 45p
ijk

ijk p ijk

where only neighbor cells give a nonzero contribution to the
particle. For consistency, the same weighting scheme must be
used for particles and field (see Birdsall & Langdon 2004).

4. Numerical Benchmarks and Code Performance

In this section, we present selected numerical benchmarks in
order to verify the correctness and accuracy of our MHD–PIC
and test-particle model implementations.
Before proceeding, we point out that while the ideal MHD

equations are notoriously scale invariant, the presence of
nonzero source terms on the right-hand side of the momentum
and energy equations, Equations (4) and (6), breaks down this
property. If we denote with L0, r0, and V0 our physical
reference units for length, density, and velocity (respectively), a
straightforward analysis shows that the source terms (and
similarly the particle equation of motion (17)) are rescaled by a
factor wL cpi0 , where wpi is the ion plasma frequency. This
naturally suggests the ion skin depth wc pi as the natural
reference length. In addition, if the Alfvén velocity vA is used
as the reference speed, time will be conveniently expressed in
units of the inverse Larmor frequency wW =- ( )c vL pi A

1 .

Figure 1. Subcycling methods 1 (top) and 2 (bottom) for =N 4sub . Blue arrows
represent the application of the Boris pusher; red triangles (momentum
variation) and crosses (direct computation of the CR force) joined by a red line
are used to extrapolate FCR at the next half substep (green diamonds, method 1)
or full substep (green diamonds, method 2). The curved red line at the
beginning of the cycle represents the application of the predictor step.
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4.1. Particle Gyration

We begin by considering the gyration of a single test particle
in a constant magnetic field directed along the vertical axis,

= ( )B B0, 0, 0 . Fluid backreaction is not included as in Bai
et al. (2015). We solve the MHD–PIC equations in a reference
frame Σ where the background fluid has constant density and
pressure as it is uniformly advected in the x direction with
velocity = ( )v V , 0, 0g g .

The motion of the particle is more conveniently described in
the fluid comoving frame Σ′, where the inductive electric field
vanishes and the particle equation of motion reduces to

g
a

¢ ¢

¢
= ¢ ´ ¢

( )
( )

v
v B

d

dt
, 46

p p
p p

where the primed quantities are now in the fluid rest frame. The
general solution of Equation (46), for a point charge located at
the origin of Σ′, is a simple gyration:

¢ =

¢ =

¢ = ¢ W¢ ¢ + ¢ W¢ ¢

¢ = - ¢ W¢ ¢ + ¢ W¢ ¢

¢ ¢

¢ ¢

W¢ ¢ + - W¢ ¢

W¢

W¢ ¢ - + W¢ ¢

W¢

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( )

( ) [ ( )]

[ ( ) ] ( )

x t

y t

v t v t v t

v t v t v t

cos sin

sin cos

, 47

p
v t v t

p

v t v t

x p p x p y

y p p x p y

sin 1 cos

cos 1 sin

, ,
0

,
0

, ,
0

,
0

p x p y

p x p y

,
0

,
0

,
0

,
0

where ¢vx p,
0 and ¢vy p,

0 are the Cartesian components of the particle

initial velocity ¢vp while


a
g

W¢ =
¢

¢
¢ = -

⎛
⎝⎜

⎞
⎠⎟ ( )

B
B B

V
, 1 48L

p

p

g0
0 0

2

are the Larmor gyrofrequency and magnetic field in the Σ′

frame. The gyration radius is ¢ = ¢ W¢R vL p , and the particle
kinetic energy must be conserved in this frame, i.e.,

g¢ = ¢ - =( ) ( )E 1 const. 49k p p,
2

For the present test, we prescribe g¢ = ¢ ¢( )v u0, , 0p p p , where

¢up is the particle four-velocity and g¢ = + ¢( )u1p p
2 its

Lorentz factor, and we set  = 10 and a = =B 1p 0 . Velocity
components in the lab frame are easily found through a Lorentz
transformation. Following Bai et al. (2015), we consider both
nonrelativistic ( ¢ =u 1p ) and relativistic ( ¢ =u 100p ) test parti-
cles, with or without drift velocity.

In order to mimic the variable time step generally expected
in fluid simulations, we set the time step to be

jD = D +( )t t 1 0.2 cos0 , where j is a random number in
the range p[ ]0, 2 and D =t 0.50 (nonrelativistic particle) or
D =t 50 (relativistic particle). With this choice, W¢ D »t 0.5L in
both cases. Particle subcycling is not employed. As pointed out
in Bai et al. (2015), a relatively large time step has been chosen
to amplify the error.

Nonrelativistic Particle. In the top panels of Figure 2, we
plot, in the comoving frame, the energy (left) and ¢y coordinate
(right) as a function of time for a nonrelativistic particle with
¢ =u 1p and Vg=0 (no drift, blue dashed line) or Vg=1 (drift,

red dashed line). The particle’s initial energy in the comoving
frame is therefore ¢ »E 0.4988k p, while its gyration radius is
¢ =R 1L . Energy is conserved exactly in the absence of drift,

while it shows small-amplitude oscillations corresponding to a
relative error of ≈0.1% when Vg=1. Phase errors are also

within an acceptable level, and results are in good agreement
with those of Bai et al. (2015).
Relativistic Particle. In the bottom panels of Figure 2, we

show the evolution of a test particle with initial velocity
¢ =u 100p (g¢ » 10p ). In this case, W¢ » 0.1, and we set

D =t 50 so that D W¢ =t 0.5L0 as in the previous case. From
Equation (49), we have ¢ »E 904.99k p, while the gyration radius
is ¢ =R 100L . Exact energy conservation is achieved during
the evolution in the absence of drift, while small-amplitude
oscillations are present when Vg = 1. The relative errors
are 0.05%, slightly less than before. Phase errors are
comparable to those in the nonrelativistic case.
Our results agree well with those of Bai et al. (2015). We

conclude that, since in most astrophysical applications
W D <t 0.5L , we can safely depend on our implementation of
the Boris algorithm.

4.2. Particle Motion in Non-orthogonal Electric
and Magnetic Fields

Next, we consider the motion of a relativistic charged
particle in non-orthogonal electric and magnetic fields.
The initial condition consists of a spatially uniform plasma

with constant density and pressure with = ( )E E E0, ,y z ,
= ( )B B0, 0, z . The fluid is assumed to be at rest. A single

test particle is initially placed at the origin, with the velocity
along the x axis, i.e., =( ) ˆv ev0p x0 .
This problem has an exact solution that is best expressed in a

frame of reference where the electric and magnetic fields are
parallel (Landau & Lifshitz 1975) through a Lorentz boost with
velocity

=
+ - - +

´
´

( ) ( · )
∣ ∣

( ) ( )V E B E B E B

E B
E B

c

4

2
. 50

2 2 2 2 2 2

2

In this frame, the electric and magnetic fields become parallel
with components =˜ ( ˜ ˜ )E E E0, ,y z and =˜ ( ˜ ˜ )B B B0, ,y z . A
rotation is then performed in order to place the electric (and
thus the magnetic) field along the z axis:

q q
q q

¢

¢
=

-

⎛
⎝
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⎞
⎠
⎟⎟

⎛
⎝
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⎞
⎠
⎟⎟( ) ˜

˜
( )

E

E

E

E

cos sin
sin cos

, 51
y

z

y

z

where q = -( ˜ ˜ )E Earctan y z . In the Σ′ frame, it is straightfor-
ward to show that the particle initial velocity is still directed
along the ¢x direction. The solution of Equation (17) for a
charged particle located at the origin of Σ′ (Landau & Lifshitz
1975) can be written in terms of perpendicular components,

f f

f f
f

¢ ¢ =
¢

W¢
¢ ¢ -

¢ ¢ =
¢

W¢
¢ - ¢

¢

^

^

( ) [ ( ) ( ) ]

( ) [ ( ) ( ) ] ( )

x

v

t
v

t t

t
v

t t
d

dt

sin , cos 1, 0

cos , sin , 0 , 52

p
L

p
L

,
0

,
0

and parallel components

t f

f
f

¢ ¢ = ¢

¢ ¢ = ¢
¢¢

¢
¢

W
¢
¢

⎧
⎨⎪

⎩⎪
( )

( )
( ) ( )

( ) ( )
( )

z t c t

v t t
d

dt

cosh

sinh
. 53

p E
E

B

z p
c E

B,
L

In the above expressions, ¢ º ¢E Ez while W¢L and tE are the
gyrofrequency and the acceleration timescale in the Σ′ frame
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defined, respectively, as

a
g

t
a

W¢ =
¢

¢
=

¢
( )

B

E
,

1
. 54L

p
E

p0

Finally, f ¢( )t is given by

f
t

¢ =
¢
¢ ¢

¢⎛
⎝⎜

⎞
⎠⎟( ) ( )t

B

E

c

E

t
arcsinh , 55

k E

2

0

where g¢ = ¢ -( )E c1k0 0
2 represents the initial particle kinetic

energy (per unit mass). Notice that our solution has been
derived under the assumption that the particle initial velocity
lies in the x direction only.

Equations (52) and (53) describe a stretched helical
trajectory with an exponentially increasing pitch. Note that ¢t
is the time coordinate in the Σ′ frame.

For the present test, we prescribe =( ) ( )v 0 0.5, 0, 0p ,
= ( )E 0, 0.3, 0.5 , and = ( )B 0, 0, 1 , and set the charge to

mass ratio as well as the artificial speed of light  equal to 1.
We integrate the particle equation of motion until ts= 200, and
as in the previous test, we set the time step to be

jD = D +( )t t 1 0.2 cos0 , where j is a random number
between 0 and 2π, and D =t 0.50 . Particle subcycling is not
employed.

In the top panels of Figure 3, we plot, in the Σ′ frame, the x
coordinate (left panel) and the y coordinate (right panel) as a
function of time for a relativistic particle in a generic
electromagnetic field. Likewise, we plot, in the bottom panels,
the z component of the velocity (left panel) and the particle
energy (right panel). The relative error is computed by
transforming the energy in the Σ′ frame and then taking the

maximum value over time:

D =
¢ ¢ - ¢ ¢

¢ ¢

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∣ ( ) ( )∣
( )

( )
E t E t

E t
max , 56L

k p
n

k p
n

k p
n1

, ,
ex

,
ex

where g¢ = ¢ -( )E 1k p,
2 is the particle (specific) kinetic

energy while

 g
t

¢ ¢ = ¢ +
¢

-
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )E t

t
57k p

E
,
ex 2

0
2

2
2

is the exact expression for the particle energy as a function of
time. We obtain ΔL10.1%, showing good agreement
between the analytic and numerical solutions.

4.3. Fluid–Particle Relative Drift

We now assess the temporal accuracy of our integration
schemes by considering the evolution of the full gas–CR
system starting from a spatially uniform distribution of gas and
particles. The computational domain is a doubly periodic 2D
box defined by Î -[ ]x y, 1, 1 with constant magnetic field and
orthogonal to the plane of computation, = ( )B B0, 0, 0 . We
choose a frame of reference where the total (gas+CR)
momentum is zero so that, at t=0, gas and particles stream
in opposite directions,


r

= - =( ) ˆ ( ) ˆ ( )v e v ev v0 , 0 . 58g
p

x p x0 0

The density and pressure of the fluid are set to unity. The
evolution of the composite (gas + particles) system, which now
includes CR feedback, is governed by the MHD–PIC
Equations (3)–(6), which, in the absence of spatial gradients,

Figure 2. Particle kinetic energy (left panels) and position (right panels) as a function of time for the gyration test problem. Quantities are plotted in the fluid rest
frame. The top and bottom panels show, respectively, the results for a nonrelativistic ( ¢ =u 1p ) and relativistic ( ¢ =u 100p ) test particle. Blue and red dashed lines
correspond, respectively, to zero background flow velocity (Vg=0) and mildly relativistic flow (Vg=1).
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reduce to

a

a

= - ´

= - - ´

⎧
⎨
⎪⎪

⎩
⎪⎪

( )

( )[( ) ]
( )

v
v v B

v
v v B

d

dt
R

d

dt
R1

, 59

g
i g p

p
p p g

where ai and ap denote, as usual, the charge to mass density
ratios of the ions and the CR particles, respectively. Note that
in writing Equation (59) we have tacitly assumed that ºv vp CR

in the absence of spatial dependence. Also, the expression for
the CR force appearing on the right-hand side of Equation (4)
has been rewritten by combining Equation (15) with the E
given by Equation (12), yielding

= - ´( ) ( )F v v B
q

c
R . 60i

gCR CR

The system of ordinary differential equations (59) with the
initial conditions previously specified has an exact analytic
solution given by

= -

= W - W

W

W
⎧
⎨⎪
⎩⎪

( ) ( )

( ) [ ( ) ˆ ( ) ˆ ]
( )

v v

v e e

t t

t v t tcos sin
, 61

g p

p x y

ex ex

ex
0

g

p

where W = W + Wg p, aW = RBg i 0, and aW = -( )R B1p p 0.
Note also that from the definition of  a a r a= +( )R p p i i p p ,
we have rW = Wg p p. Equation (61) shows that both particles
and gas trace clockwise circular orbits with the same period but
different radii. It can also be easily verified that the total (gas
+particle) momentum remains constant in time, as expected.

We choose a a= = 1p i and p=B 20 so that our units are
such that pW = 2 . For the test considered here, we set =v 50
and  r= -10p

2 . We use 8×8 grid zones and one particle per

cell. The system is evolved for exactly one period T=1 using
constant time steps D =t N1 t, where Nt is the number of
(fluid) time steps: =N 40, 80, 160 ,..., 81920t . For the sake of
comparison, we have repeated computations with and without
the predictor step (see Section 3.2.1) and also by varying the
number of substeps used during particle subcycling. Both
subcycling methods, illustrated in Section 3.2.2, have been
compared with =N 1sub and =N 5sub ( =N 4sub for method 2).
The error is computed at the end of each computation using the
L1 norm,

D = - + -∣ ( ) ( )∣ ∣ ( ) ( )∣ ( )v v v vT T T T , 62L g g p p1
ex ex

and it is plotted in Figure 4 without subcycling (left panel,
=N 1sub ) and with subcycling (right, >N 1sub ).

Results obtained without the predictor step (labeled with
“np,” red plus signs) show essentially first-order accuracy
regardless of subcycling ( =N 1sub or =N 5sub in the left and
right panels, respectively). On the contrary, including the
predictor step noticeably improves the overall scheme’s
convergence, yielding genuine second-order temporal accur-
acy. This holds when =N 1sub (left panel) and also when

>N 1sub (right panel). Results obtained with subcycling
methods 1 and 2 are both reported using the blue triangles
and green crosses in Figure 4 and labeled, respectively, with
“wp1” and “wp2”. Notice that while method 1 can be used for
any N 1sub (we employ =N 5sub ), method 2 works only
when Nsub is even (we set =N 4sub ).
Note that computations have been carried out using both the

CTU and RK2 time-stepping methods, and the results are
identical. Indeed, in the absence of spatial gradients, the two
methods become coincident as it can be easily verified from
Equations (26) and (30) with  = 0.

Figure 3. Particle position (top panels), velocity (bottom-left panel), and energy density (bottom-right panel) as a function of time for a charged particle in generic
electric and magnetic fields. Quantities are plotted in the frame where both electric and magnetic fields are along the z axis.
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4.4. Nonresonant Bell Instability

In the next test, we verify the implementation of our
MHD–PIC module by investigating the linear growth of the
nonresonant Bell instability (Bell 2004) in one, two, and three
dimensions. The instability is driven by the relative streaming
between gas and CR particles along magnetic field lines, and it
takes place when the CR drift velocity exceeds the local Alfvén
speed. The streaming of CRs generates a return current in the
thermal plasma (in the attempt to restore charge neutrality), so
that small perturbations are amplified when the induced
Lorentz force exceeds the magnetic tension. The instability
excites nearly purely growing modes with wavelengths shorter
than the Larmor radius and does not saturate when d ~B B 1,
but it continues growing to produce amplified magnetic fields
much larger than the initial field (Bell 2013). This mechanism
is believed to operate in the upstream regions of high Mach
number SNR shocks, leading to efficient magnetic field
amplification and the development of turbulence. Magnetic
field fluctuations in the upstream magnetic field are then
responsible for the scattering of CRs and their confinement
close to the shock front (Bell 2004; Bai et al. 2015), thereby
providing an efficient mechanism to trigger diffusive shock
acceleration.

Bai et al. (2015) have carried out a linear stability analysis by
including the CR-Hall term that was previously ignored. The
quantity

L =
-∣ ∣

( )
v v

R
v

, 63
g

A

CR

where vA is the Alfvén velocity, determines the importance of
the CR-Hall term and leads essentially to a reduction of the
growth rate, which saturates at the ion cyclotron frequency of
the background plasma when JCR is increased, in the
limit L  1.

Here we consider the opposite limit (L  1), which is also
the same regime used in Bell (2004; regime II). Assuming
incompressible perturbations proportional to w-( )ei kx t in the

fluid rest frame, the dispersion relation becomes

 w
= + - +

⎛
⎝⎜

⎞
⎠⎟

( ) ( )k

k v

k

k

k

k
2 , 64

A0 0

2

0

2

where  = v vA CR and

= ( )k
J

B c2
650

CR

0

is the most unstable wavenumber with =J venCR CR CR the CR
current density. The maximum growth rate is obtained when
=k k0, yielding

 w = + -( ) ( )k v i 1 . 66A0 0
2

To set up the problem, we consider a periodic box
Î [ ]x L0, x , Î [ ]y L0, y , and Î [ ]z L0, z initially filled with a

plasma with uniform density and pressure (we set
r = =p1, 1) and threaded by a constant background magn-
etic field = ( )B 1, 0, 00 . A monochromatic beam of CR
particles is set to travel along the x direction with velocity

=v vACR , where  Î ( )0, 1 is now a free parameter. In order
to ensure that the CR current remains constant during the
evolution, particles must have a large inertia, and this is
achieved by setting the charge to mass ratio of CR particles to
be very small, i.e., a = - v k B10p A

6
0 0. Using the definition of

the CR current together with Equation (65) for the most
unstable wavenumber, one obtains that the CR density satisfies
 = ´ B v2 10p A

6
0
2 2. Finally, to ensure that R 1, we set

a = 10i
3 while the speed of light is fixed to  = 106.

Perturbations in velocity and magnetic field at t=0 are
introduced by using the exact eigenvectors obtained from the
1D linear dispersion relation in the limit L = Rv v 1ACR
(see the appendix to Bai et al. 2015) according to which

d f q f q= - -^ [ ( ) ( )] ( )v v
b

B
0, cos , sin 67g A

0

and

d f f= ^[ ( ) ( )] ( )B b 0, cos , sin , 68

Figure 4. L1 norm errors for the fluid–particle relative drift problem using the standard particle update without subcycling (left panel) and with subcycling (right
panel). Results after one period obtained without the predictor step (np) are shown using red plus signs while blue triangles and green crosses correspond to
computations obtained by including the predictor step with either subcycling methods 1 (wp1) or 2 (wp2); see Section 3.2.2. Computations using subcycling employ

=N 5sub except for subcycling method 2, for which we set =N 4sub . The black dashed (solid) line gives the expected convergence rate for a first-order (second-order)
temporally accurate scheme.
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where f = k x0 , q = -sin 1 , and =^
-b 10 5 is the initial

perturbation amplitude.
In 1D, we set p=k 20 so that, by choosing the box size

Lx=1, we fit exactly one wavelength (the most unstable) in
the computational domain. In 2D and 3D, the initial
configuration is rotated so that the new wavevector is not grid
aligned but has the orientation

p
a b¢ = ( ) ( )k

L

2
1, tan , tan , 69

x
0

where a = L Ltan x y and b = L Ltan x z still satisfy p¢ =∣ ∣k 20 .
Vectors are then rotated using R d¢ = gav vg g and ¢ =B
R d+ga( )B B0 , where the rotation matrix Rga is defined as
(see also, e.g., Mignone & Tzeferacos 2010)

R
a g a a g
a g a a g

g g
=

- -
-ga

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

cos cos sin cos sin
sin cos cos sin sin

sin 0 cos
, 70

where g a b=tan cos tan . In 2D, we employ = =L L2 5x y

using 64×32 zones while in 3D, we set = = =L L L2 2 3x y z

using ´ ´96 48 48 zones. We run nine simulations corresp-
onding to  = ¼0.1, ,0.9 for each case. For the sake of
comparison, we perform computations using the CTU scheme
with a MUSCL-Hancock predictor step and the RK2 scheme.
The CFL number is set to 0.45 except for the 3D run using the
Runge–Kutta scheme, for which we lower it to 0.3.

In order to measure the growth rate, we first evaluate, at each
time t, the transverse magnetic energy as R= ¢-ga^

-( )B Bp 2m
1

0
2

and then find the value tmax at which a maximum is reached. The
imaginary part is then computed as the difference between pm⊥ at
=t t3 4e max and =t t 4b max :

w =
-

^

^

⎡
⎣⎢

⎤
⎦⎥( )

( )
( )

( )
t t

p t

p t
Im

1
log . 71

e b

m e

m b

Likewise, we compute the real part by measuring the distance
traveled by a wave crest from te to tb:

w =
-
-

( ) ( ) ( ) ( )k
x t x t

t t
Re , 72x

e b

e b

max max

where ( )x tbmax denotes the horizontal position of the first
maximum of the z component of ¢ = ¢ -^ ( · )B B k B k k0

2.

Results obtained with the CTU and RK2 schemes are shown,
respectively, in Figures 5 and 6, where we plot, from left to
right, the real and imaginary parts of the growth rate (red and
blue symbols) together with their analytic values (red and
blue lines) as given by Equation (66) in 1D, 2D, and 3D,
respectively. Our results show a good agreement with the
analytic predictions, and a quantitative analysis shows that the
relative error computed as




w
w

D = -
⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )max 1 73
0

never exceeds ∼4% for the real part and ∼1.5% for the
imaginary part. In Equation (73), w ( ) refers to the (real or
imaginary part of the) measured value of the growth rate while
w ( )0 is given by Equation (66). Error values are reported in

Table 1 for the CTU and RK2 schemes in one, two, and three
dimensions.

4.5. Application to Collisionless Shocks

In this section, we apply our MHD–PIC module to
investigate particle (ion) acceleration in parallel MHD
collisionless shocks. Our configuration reproduces the setup
described by Bai et al. (2015) in their R2 (classical) and R2-
REL (relativistic) fiducial computations. Note that while the
fluid is always described by the classical MHD equations, the
two runs differ essentially for the reduced speed of light
( = 104 and  = v10 2 0, respectively).
The computational box is defined by the 2D rectangular

domain with  x L0 x and  y L0 ,y where =( )L L,x y

´( )120, 3 103 for run R2 while a larger box =( )L L,x y

´( )384, 4.8 103 is used for the relativistic case (run R2-REL).
Lengths are conveniently expressed in units of the ion skin
depth wc pi. The initial condition consists of a constant density
and pressure (r = =p1, 10 0 ) supersonic inflow propagating
to the left with velocity = -v M ,A0 where MA=30 is the
Alfvénic Mach number. An ideal equation of state with the
specific heat ratio g = 5 3 is employed. The magnetic field
is initially constant and parallel to the flow velocity

= ( )B B , 0, 00 . We set =B 10 so that velocities will be
normalized to the initial upstream Alfvén speed. This also sets
the time unit as the inverse of the cyclotron frequency,

wW =- ( )c vL A
1

pi .

Figure 5. Real (red) and imaginary (blue) parts of the growth rate for the nonresonant Bell instability problem using different values of the ò parameter. The solid and
dashed lines give the theoretical expectation, Equation (66), while the symbols (triangles and circles) are the results measured from the simulations using the CTU
scheme.
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We employ a uniform grid resolution of =[ ]N N,x y
[ ]11520, 288 and =[ ] [ ]N N, 30720, 384x y for the two cases,
respectively. This choice corresponds to a mesh resolution of
≈10.4 c/ωpi and ≈12.5 c/ωpi per cell, therefore giving a
significant efficiency gain when compared to hybrid codes that
typically require finer grids (≈2 c/ωpi) to properly describe the
microphysics. At the leftmost boundary (x= 0), we apply
conducting conditions so that a right-going shock receding from
the wall forms immediately. Constant flow injection holds at
the right boundary =x Lx while vertical boundary conditions are
periodic. The MHD–PIC equations are evolved until
= W-t 3000 L

1 in the nonrelativistic run (run R2) while computa-
tions are stopped at = W-t 11520 L

1 for the relativistic case.

4.5.1. Injection Recipe

Since the MHD–PIC approach cannot consistently model the
injection physics, a prescription that mimics the generation of
suprathermal particles in the downstream region of the shock is
necessary. As shown by Caprioli & Spitkovsky (2014a) and
Caprioli et al. (2015), the ion distribution immediately behind
the shock shows an intermediate region of particles with mildly
nonthermal energies. Hybrid simulations indicate that the
fraction of injected particles can be effectively parameterized
by defining a threshold energy, Einj, which marks the boundary
between the thermal and nonthermal distributions, and the
injection fraction η. While Bai et al. (2015) prescribe an
injection recipe that is strictly one dimensional, we present here
a different approach that can also be used in the context of
multidimensional calculations.

Particles are injected at the end of an “accumulation” cycle
ΔTacc consisting of a finite number of hydro steps during which
we track the amount of mass swept by the shock. To this end,
we add to the MHD–PIC equations the evolution of a passive
tracer  which is updated in the following way:

1. At the beginning of an accumulation cycle, we set  = 0i
for all zones = ( )i i j, in the computational domain.

2. For each time step in the computation, we initialize the
tracer to 1 if a computational zone lies within a shock and
then update  regularly using our conservative scheme.

The criterion for a zone i to be considered inside a
shock demands (i) the divergence of fluid velocity to be
negative and (ii) the normalized second derivative of
pressure to exceed a certain threshold:

å

å c

- <

>

=
+ -

=

- +

+ +
+ -

+ -

⎧
⎨
⎪⎪

⎩
⎪⎪

ˆ · ( )

( )

ˆ ˆ

∣ ∣ˆ ˆ

ˆ ˆ

e v v 0,

, 74

i e i e
d x y

d g g

d x y

p p p

p p p

,
, ,

,

2

2

i e i i e

i e i i e

d d

d d

d d

where = ( )i i j, , =ˆ ( )e 1, 0x , and =ˆ ( )e 0, 1y , while we
set the threshold c = 0.2. An additional measure is
necessary to avoid tracking the formation of secondary
small discontinuities ahead or behind the shock during
the turbulent regime. We achieve this by selecting,
among shocked zones, those with a large pressure jump:

c
c

<
>

d

d

+

+

⎧⎨⎩
( )
( ) ( )
p

p

min ,

max .
75i

i

min

max

where d = - -[ ]1 .. 1, 1 .. 1 spans all of the eight
neighbor zones. In order to detect the primary shock,
we use c = 15min and c = 250max . The criteria for
choosing cmin and cmax depend on the shock that one
wishes to track. The details of the computation are not
sensitive to their values, inasmuch as cmin (cmax) is larger
(smaller) than the upstream (downstream) pressure.

If conditions (74) and (75) are both satisfied, we
consider the zone to lie within a shock and set a flag

=f 1i ( =f 0i otherwise).
3. The passive scalar is evolved by repeating step 2 until the

following condition is met:

å år r>( ) ( ) ( )Q , 76
i

i
i

ish

where r r= -( )f1sh , the summation extends to all
computational zones, Q=0.8 is a safety factor, and f is the
current shock detector flag defined in step 2. Equation (76)
marks the end of the accumulation cycle ΔTacc, and the
summation on the left-hand side represents the total mass
(density) swept by the shock during this interval of time by
excluding zones that are currently flagged, which would
otherwise tend to overestimate the swept mass.

The reliability of our mass-tracking algorithm has been
tested on the 1D unperturbed propagation of the shock

Figure 6. Same as Figure 5, but for the RK2 time stepping.

Table 1
Relative Errors for the Bell Instability Problem

CTU RK2

D w( )Re D w( )Im D w( )Re D w( )Im

1D 4.21E–02 3.60E–03 4.08E–02 3.22E–03
2D 4.29E–02 1.51E–02 3.97E–02 1.50E–02
3D 3.77E–02 1.15E–02 4.06E–02 1.09E–02
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using different grid resolutions. Figure 7 shows (left
panel) the relative error of the cumulative swept mass as a
function of time: the uncertainty is larger at the beginning
(≈5%–10% due to start-up error and wall heating at the
left boundary) while it progressively reduces to a few
10−3 at later times (  W-t 400 L

1). This error falls well
within the uncertainty in estimating the mass fraction η
(~ - -–10 103 4; see Caprioli & Spitkovsky 2014a and the
discussion below) of particles crossing the shock and
participating in the DSA process. On the right-hand panel,
we plot the duration of an accumulation cycle as a
function of time and point out that our injection recipe is
not continuous in time but, rather, occurs periodically with
a period ΔTacc that reduces as the mesh is refined.

For the grid resolution employed here, the duration
of a single accumulation cycle lasts approximately
D » W-T 2 Lacc

1.
4. When condition (76) is fulfilled, particle injection takes

place. The amount of CRs injected in each zone i is
proportional to the local swept mass distribution, that is,

r= r( ) ( )N Ni iinj sh0
where =rN 4

0
is the number of

particles per cell at unit fluid density. Particles will be
mostly injected into the shock downstream (where
r ¹ 0sh ), and their mass density is controlled by the
parameter η such that  hr=N pinj sh. Following Bai et al.
(2015), we set the CR mass fraction h = ´ -2 10 3 (see
also Section 3 of Caprioli & Spitkovsky 2014a for a
thorough discussion) and therefore  h= rNp 0

. As such,
the mass of the injected particles is a fixed fraction η of
the shock-swept mass.

Following Caprioli & Spitkovsky (2014a) and Caprioli
et al. (2015), we set the energy of the injected particles to
be E10 sh in the comoving shock frame, where =E v 2sh 0

2

is the shock-specific kinetic energy. In the lab frame, the
particle velocity is therefore initialized to

q j
q j
q

= +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ˆ ( )v e E10 20

sin cos
sin sin
cos

, 77p x sh

where θ and j are randomly distributed angles.
Finally, the conservation of mass, momentum, and

energy is enforced by subtracting the corresponding
injected amount from the gas. This compensation
procedure usually produces small variations, and test
runs without it show negligible variations.

After the injection process has completed, the tracer 
is again reset to zero everywhere and a new accumulation
cycle begins (step 2).

Our injection prescription is independent of the shape and
position of the shock front and as such, it can easily adapt to
curved and corrugated fronts.
During the first phase of injection (  = W-t t 480i L

1), CR
streaming is effective only in triggering the onset of the Bell
instability as turbulent fluctuations are still small. As pointed
out by Bai et al. (2015), particles giving rise to this transient
flow do not participate in the shock-acceleration process and
are removed for >t t2 i in order to suppress spurious effects
once the Bell instability is fully developed.

4.5.2. Nonrelativistic Regime

At the beginning, a shock is formed and reflected away from
the wall at the left boundary. CR particles injected at this early
stage travel almost undisturbed along magnetic field lines
without being efficiently scattered and propagate away from the
shock. The streaming of CRs in the upstream region triggers
the Bell instability, which grows linearly for a few hundred
Larmor periods. As the instability enters the nonlinear stage,
magnetic field fluctuations are amplified by a factor of ∼4 in
the upstream region, and a filamentary-like structure, alternat-
ing between low- and high-density regions, becomes evident.
Snapshots of the evolution, showing both density and magnetic
field, are given in Figure 8. Note that only a smaller portion of
the computation domain is shown. Magnetic field and density
inhomogeneities are then further amplified once they cross the
shock front, enhancing strong turbulence in the downstream
region for  ´ W-t 1.2 10 L

3 1.
CR particles begin to be efficiently scattered at this stage,

and the diffusive shock-acceleration process commences.
Magnetic clumps provide the scattering centers, and most of
the particles suffer multiple head-on collisions across the
shock, resulting in a fractional energy gain. This process is best
illustrated in Figure 9 where we show the spacetime diagram of
one of the most energetic particles in the reference frame in
which the shock is stationary. The color of the line indicates the
particle energy as time advances while the background gray
color map is created by superposing one-dimensional hor-
izontal density profiles taken at the the particle’s y coordinate.
In the top panel of Figure 10, we show the energy spectrum

Ef (E) as a function of the horizontal coordinate x and energy

Figure 7. Left panel: relative error -∣ ∣M M 1sw ref of the cumulative swept mass as a function of time, where ò r= D D å ( )M x y i i
t

sw 0 sh while r=M v tLyref 0 sh is the

expected value for a 1D plane-parallel shock. Right panel: duration of an accumulation cycle as a function of time. Colors correspond to different grid resolutions
reported in the legend.
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E (in units of Esh) at = W-t 2400 L
1. The two-dimensional

distribution is constructed by taking, for each x coordinate, the
spectra of all particles lying in a narrow vertical strip that is
four zones wide. A tail of high-energy particles penetrating
into the shock upstream and driving the Bell instability is
visible, in agreement with previous results (see, e.g., Caprioli
& Spitkovsky 2014a; Bai et al. 2015, and references therein).
Note that since our injection procedure tracks the shock
front more accurately, no artificial protrusion appears for
»E E10 sh.
The particle spectrum is extracted from a narrow strip

d+[ ]x x,L L behind the shock, where w= -x x c2400L s pi

while d w= c800 pi. The distribution function is normalized
to the number of particles, i.e., ò = d+( ) [ ]f E dE N x x,L L

. For
isotropic scattering, the expected particle distribution f (E)
should depend only on the compression ratio r and take the
form ~ -( ) ( )f E E q1 2, where = -( )q r r3 1 . In the limit of
strong shocks, one obtains ~ -( )Ef E E ,1 2 and this predic-
tion is confirmed by the time evolution of the energy
spectrum plotted at different times in the bottom panel of
Figure 10. The plot indicates that the CR spectrum gradually
broadens from the injected distribution (dark blue curve
peaked around ~ E10 sh) toward a high-energy power-law tail
with a slope consistent with -3 2. A high-energy cutoff
at ~ E103

sh is reached toward the end of the simulation,
in agreement with previous findings (see, e.g., Caprioli &
Spitkovsky 2013, 2014a) and with the results of Bai
et al. (2015).

4.5.3. Relativistic Regime

We have further investigated the diffusive shock-acceleration
mechanism in the relativistic regime by repeating the R2-REL
run discussed in Bai et al. (2015). A reduced value of the speed
of light ( = v10 2 0) has been chosen in order to favor the
transition from a nonrelativistic injection condition to the final
acceleration stage, where the most energetic particles become

Figure 8. Density (left) and magnetic pressure (in log scale, right) snapshots for the collisionless shock problem (run R2) at four different times (reported in the
panels). Only a small portion of the domain, in the proximity of the unperturbed shock position =x v ts sh , is shown.

Figure 9. Spacetime diagram in the (x, t) plane showing the particle
acceleration process. The line gives the particle trajectory, and the color
indicates its specific kinetic energy. The background map in gray shows the
y-averaged density structure of the system at different times.

Figure 10. Top panel: particle energy distribution (in units of =E v 2sh 0
2 ) as a

function of x at = W-t 2400 L
1 for the nonrelativistic run R2. The white vertical

dashed line gives the (unperturbed) position of the shock front. Only a small
region around the shock is shown. Bottom panel: time evolution of the particle
energy spectrum Ef (E) as a function of E. The different colors correspond to
different simulation times, and the spectrum is extracted by considering particles
lying in a narrow strip of width ≈800 c/ωpi in the downstream region. The
black dashed line shows the slope predicted by the Fermi acceleration model.
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relativistic. The typical particle velocity at injection is, indeed,
= »v v10 0.22 ,p 0 corresponding to g » 1.026p . The

transition to the relativistic regime occurs at approximately
»E 2t

2 when g » 1.5t .
The density and magnetic field strength are shown in the left

and right panels of Figure 11 at different times. Upstream of the
shock, we observe the formation of cavities and filamentary
structures of larger size when compared to run R2, motivating
the choice of a larger computational box. This behavior can be
attributed to the saturation of the CR current density, which
depends on the velocity of the particles and, for a reduced value
of the speed of light, cannot exceed qCR . In other words, at
relativistic velocities, an increase in the particles’ energy does
not correspond to an increase in the current density. Indeed,
from the linear analysis of the Bell instability (Equation (65)),
we expect the most unstable wavenumber to be smaller in the
relativistic case. Similarly, the level of turbulence is somewhat
reduced, and a sharper shock transition layer is formed, in
agreement with the results of Bai et al. (2015).

As a significant fraction of the fluid energy is transferred to
CRs during the acceleration process, the effective adiabatic
index of the fluid decreases from its nominal value of 5/3 (see
Section 6.2 of Caprioli & Spitkovsky 2014a for a thorough
discussion) to a smaller value g̃ . As a consequence, the shock
compression ratio becomes slightly larger ( »r 4.2) toward the
end of the simulation. In addition, since we expect

g= - -( ˜ )v v1 2sh 0 to hold for a strong shock, the front
slows down and straggles with respect to its nominal position.
This can be clearly observed in the snapshot sequence in
Figure 11.

The energy and momentum distributions of CRs are shown
in the three panels of Figure 12. In the top panel, we show a
2D color map of the spatial distribution of Ef (E) at
» W-t 11, 088 L

1 obtained by averaging, for each x, particles
lying in a narrow vertical strip eight zones wide. From the
figure, we see that most particles escaping into the upstream
region have energy in excess of E102

sh ( g 1.25p ). Again,

since particle injection tracks more accurately the location of
the shock front, we do not observe any low-energy protrusion
in the upstream region.

Figure 11. Density (left) and magnetic pressure (in log scale, right) snapshots for the collisionless shock problem in the relativistic run R2-REL at four different times
(reported in the titles). Shown here is only a small portion of the domain centered around the unperturbed shock position xs = vst.

Figure 12. Top: spatial distribution of the particle energy (in units of =E v 2sh 0
2 )

as a function of x and E atW =t 11, 088L . The white vertical dashed line gives the
(unperturbed) position of the shock front. Only a smaller region around the shock
is shown. Middle panel: time history of the energy spectrum Ef (E) in
dimensionless form. Curves with different colors correspond to the times indicated
by the legend. Bottom panel: momentum spectrum ( )p f p4 as a function of p v0.
The thin vertical dotted lines mark the transition from nonrelativistic (  E 22 )
to relativistic energies (  E 22 ) while the black dashed line in the top panel
represents the theoretical expected slope in the classical regime.

15

The Astrophysical Journal, 859:13 (22pp), 2018 May 20 Mignone et al.



In the middle panel of Figure 12, we plot the time history of
the energy spectrum extracted by averaging, as before, all CR
particles lying in a narrow strip located at a distance
≈2400 c/ωpi behind the actual shock position. The spectrum
is again consistent with a power law with spectral index-3 2,
and presents a cutoff at » ´E 2 103 (g » 3.5). Note that a
thin vertical line marks the transition from the nonrelativistic to
relativistic energies ( »E 2t

2 ).
We also compute the momentum spectrum f (p), which is

related to the energy distribution f (E) through the transforma-
tion

p=( ) ( ) ( )f E p f p
dp

dE
4 , 78k

k

2

where gºp vp p is the particle momentum per unit mass, while

   g= - = + -⎜ ⎟⎛
⎝

⎞
⎠( ) ( )E

p
1 1 79k

2 2
2

2

is the specific kinetic energy. Using =dE dp pk
2

+( )Ek
2 , we invert Equation (78) to obtain f (p) and

plot the time history in the bottom panel of Figure 12. The
figure shows ( )p f p v4

0 as a function of p and reveals an
approximately flat curve in the region p v 15.80 (the
nonrelativistic region) and in p v 250 (the relativistic
region).

We remind the reader that the Fermi acceleration theory
predicts that the momentum spectrum should scale universally
as µ -( )f p p 4 at relativistic and nonrelativistic energies. Then,
from Equation (78), one expects the energy distribution to
smoothly change slopes while shifting to higher energies:




µ
-

-





⎪

⎪

⎧
⎨
⎩

( ) ( )f E
E E

E E

if

if
80k

k k

k k

3 2 2

2 2

in the nonrelativistic and relativistic parts of the spectrum,
respectively. The transition to µ -( )f E E 2 should take place at
g » 10, but it cannot be captured by the present simulation
since such high energies have not been reached yet.

4.6. Particle Acceleration near an X-point

Next we consider, as a proof of concept, test-particle
acceleration near an X-type magnetic reconnection region.
Relativistic magnetic reconnection in strongly magnetized
environments has been pointed out (Sironi & Spitkovsky 2014)
as an efficient particle acceleration process which may be able
to account for high-energy nonthermal emission from PWNe
(see, e.g., Cerutti et al. 2013, and references therein), active
galactic nuclei (AGNs; see, e.g., Giannios 2013), and GRBs
(McKinney & Uzdensky 2012).

Our setup is similar to that of Mori et al. (1998) and consists
of a 2D computational square with  - L x y L2 , 2 , threaded
by magnetic and electric fields given by

= =
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )B EB

y

L

x

L

B

B
E, , , 0, 0, , 81z

z0
0

where =B 10 . We choose the Alfvén speed as our reference
velocity and set the speed of light to be = v100 A. Lengths are
normalized to the gyration radius WvA L, and we set
= ´L 2 103. Computations are stopped at t= 100 and employ

5122 grid zones with four particles per cell. The particle

velocity distribution is initialized to a Maxwellian distribution
with thermal velocity v0.1 A. Only particles are evolved in time
while fluid and electromagnetic quantities are kept constant at
their initial values.
We first consider a configuration without a guide field

(Bz= 0) and vary the electric field strengths according to
=E 0.1, 0.2, 0.3, 0.5, 1.0z . Since =·E B 0 everywhere,

particle acceleration takes place mostly in the proximity of
the null point where the electric field has a larger amplitude
than the magnetic field. Outside of this region, no significant
acceleration occurs. Particle motion results from a combination
of curvature, gradient, and ´E B drifts, and produces a
symmetric pattern with respect to the y axis, as shown in the top
panel of Figure 13. Owing to the perpendicular electric drift,
particles with a large velocity in the <∣ ∣ ∣ ∣y x regions have a
bouncing oscillatory motion between the two separatrices while

Figure 13. Test particle distribution for the X-point acceleration problem.
Magnetic field lines in the x–y plane are drawn using black lines while particles
are colored by velocity magnitude in orange. The top and bottom panels
correspond, respectively, to the zero guide field case (Bz=0) and to the guide
field case with Bz=0.1. In both cases, the electric field Ez=0.5, directed out
of the plane.
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approaching the central X-point (see Vekstein & Browning
1997; Browning & Vekstein 2001). In these regions, the
curvature and gradient drift have opposite directions with
respect to the electric field and are thus unfavorable for
acceleration. Once the separatrix line is crossed, the situation is
reversed and particles in the region >∣ ∣ ∣ ∣y x move away from
the null point because of the ´E B drift. Concurrently, the
curvature and gradient drift take place in the positive z
direction, and particles gain energy due to the strong electric
field, thus producing the pattern of higher energy particles
observed in the top panel of Figure 13. A similar pattern is also
shown by Mori et al. (1998). The energy spectrum, plotted in
the top panel of Figure 14, shows a high-energy tail that departs
from Maxwellian and extends to larger energies as the electric
field is increased. For strong electric fields ( E 0.3z ), we
observe that the energy distribution can be well approximated
with a power law µ -E p with a spectral index »p 1.8 (for
Ez=1). This result is slightly smaller than the one found by
Mori et al. (1998), who found ~p 2.

In the second configuration, we fix the value of the electric
field to Ez=0.5 and repeat the computations using different
values of the guide field, =B 0, 0.02, 0.05, 0.07, 0.1z . The
spatial distribution, shown in the bottom panel of Figure 13,
indicates that the presence of a nonzero guide field breaks the
symmetry with respect to the y axis, and the most energetic

particles are distributed on an elongated strip approximately
lying along the separatrix line y=x, which is determined by
the sign of the parallel components of the electric and magnetic
fields. The same behavior has been reported by previous
investigations, e.g., Browning & Vekstein (2001). As the guide
field becomes stronger, parallel acceleration (as discussed in
Section 4.2) increases and becomes significant. In fact, since

¹·E B 0 everywhere, acceleration takes place for all particles
including those away from the null point. This can be clearly
seen in the energy spectra (bottom panel in Figure 14) showing
a systematic shift to larger energies as the amplitude of the
guide field grows. The effects of the perpendicular drift on the
parallel motion still remain relevant so that the largest
accelerations are observed close to the origin. However, the
strength of the guide field seems to affect more the low-energy
part of the spectra rather than the high-energy cutoff. Again, we
observe that the high-energy tail of the spectrum behaves as a
power law with spectral index (for Bz=0.1) ~p 2, in
agreement with Mori et al. (1998).

4.7. Code Performance and Parallel Scaling

Let Dtp and Dth be, respectively, the computational time
required to update a single particle and a single grid zone using
the MHD solver. The total CPU time for a single cell update
may then be approximately expressed by

D = D + D( ) ( )t m t t , 82p h

where m is the number of particles per cell. In order to measure
Dt ,p we have repeated the same computation with different
values of m while leaving all other parameters unchanged so
that

D »
D - D

-
( )t

t t

m m
, 83p

1 2

1 2

where m1 and m2 are different numbers of particles per cell
while Dt1 and Dt2 are the corresponding single-cell integration
times. Code performance has been benchmarked on a 3 GHz
Intel Xeon E5 processor using the relative drift test
(Section 4.3) without subcycling and the grid resolution of
64 zones in each direction.
The left panel in Figure 15 shows the CPU time (in ms)

computed using Equation (83) with and without the predictor
step (“wp” and “np,” respectively). As expected, the
computational time is essentially independent of m and, on
average, we find mD »t 0.3 sp (in 2D) and mD »t 0.6 sp (in
3D). We then include the predictor step (Section 3.2.1; blue
symbols in the figure) and observe an average increase of
∼70%. The right panel of Figure 15 shows D Dm t tp —the
particle CPU time relative to a single cell update—as a function
of m. With » -m 6 7 particles per cell, the code spends
≈50% of the total computational time in evolving the particles
(without the predictor step) in both 2D and 3D. Inclusion of the
predictor step leads again to an increase of the relative cost.
The MHD–PIC module has been parallelized using the

Message Passing Interface library. In our implementation, each
processor updates only the particles lying in its physical
domain (Vaidya et al. 2016). Particles must be transferred
between neighbors when they cross a processor boundary: in
this way, each processor communicates only with its neighbors.
Parallel performance (in strong scaling) has been tested on the
Marconi cluster equipped with Xeon Phi 7250 CPU (Knights

Figure 14. Particle energy spectra without (top panel) and with (bottom panel)
the guide field. In the case with the guide field, the electric field Ez is set to 0.5.
The dashed line indicates the initial Maxwellian distribution whereas the dotted
line represents a power law with index −1.8 (top) and −2.0 (bottom).
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Landing) processors at 1.40 GHz, available at the CINECA
supercomputing facility. For the present scaling test, we have
chosen the 3D Bell instability test problem (Section 4.4) with a
grid resolution of 256×1282, one particle per cell, and RK2
time stepping. Figure 16 plots the parallel efficiency, measured
as D D( )T p Tp1 (where DTp is the CPU time per step per zone
using p processors), obtained for = ¼p 8, 16, 1024. The
efficiency remains above ∼0.8 up to ~p 256 processors,
and it decreases to ∼0.7 at the largest number of processors.
Note that, given the large inertia of CRs, the number of
particles per cell remains constant throughout the computation.
Numerical simulations with uneven particle distributions are
likely to be less efficient.

5. Summary

A method paper describing a fluid–particle hybrid model for
the dynamical interaction between a thermal plasma and a
population of collisionless nonthermal particles (CRs) has been
presented as part of the PLUTO code. The model equations can
be formally derived starting from a three-component plasma in
which thermal ions and (massless) electrons are combined
together into a single fluid whereas the nonthermal component
is treated kinetically. The single-fluid equations are those of
MHD augmented by source terms accounting for the
momentum and energy feedback from the CR particles. Ohm’s
law is derived from the electron equation of motion and,
ignoring electron-scale physics, it is modified by the presence
of the CR-induced Hall term, which accounts for the relative
drift between the fluid and CRs. The resulting system of
conservation laws is equivalent to the MHD–PIC equations
previously derived by Bai et al. (2015). In the absence of
momentum and energy feedback, the particle module can also
be employed to investigate the dynamics of test particles
embedded in an MHD fluid.

The MHD–PIC approach can be employed on scales that are
much larger than the ion skin depth, thus offering a significant
computational efficiency gain when compared to a PIC
numerical approach. In this way, the MHD–PIC formalism
paves the way for investigating kinetic effects at nearly
macroscopic scales at a more affordable computational cost.
At the same time, however, the formulation assumes that all
electrons are thermal, and the charge density ratio between CR
particles and fluid is required to be small. This limits the

applicability of the model by compromising microphysical
effects arising at scales smaller than the ion skin depth.
The system of equations describing the composite system of

plasma and CRs is solved numerically by combining finite
volume Godunov methods for the MHD fluid with PIC
techniques for the particle component. In particular, we have
presented a combined algorithm in which the fluid can be
evolved using either the CTU method or Runge–Kutta time-
marching schemes, both available in the PLUTO code. The
particles’ equations of motion are integrated using a second-
order Boris pusher which is time reversible and features good
conservation properties for long time simulations. When
particle feedback is included, we have presented a modification
of the Boris algorithm that preserves second-order accuracy in
time. The correction consists of a predictor step where the
electric field can be properly advanced at the half-time level,
and it does not affect the time reversibility of the algorithm.
Furthermore, we have suggested two novel particle subcycling
algorithms that can be applied when the CR dynamical
timescale becomes faster than the fluid evolution. By excluding
particle feedback on the fluid, the same implementation can be

Figure 15. Left panel: single-particle CPU integration time (per time step) without the predictor (red symbols, “np”) and with the predictor step (blue symbols, “wp”).
Crosses (squares) correspond to 2D (3D) computations. Right: relative cost between particle integration time and overall CPU time for a single cell update.

Figure 16. Parallel efficiency = D D( )E T p Tp1 , where DTp is the computa-
tional time obtained with p processors, and the normalization has been chosen
so thatD = DT T81 8. The test under consideration is the 3D Bell instability test
problem with final integration time t=10 and a resolution 256×1282. The
thin dotted line gives the ideal scaling (E = 1).
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used to study test particles in a dynamically evolving or static
fluid. The MHD–PIC model has been implemented in the
PLUTO code for astrophysical plasma (Mignone et al.
2007, 2012), and it is part of a more general fluid/particle
hybrid framework allowing different types of physics to be
incorporated. A companion paper (Vaidya et al. 2018)
describes yet another implementation for solving the CR
transport equation of ultrarelativistic electrons with a time-
dependent distribution.

We have verified our implementation through a number of
numerical benchmarks including both test-particle dynamics in
a fixed electromagnetic field or fully coupled evolution for the
composite system (that is, with feedback). When possible,
results obtained from numerical computations have been
compared to analytical or reference solutions.

Test-particle configurations have been proposed in order to
investigate CR trajectories in both orthogonal and parallel field
configurations, reproducing the expected solution with very
good accuracy. A simple benchmark configuration to inspect
particle acceleration near a reconnecting X-point has been
presented, confirming results from previously known studies
(Vekstein & Browning 1997; Browning & Vekstein 2001).

The solution of the full MHD–PIC system of equations has
been verified to be genuinely second-order accurate, and a
numerical investigation of the nonresonant Bell instability in
multiple spatial dimensions (Bell 2004) has shown excellent
agreement with the results from linear analysis (Bai
et al. 2015). The MHD–PIC model has been applied to
investigate diffusive shock acceleration in 2D parallel MHD
shocks. Since a nonthermal population of CRs cannot
consistently originate from the thermal component within the
proposed MHD–PIC framework, an “ad hoc” recipe to inject
particles in the shock downstream has been proposed. The
proposed injection method is more general than the one used by
Bai et al. (2015) and can be extended to shocks with arbitrary
shape, provided its energy can be specified. Being an imposed
prescription, the injection process still depends on a free
parameter (η) which controls the ratio between the mass of the
generated CR particles and the mass swept by the shock. Our
results reproduce, within statistical fluctuations, the findings of
Bai et al. (2015), confirming that efficient acceleration takes
place through Fermi mechanism. The system evolution is
characterized by the development of strong turbulence, initially
driven by the Bell instability in the shock precursors,
accompanied by the formation of large cavities and filamenta-
tion and ensued by strong magnetic field amplification through
the shock front. Particles become accelerated on a few
thousands Larmor scales and, in the case of nonrelativistic
particles, the resulting energy spectrum shows a power-law tail

µ -( )f E E 3 2. We have also investigated particle transition to
the relativistic regime by considering a second simulation with
a larger computational box and used a reduced value of the
speed of light. Although the overall dynamical features are
similar to the nonrelativistic case, the particle momentum
spectrum behaves as µ -( )f p p 4 as predicted by Fermi I
acceleration. Our results are in agreement with the findings of
previous authors, e.g., Caprioli & Spitkovsky (2014a) among
others.

Our implementation will be made publicly available to the
astrophysical community as a new particle module in the
PLUTO code. Future extension of this work will take into
account relativistic extension, more accurate injection recipes

enabling reconnection physics to be studied, and extension to
adaptive grids.
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resources and support. Our work has been partially supported
by the Prin MIUR grants 2015L5EE2Y and Prin Inaf 2014.
We also thank the anonymous referee who gave insightful
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Appendix A
Derivation of the MHD–PIC Equations

The fluid equations for ions and electrons can be obtained by
taking moments of the distribution function directly from the
Vlasov equations for the two species. The derivation can be
found in many plasma physics textbooks (here we follow the
book by Chiuderi & Velli 2015). We use the subscript s to
denote the two species ( =s e i, for electrons and ions,
respectively) with mass density r( )s . The continuity, momen-
tum, and energy equations for the two species take the form
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where ( )v s is the average velocity, ( )q s is the charge density,
is the heat flux vector, E is the electric field, and B is the
magnetic field. Equations (84)–(86) are written in terms of
average velocity, defined as the first-order moment of the
distribution function for the s species:

= á ñ ( )( ) ( )v V , 87j
s

j
s

where Vj is the velocity coordinate in phase space and á ñ( ). s

represents the average taken over the distribution function of
the s species. The pressure tensors and heat flux vector are
defined in terms of the peculiar velocities = -( ) ( )w V vj

s
j j

s :
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Note that since ( )v e will in general be different from ( )v i , the
ion- and electron-pressure tensors as well as the heat flux vector
are defined with respect to different fluid velocities.
In order to obtain the single-fluid equations, one needs to add

the two momentum equations and likewise the two energy
equations. In this process, however, the pressure tensors of the
two species should be redefined so that the peculiar velocities
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of the ions and electrons refer to the same fluid speed,

r r
r r
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+
+
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v v

. 89g

e e i i

e i

We thus need to redefine the peculiar velocities as ¢ =w
-V vg, implying that ¢w now has a nonzero mean:

á ¢ñ = - ¹ ( )( ) ( )w v v 0. 90s s
g

By adding the two momentum equations and the two energy
equations, one arrives, after some algebra (for a detailed
derivation, see Section 4.3 in the book by Chiuderi &
Velli 2015), at
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where

r r r= + ( )( ) ( ) 94e i

is the fluid density, while

= + = + ( )( ) ( ) ( ) ( ) ( ) ( )J v vq q q q q; 95g
e i

g
e e i i

are the total charge density and current density, respectively.
Note also that <( )q 0e while >( )q 0i .

The total pressure tensor is now defined by the sum of the
ion and electron tensors,

   d¢ = ¢ + ¢ = ¢ + P¢ ( )( ) ( ) P , 96jk jk
e

jk
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jk jk

where each of the pressure tensors now refers to the the same
fluid velocity, that is,
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s s

j k
s

A similar argument applies to the heat conduction flux,
which is now given by   ¢ = ¢ + ¢( ) ( )

k k
e

k
i with ¢ =( )

k
s

r á ¢ ¢ñ( )( ) ( )w w 2s
k

s2 . In Equation (96), the pressure tensor has
been decomposed, assuming isotropy, into a diagonal term
containing the scalar pressure ¢P and the shear–stress tensor
P¢jk including only the off-diagonal terms which are different
from zero in the presence of viscous forces.

Equivalence of the Pressure Tensors. We now prove that, in
the limit of massless electrons, the two pressure tensors ¢ and
 are actually equivalent. This statement can be proven by
writing the single-fluid peculiar velocity as
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g, or more specifically,
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Equation (97) may now be written as
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Adding the two pressure tensors defined by Equation (100)
gives
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In the limit r ( ) 0e , we thus obtain  = ¢jk jk.

Appendix B
CTU–CT Integrator

We describe the implementation details of the CTU scheme
combined with the CT method for the solution of the MHD–PIC
equations in the PLUTO code. In what follows, we denote with

r= ( )v BV p, , ,g and r r= ( )v BU E, , ,g g , respectively, the
array of primitive and conservative variables. In the CTU–CT
scheme (see, e.g., Gardiner & Stone 2005; Mignone et al. 2007),
conservative variables such as density, momentum, and energy
are stored as zone averages centered at the cell center
º ( )i i j k, , while the magnetic field has a staggered representa-

tion so that the primary variables are defined at zone faces, i.e.,
+Bx i, 1

2
, +By j, 1

2
, and +Bz k, 1

2
. Note that, for the sake of clarity, we

omit the integer subscripts i, j, and k when unnecessary and only
keep the half-increment notation in denoting face values. The
standard CTU–CT scheme must be modified in order to account
for particle feedback during interface states computation,
Riemann solver, and the final update stage.

1. At =t tn, compute Fn
CR from the particles to the grid cell

centers. This is done using Equation (14) with the current
and charges obtained with Equation (22).

2. Compute normal predictors in primitive variables *Vi, (at
x faces), *Vj, (at y faces), and *Vk, (at z faces). In our
notations, = 


 ( )V V xlimi x x i,
i 1

2

denotes the rightmost

(+) and leftmost (−) reconstructed value from within the
cell. The reconstruction step can be carried out using
either linear or piecewise parabolic interpolants; see
Mignone et al. (2012) for details. The reconstruction is
then followed by a time extrapolation step that can be
performed in characteristic variables or using a simple
Hancock step; see (for instance) Sections 3.2–3.3 of
Mignone et al. (2012). For a simple second-order
reconstruction in the x direction, for example, one has
the formal correspondence

d
=  ( )V V

V

2
, 102i

n n x
n

,

where d Vx
n are limited slopes in the x direction. The

normal predictor is then constructed (e.g., following a

20

The Astrophysical Journal, 859:13 (22pp), 2018 May 20 Mignone et al.



MUSCL-Hancock scheme) as
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where A is the Jacobian matrix of the one-dimensional
primitive form of the equations (without CR contribu-
tions). The construction of the normal predictors in the y
and z directions is done in a similar way.

3. Convert normal predictors in primitive variables to
conservative ones * * V Ui i, , and add CR feedback
terms to the momentum, magnetic field, and energy for a
half-time step:
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where  = ¶( ), 0, 0x x is the nabla operator in the x
direction. Similar expressions hold for the y and z
directions. Spatial derivatives are discretized using finite
differences between the flux terms computed at the
rightmost (+) and leftmost (−) interface values from
within the cell, e.g.,
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4. Solve a Riemann problem between normal predictors by
means of a standard solver,

* * * =+ + + -( ) ( )U U, , 106i i i, 1,1
2

and correct the magnetic field and energy fluxes to
include contributions from CRs,
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when computing fluxes in the x direction. The corrections
are added by taking the upwind state depending on the
sign of the density flux. Flux corrections in the y and z
directions are obtained by cyclic permutations of the
indices.

5. Evolve cell-centered values by half a time step:
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are the flux-difference right-hand side operators.
6. Advance the face-centered magnetic field by half a step:
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In the previous equations, *Ec has been reconstructed
from the face-centered fluxes computed at the predictor
step (Equation (106)) to the cell edges by using a suitable
reconstruction procedure. In the present work, we employ
the UCT–Contact method by Gardiner & Stone (2005).

7. Advance particles by a full step using the algorithm
described in Section 3.2. Also, compute the particle
momentum and energy change over the time step

and deposit them on the grid to obtain +S n
CR

1
2 using

Equation (25).
8. Correct states with transverse flux gradients to form

corner-coupled states:

* *å= +
D


+


¹

( )U U
t

2
, 111i

n
i

d x
d, ,

1
2

where the summation includes only the right-hand side
operators in the transverse directions. Note that
Equation (111) does not contain the source term since
this has already been added in Equation (104). As usual,
corner-coupled states in the y and z directions are
obtained by suitable permutations.

9. Solve the Riemann problem between corner-coupled
states,

 =+
+

+
+

+ -
+( ) ( )U U, , 112i

n
i
n

i
n

, 1,1
2

1
2

1
2

1
2

and correct fluxes in analogy with the predictor step, i.e.,
Equation (107).

10. Advance the zone-averaged conservative variables to the
next time level,

å= + D + D+ + + ( )U U t tS , 113n n

d
d
n n1

CR

1
2

1
2

where d is obtained as in Equation (109) using the
fluxes given by Equation (112).
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11. Advance face-centered magnetic field to the next time
level:
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where +En 1
2 has been reconstructed from the face-

centered flux to the cell edges by using a suitable
reconstruction procedure, e.g., Gardiner & Stone (2005).
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