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Abstract

Ultraluminous X-ray sources (ULXs) are a class of accreting compact objects with X-ray luminosities above
1039 erg s−1. The ULX population counts several hundred objects but only a fraction are well studied. Here we
present a detailed analysis of all ULXs hosted in the galaxy NGC 7456. It was observed in X-rays only once in the
past (in 2005) by XMM-Newton. but the observation was short and strongly affected by high background. In 2018,
we obtained a new, deeper (∼90 ks) XMM-Newton observation that allowed us to perform a detailed
characterization of the ULXs hosted in the galaxy. ULX-1 and ULX-2, the two brightest objects
(LX∼6−10×1039 erg s−1), have spectra that can be described by a model with two thermal components, as
often found in ULXs. ULX-1 also shows one order of magnitude in flux variability on short-term timescales
(hundreds to thousands of kiloseconds). The other sources (ULX-3 and ULX-4) show flux changes of at least an
order of magnitude, and these objects may be candidate transient ULXs, although longer X-ray monitoring or
further studies are required to ascribe them to the ULX population. In addition, we found a previously undetected
source that might be a new candidate ULX (labeled as ULX-5), with a luminosity of ∼1039 erg s−1 and hard
power-law spectral shape, whose nature is still unclear and for which a background active galactic nucleus cannot
be excluded. We discuss the properties of all the ULXs in NGC 7456 within the framework of super-Eddington
accretion onto stellar-mass compact objects. Although no pulsations were detected, we cannot exclude that the
sources host neutron stars.

Unified Astronomy Thesaurus concepts: X-ray astronomy (1810); X-ray binary stars (1811); X-ray sources (1822);
Neutron stars (1108); Pulsars (1306)

1. Introduction

Ultraluminous X-ray sources (ULXs) are a class of accreting
compact objects in binary systems, characterized by assumed
isotropic luminosities LX>1039 erg s−1 (e.g., Fabbiano 1989;
Feng & Soria 2011; Kaaret et al. 2017), i.e., about the
Eddington limit for spherical hydrogen accretion onto a 10 Me

black hole (BH). The ULX population consists of several
hundreds of sources in nearby galaxies (e.g., Earnshaw et al.
2019), and they are usually extragalactic (although see Wilson-
Hodge et al. 2018), off-nuclear, and point-like objects.

Nowadays, they are believed to be mostly stellar-mass BHs
or neutron stars (NSs) accreting well above the Eddington limit
rather than sub-Eddington accreting intermediate-mass BHs
(102−105 Me; e.g., Colbert & Mushotzky 1999; Farrell et al.
2009). ULXs strongly challenge our understanding of the
accretion processes, especially after the discovery of at least six
pulsating ULXs (PULXs) in M82 X–2 (Bachetti et al. 2013),
NGC 5907 ULX-1 (Israel et al. 2017), NGC 7793 P13 (Fürst
et al. 2016; Israel et al. 2017), NGC 300 ULX-1 (Carpano et al.
2018), M51 ULX-7 (Rodríguez Castillo et al. 2019), and NGC
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1313 X-2 (Sathyaprakash et al. 2019), plus the NS candidate in
M51 ULX-8 showing a transient cyclotron line (Brightman
et al. 2018). It is now a matter of debate whether the ULX
populations preferentially host NSs more frequently than BHs
(e.g., Middleton & King 2017; Wiktorowicz et al. 2017). It has
been proposed that the number of ULXs hosting NSs can be
significantly higher than the observed one (King 2009;
Koliopanos et al. 2017; Pintore et al. 2017; Walton et al.
2018). On the other hand, the detection of ∼30 Me BHs by
LIGO and Virgo (e.g. Abbott et al. 2016, 2019) has revived the
possibility that some ULXs are powered by >20Me BHs
(e.g.,Mapelli et al. 2009; Zampieri & Roberts 2009; Mapelli
et al. 2010, 2013).

In the case of super-Eddington accretion, it is expected that
the accretion disk can eject radiatively powerful outflows/
winds (e.g., Poutanen et al. 2007), which, according to
magneto-hydrodynamical simulations, should be turbulent
(e.g., Takeuchi et al. 2013). The photospheres of these winds
may be associated with the soft, thermal component (tempera-
tures of ∼0.1–0.5 keV) usually observed at low energies in the
ULX spectra (Gladstone et al. 2009). In addition, the spectra
are often accompanied by a hard, thermal-like component with
a rollover at 3–7 keV (e.g., Gladstone et al. 2009), often
interpreted either as an optically thick corona around the
compact object or as the inner regions of a geometrically thick
accretion disk (e.g., Kawaguchi 2003). When NuSTAR spectra
with high signal-to-noise ratios above 10 keV are available, the
vast majority of ULXs are also characterized by a third hard
component, phenomenologically described with a cutoff
power-law model, dominant in the case of the PULXs, and
for this reason, possibly associated with the emission of the
accretion column above the NS magnetic polar caps (e.g.,
Walton et al. 2018).

The short-term temporal variability properties of the ULXs
differ significantly from source to source, but also from
observation to observation of the same source. It has been
shown that the most variable sources are generally those with
the softest spectra (e.g., Sutton et al. 2013). Earnshaw et al.
(2019) examined the 3XMM-DR4 catalog, which contains
XMM-Newton observations performed before 2012, finding
that the number of ULXs with high intra-observation variability
is quite limited (eight sources) if compared to the whole
population number. In addition, Heil et al. (2009) showed that
the absence of high short-term variability cannot be only due to
poor signal-to-noise ratios. The variability seen in the ULXs
has been proposed to be associated with the high-energy
components that may (extrinsically) vary due to the turbulences
of the winds that, from time to time, encounter our line of sight
(LOS; e.g., Middleton et al. 2015a). Observational evidence of
winds in ULXs has been obtained from the detection of
absorption lines with blueshifts of ∼0.2c in high-quality XMM-
Newton/RGS spectra of some ULXs (e.g., Pinto et al. 2016),
the discovery of the first extended X-ray bubble around the
PULX NGC 5907 ULX-1 (Belfiore et al. 2020), and the optical
bubbles around several ULXs (e.g., Pakull & Mirioni 2002).

Furthermore, significant long-term (days to years) flux
variability is observed in the vast majority of the ULXs for
which multiple observations are available. However, only a
small fraction of ULXs can be considered transient (i.e., with
flux variation up to two orders of magnitude). Among the
transient ULXs, the largest variations (up to a factor of 500)
have been observed in the PULXs. This temporal behavior may

be explained by the onset/offset of the propeller mechanism
(e.g., Tsygankov et al. 2016; Israel et al. 2017). Hence, the
transient ULXs clearly play an important role in the ULX
scenario, as they may be ideal places to look for new PULX
candidates (e.g., Earnshaw et al. 2018; Song et al. 2019).
Here, we focus on the ULXs populating NGC 7456, a spiral

galaxy at a distance of ∼15.7 Mpc (Tully et al. 2016; Galactic
column density of neutral hydrogen expected along the LOS of
8.7×1019 cm−2, HI4PI Collaboration 2016), and hosting at
least four ULXs (Walton et al. 2011). The galaxy was observed
for the first time in the X-rays in 2005 by XMM-Newton, but
the observation was short and strongly affected by high
background, preventing any reliable investigation of the ULX
properties. No other X-ray observations with XMM-Newton or
other X-ray satellites have been performed since then, until, in
2018, our group obtained a new, deeper observation in the
context of an XMM-Newton Large Programme (PI: G. Israel).
This new data set allowed us to perform a more constraining
characterization of the ULXs in the galaxy and the probable
identification of a new ULX on its outskirts.

2. Data Reduction

NGC 7456 was observed twice by XMM-Newton, first in
2005 May (Obs.ID: 0303560701; PI: D. Rosa González) and
then in 2018 May (Obs.ID: 0824450401; PI: G. Israel), with
total exposure times of ∼10 ks and ∼92 ks, respectively
(Table 1). The observations were processed with the Scientific
Analysis Software (SAS) v.16.1. We reduced the data from the
EPIC cameras (all operated in full frame mode and with a thin
filter), selecting events with FLAG=0, and PATTERN�4
and PATTERN�12 for pn and MOS, respectively. We
filtered only the 2018 observation for high-background time
intervals; the first observation was entirely taken during a high-
background period, hence we chose not to filter it for proton
flares in order to avoid rejecting all events of this observation.
The net exposures for the 2005 and 2018 observations were
∼10 ks and ∼80 ks, respectively. For pn and MOS data, we
extracted source and background events from circular regions
of radii of 30″ and 65″, respectively. The photon times of
arrival were converted to the solar system barycenter with the
SAS task BARYCEN, using the best X-ray coordinates of each
source reported in Walton et al. (2011).
All the spectra were rebinned with at least 25 counts per bin

using the Ftool GRPPHA. In our spectral analysis, we fitted
simultaneously the EPIC-pn and EPIC-MOS data, in the
0.3–10 keV range, with XSPEC v.12.10.1 (Arnaud 1996). In all
fits, we included a multiplicative constant to take into account
possible miscalibration of the relative flux between the three
instruments. These did not vary for more than 10%, as expected
(Madsen et al. 2015).
We produced background-subtracted light curves in the

0.2–12 keV energy band for all sources in the two observations

Table 1
Log of the XMM-Newton Observations

No. Obs.ID. Date Instrument Tot. Expos.
EPIC-pn

1 0303560701 2005 May 6 pn+MOS 10.2 ks
2 0824450401 2018 May 18 pn+MOS 92.4 ks

2
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using the EXTraS24 tools and prescriptions (De Luca et al.
2016 and De Luca et al. in preparation). Count rates of light
curves from different EPIC cameras were converted into fluxes
using the conversion factor in the Processing Pipeline
Subsystem products files and then combined (Marelli et al.
2017) to obtain the total light curve.

3. Data Analysis

Walton et al. (2011) reported the presence of four ULXs in
the galaxy NGC 7456 (Figure 1, left) using the 2005 XMM-
Newton observation. We carried out a source detection on the
new 2018 XMM-Newton observation, applying the task
EDETECT_CHAIN (setting a likelihood threshold limit to 15)
to the combined EPIC-pn and EPIC-MOS images in the
0.2–12 keV energy band. We found that only ULX-1 and
ULX-2 were significantly detected. ULX-3 and ULX-4 were
instead below the detection threshold, suggesting that they
went back to quiescence. We also found a previously
undetected source (at ∼78″, i.e., ∼6 kpc of projected distance,
from the center of the galaxy) that we tentatively labeled as
ULX-5 because it is bright and it lies inside the size of the
galaxy NGC 7456 (Paturel et al. 2003).

In addition, superimposed to the galaxy, we detected at least
nine other fainter X-ray sources (Table 2; yellow circles in
Figure 1-center), with fluxes between ∼(0.4−2)×10−14

erg cm−2 s−1. Assuming they are all hosted in NGC 7456 and
have an absorbed power-law spectral shape with
nH=1021 cm−2 and Γ=2, their 0.3–10 keV luminosities are
1–6×1038 erg s−1. A fit with a constant model of their light
curves binned withΔT=10 ks showed that, except for one, all
the sources did not display significant flux variability during
the observation, with a null hypothesis probability higher
than 0.05.

3.1. ULX-1

3.1.1. Spectral Analysis

We fitted simultaneously the time-averaged EPIC-pn and
MOS spectra of the 2018 observation. We first adopted a
simple phenomenological model, i.e., an absorbed multi-color
blackbody disk (DISKBB; Mitsuda et al. 1984) plus a blackbody
(BBODYRAD in XSPEC), which, as in other ULXs, provided a
good description of the 0.3–10 keV spectra (e.g., Stobbart et al.
2006; Pintore et al. 2015; Rodríguez Castillo et al. 2019). As
commonly found with ULXs, we note that other alternative
two-component models as a DISKBB+NTHCOMP, a DISKBB
+CUTOFFPL or a DISKBB+HIGHECUT×POWERLAW provide
good fits as well.
The TBABS(DISKBB+BBODYRAD) model gave a good fit

(χ2/dof∼371.7/354); we report the best-fit parameters in

Figure 1. Comparison of the mosaics created by stacking cleaned EPIC-pn and MOS1-2 images in the 2005 (left) and 2018 (center) XMM-Newton observations. Four
ULXs (ULX-1, ULX-2, ULX-3, and ULX-4; white circles) are observed during the 2005 observation, while ULX-3 and ULX-4 are not detected anymore in 2018
despite a much longer exposure time. A new source (tentatively labeled as ULX-5, green circle) is detected in the latest observation. We note that ULX-4 and ULX-5
were not on bad CCD stripes or gaps in the MOS images of 2005 and 2018. Other fainter sources were detected in the galaxy (yellow circles). Right:DSS optical
image of the galaxy NGC 7456. The ULX positions are indicated with magenta circles (radius of 5″), while the ULX-5 is indicated by a red circle.

Table 2
Positions of the Sources Found (at > 3σ Significance) in the Galaxy NGC 7456

Using the 2018 XMM-Newton Observation

Source R.A. Decl. Stat. err. Rates0.3–10 keV

arcsec cts s−1

ULX-1 23:02:05.62 −39:36:17.0 0.1 0.159±0.002
ULX-2 23:02:09.73 −39:33:26.9 0.1 0.145±0.002
ULX-3a 23:02:10.64 −39:34:04.7
ULX-4a 23:02:15.15 −39:33:01.1
ULX-5 23:02:03.80 −39:33:52.0 0.2 0.0235±0.0008

X6 23:02:08.86 −39:33:15.2 0.3 0.0119±0.0007
X7 23:02:15.30 −39:31:39.1 0.5 0.0052±0.0005
X8 23:02:13.33 −39:34:29.0 0.6 0.0039±0.0004
X9 23:02:11.85 −39:37:06.1 0.7 0.0036±0.0004
X10 23:02:17.41 −39:30:54.6 1.1 0.0029±0.0004
X11 23:02:04.98 −39:35:23.4 0.8 0.0029±0.0004
X12 23:02:08.09 −39:34:58.6 0.9 0.0028±0.0004)
X13 23:02:12.98 −39:36:46.5 0.9 0.0027±0.0004
X14 23:02:03.16 −39:36:53.3 1.0 0.0018±0.0003

Note. We report the source position, the statistical error, and the source count
rate (pn plus MOS1+2).
a In 2018, these sources were not detected, hence for completeness we report
the coordinates given in Walton et al. (2011).

24 http://www.extras-fp7.eu
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Table 3
Best-fit Spectral Parameters of the ULXs Detected in the XMM-Newton Observations

src. year nH kTdbb p Norm. kTbb/Γ Norm. Eline σline Nline Fluxa LX cn dof2

1022 cm−2 keV keV keV keV 10−13 erg cm−2 s−1 1039 erg s−1

ULX-1 2005 0.049 (fixed) -
+0.29 0.04

0.04 L -
+2.0 0.9

1.8
-
+1.0 0.4

0.7 keV -
+0.012 0.009

0.05 L L L 2.9±0.5 10.0±1.0 1.00/84
2018 -

+0.05 0.01
0.02

-
+0.27 0.02

0.02 L -
+1.8 0.5

0.7
-
+0.80 0.07

0.09 keV -
+0.012 0.004

0.006 L L L 1.65±0.05 5.9±0.4 1.05/354

-
+0.09 0.03

0.03
-
+0.23 0.03

0.02 L -
+5.3 2.4

7.6
-
+0.73 0.07

0.08 keV -
+0.019 0.007

0.01
-
+0.67 0.03

0.03
-
+0.09 0.05

0.06
-
+0.07 0.04

0.1 1.63±0.05 6.9±0.6 0.97/351

ULX-2 2005 -
+0.4 0.2

0.2 L L L -
+2.0 0.3

0.4 ´-
+ -6.4 102.2

3.2 5( ) L L L -
+2.3 0.7

0.6 6.9±0.2 1.33/32

-
+0.08 0.08

0.2
-
+1.3 0.3

0.3 L ´-
+ -4 102

5 5 L L L L L -
+2.3 0.7

0.6 6.9±0.2 1.20/32
2018 -

+0.24 0.04
0.05

-
+0.56 0.09

0.1
-
+0.09 0.04

0.09
-
+1.3 0.2

0.4 keV ´-
+ -4.2 102.6

4.3 3( ) L L L 2.3±0.1 8.4±0.2 1.07/311

-
+0.35 0.03

0.02
-
+3.1 0.5

0.7 +0.50.01
0.01 ´-

+ -2.7 101.4
3.5 5( ) L L L L L 2.4±0.1 9.9±0.2 1.04/312

ULX-5 2018 -
+0.04 0.03

0.04 L L L -
+1.9 0.2

0.2
-
+7.0 0.8

1.0 L L L -
+0.40 0.05

0.05 1.3±0.1 0.90/81

Notes. Errors are at the 90% confidence level for each parameter of interest.
a EPIC absorbed flux in the 0.3–10 keV energy band.
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Table 3. We found a column density (∼5×1020 cm−2) higher
than the Galactic one, and temperatures of kTdbb∼0.27 keV
and kTbb∼0.8 keV. The latter are associated with emitting
radii of ∼2000–7000 km (assuming an unknown inclination
angle between 5° and 85° and no color-correction factor) and
170±35 km for the DISKBB and BBODYRAD models,
respectively. ULX-1 was quite soft (Figure 2, left), with an
unabsorbed 0.3–10 keV flux of (2.0±0.1)×10−13 erg cm−2

s−1, implying an unabsorbed luminosity of
(6.0±0.4)×1039 erg s−1.

We note that, in the case of super-Eddington accretion,
modeling the accretion disk with an optically thick and
geometrically thin disk may not be appropriate. In such a
scenario, the disk should instead be modeled with a “slim” disk
(i.e., a geometrically and optically thick disk). Some authors
(e.g., Walton et al. 2018) showed that a possible description of
the ULX spectra is given by the combination of DISKBB and
DISKPBB models (where, in the latter, the radial dependence of
the temperature is given by r− p, and p is 0.75 for a standard
disk and 0.5 for an advection-dominated disk). Thus, we
tentatively substituted first the DISKBB with a DISKPBB model:
this model was suitable for the data as well, although we found

that p was unconstrained. Second, we also substituted the high-
energy BBODYRAD with the DISKPBB model: even in this case,
although the fit was formally good, the p parameter was not
constrained. This implies that the current data quality do not
allow us to rule out the existence of a thick disk yet in ULX-1.
Hereafter, we will consider only the DISKBB+BBODYRAD

model results. Although the best-fit with this model is
statistically acceptable, some residuals in absorption around
0.6–0.7 keV (or, alternatively, in emission around 1 keV) are
still observed (see Figure 2-left). These are often found in the
ULX spectra (see e.g., Middleton et al. 2015b). We can fit the
residual in absorption with a Gaussian absorption line (GABS in
XSPEC), obtaining an improvement of Δχ2=33 for three
additional d.o.f. The inclusion of this feature slightly changed
the continuum spectral parameters, giving nH
=(9±3)×1020 cm−2, = -

+kT 0.23dbb 0.03
0.02 keV and

= -
+kT 0.73bb 0.07

0.08 keV. The line energy, its FWHM (σ), and
the line depth (i.e., the equivalent width) converged to
E=0.67±0.03 keV, s = -

+0.09 0.05
0.06 keV, and -

+0.07 0.04
0.1 keV,

respectively. We do not consider this feature an artifact of the
modeling because the two spectral components intersect around
1.5–2 keV, i.e., well above the line energy. Hence, should the

Figure 2. Top: unfolded (E2f(E)) spectra of ULX-1 (TBABS(DISKBB+BBODYRAD), left), ULX-2 (TBABS(DISKBB+BBODYRAD), center), and ULX-5 (TBABS
(POWERLAW), right). EPIC-pn spectra are indicated with black points, while EPIC-MOS1 and 2 are in red and green, respectively. The solid lines represent the best-fit
models, while in the bottom panels the corresponding residuals are shown. In the central plot, we also show in blue dashed lines the spectrum of the contaminant
source (see Section 3.2). All spectra have been further rebinned for display purposes.
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feature be real, it might be associated with a blending of
ionized oxygen lines in absorption (OVII–VIII at
∼0.5−0.7 keV). ULX-1 was not in the field of view of the
RGS instrument in 2018 and its flux was too low for the RGS
instruments, therefore no high-resolution X-ray spectra are
currently available to further investigate the nature of such a
possible feature.

Finally, we note that the TBABS(DISKBB+BBODYRAD)
model is adequate for the 2005 data as well, although we had
to fix the absorption to the 2018 best-fit nH (4.9×1020 cm−2),
as this is otherwise unconstrained. The other best-fit parameters
are shown in Table 3 and they are consistent with those of 2018
to within uncertainties. On the other hand, we remark that these
results have to be considered with caution, as the observation
was fully affected by high background. We measured an
unabsorbed 0.3–10 keV flux of (3.4±0.5)×10−13 erg cm−2

s−1 corresponding to a luminosity of
(1.0±0.1)×1040 erg s−1 (in agreement with Walton et al.
2011), a factor of ∼2 higher than the average flux in 2018.

3.1.2. Temporal Properties

In 2005, ULX-1 was the brightest source in NGC 7456 at a
luminosity of ∼1040 erg s−1 (Walton et al. 2011). Because of
the short exposure time and high-background level, its
0.3–10 keV XMM-Newton light curve accumulated in bins of
500 s (Figure 3 left) gives little information on the source
variability.

Instead, the longer 2018 XMM-Newton observation allowed
us to find a highly significant variability with recurrent
increments of flux up to an order of magnitude (see
Figure 3-left), on timescales of only a few kiloseconds. We
found that the 0.3–10 keV fractional variability Fvar (e.g.,
Vaughan et al. 2003), on timescales >500 s, is 47%±1%: this
is one of the highest non-periodic short-term variabilities
presently measured in a ULX (e.g., Sutton et al. 2013;
Middleton et al. 2015a). We verified that such a high variability
is also preserved on smaller timescales (<500 s).

To better assess the origin of such a variability, we evaluated
the hardness ratios of the net counts between the 0.3–1.0 keV
and 1.0–10 keV energy bands, chosen such that the number of
counts in each band is comparable. The hard-to-soft band ratio
(H/S) clearly shows a variability during the 80 ks of
observation, in particular after the first ∼25 ks of the
observation where there is an indication of a softening that
apparently tracks periods of very low fluxes (Figure 4-top).

Finally, we also searched for coherent pulsations in the 2018
data. Adopting a generalization of the Fourier-based procedure
described in Israel & Stella (1996; see also Rodríguez Castillo
et al. 2019), we could only place 3σ upper limits on the pulse

Figure 3. Light curves in the 0.2–12 keV energy band of ULX-1 (left), ULX-2 (center), and ULX-5 (right) during the 2005 (blue) and 2018 (red) XMM-Newton
observations. The X-axis is arbitrary, as the gap within the two observations was shortened for display purposes.

Figure 4. Top: EPIC-pn soft (0.3–1.0 keV, top panel) and hard (1.0–10 keV,
center panel) background-subtracted light curves of ULX-1 (ΔT=1000 s)
compared with their hardness ratio (bottom panel), during the 2018 XMM-
Newton observation. The orange line is the best fit (H/S=0.42) with a
constant model. Bottom: distribution of the hardness ratios that indicates how
the spectral variability is not normally distributed.
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fraction of 17%–19% for periods in the range 150ms–500 s,
assuming a sinusoidal pulse profile. This limit is, on average,
slightly larger than the pulse fraction observed in PULXs.

3.1.3. Hardness-resolved Spectroscopy

In this section, we investigate in greater detail the spectral
variability of the 2018 observation suggested by the hardness
ratios. Here we perform hardness-resolved spectroscopy to
track or identify specific patterns with the ULX spectral state.
The bottom panel of Figure 4 suggests the existence of at least
two different spectral states, approximately above and below
H/S=0.42. We selected this threshold to extract two EPIC
spectra for both states, and we fitted them simultaneously,
adopting the same model of the averaged spectrum (i.e., tbabs
(diskbb+bbodyrad)). As a first step, we left all the parameters
free to vary independently. We found that the normalizations of
the soft component and the temperatures of the two thermal
components were consistent, to within uncertainties, between
the two spectra; for this reason we kept them linked. Instead,
the hottest blackbody normalizations were different for the two
spectra, indicating that the flux variations are mostly driven by
the high-energy component. This fit gave χ2/dof=420/352.

However, several residuals around 0.7 keV were still present,
as already seen for the average spectrum. Also, in this case we
added a GABS model, fixing the feature energy and width (0.67
and 0.09 keV) to the best-fit values found for the average
spectrum. The final best fit (χ2/dof=389.15/350) provided
the following parameters: nH = ´-

+9 102
3 20 cm−2,

= -
+kT 0.22dbb 0.02

0.02 keV, and = -
+kT 0.68bb 0.05

0.06 keV. These are
slightly different from those inferred in the average spectrum.
The blackbody normalizations for the low- and high-H/S
spectra were -

+0.015 0.005
0.008 ph cm−2 s−1 and -

+0.032 0.01
0.01 ph cm−2

s−1, respectively, implying that the emitting radii varied from
∼200 to ∼300 km. The depth of GABS is instead consistent
between low and high states at a value of +

-0.07 0.02
0.02 keV.

3.2. ULX-2

The deep 2018 XMM-Newton observation allowed us to find
that ULX-2 lies close to another source at ∼15″(see Figure 5).
This implies that the contamination from the latter can only be
partially removed. Through a maximum likelihood analysis
based on the EPIC-pn/MOS point-spread functions (see the

approach in Rigoselli & Mereghetti 2018), we extracted the
spectrum of the second source and we estimated that it is very
soft (most of the photons are below 2 keV). It can be modeled
(c <n 12 ) by a single absorbed power law with G = -

+3.3 1.2
2.4 and

nH = ´-
+1.9 101.9

0.4 21( ) cm−2. We estimated an absorbed
0.3–10 keV flux of ´-

+ -8 103
5 15( ) erg cm−2 s−1. Assuming

the source is in NGC 7456, this corresponds to a luminosity of
∼2×1038 erg s−1, which is well below the ULX luminosity
threshold and consistent with the Eddington limit of an NS. We
included the spectral model of the contaminants in the fit of the
ULX-2 spectra.

3.2.1. Temporal Analysis

In the 2005 observation, ULX-2 was the second most
luminous ULX in the galaxy and apparently at a constant flux
level during the observation. The 2018 source light curve
instead showed a limited short-term variability, overimposed
on a general decay trend during the observation
(Figure 3-center). We modeled the light curve with a constant
and it does not fit the data well (null hypothesis probability =
1.1×10−5). No coherent pulsations were detected, with a 3σ
upper limit of 17%–19% for periods in the range 150 ms–500 s.
This is similar to ULX-1 because they have comparable
statistics.

3.2.2. Spectral Analysis

We fitted the 2018 average EPIC-pn and MOS spectra of
ULX-2 with an absorbed DISKBB+BBBODYRAD model that
provided a very good fit (χ2=332.8 for 311 dof; see Table 3).
The emitting radii for the two components were 400–1400 km
(assuming an inclination angle between 5° and 85° and no
color-correction factor) and -

+102 40
45 km. We estimated an

unabsorbed 0.3–10 keV flux of (2.8±0.1)×10−13 erg cm−2

s−1, corresponding to a luminosity of
(8.4±0.2)×1039 erg s−1. Hence this was the most luminous
ULX in the galaxy during the observation.
We also tested a thick disk scenario, fitting the spectra with a

single DISKPBB model and finding that it fits the data very well
(χ2/dof=324.41/312). The model shows some evidence for
a thick disk (p∼0.5), with an inner temperature of ∼3 keV
(see Table 3). We also added a DISKBB to the DISKPBB model,
to describe the low energy part of the spectrum. The
improvement given by its inclusion was not statistically
significant, however (Δχ2∼3, for 2 additional dof).
In 2005, the signal-to-noise ratio was poor (∼940 net counts)

and the data were fully affected by a high background. Fits of a
single DISKBB or power law can provide good results (see
Table 3). We tried also to fit the spectrum with the 2018 best-fit
model, leaving only the DISKBB and BBODY normalizations
free to vary. This model was, as expected, acceptable, with
best-fit normalizations consistent with the previous values.
From those values, we estimated an unabsorbed 0.3–10 keV
flux of (3.0±1.0)×10−13 erg cm−2 s−1 and a luminosity of
(9±3)×1039 erg s−1.

3.3. ULX-3 and ULX-4

ULX-3 and ULX-4 were detected only in the 2005
observation with a luminosity of ∼9.2×1038 erg s−1 and
∼1.2×1039 erg s−1, respectively (Walton et al. 2011). In the
2018 observation, they were below the detection threshold and
we estimated a 3σ upper limit on their 0.3–10 keV flux of

Figure 5. 2018 EPIC image of the field of ULX-2 (cyan circle). A weaker and
soft source (white circle) lies at ∼15″to ULX-2.
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3.7×10−15 erg cm−2 s−1, corresponding to a luminosity of
∼1.3×1038 erg s−1, i.e., well below the ULX threshold, and
implying a factor �10 variability on long timescales.

3.4. ULX-5

During the 2005 observation, ULX-5 was undetectable and
we estimated a 3σ upper limit on the 0.3–10 keV flux of
3.1×10−14 erg cm−2 s−1, corresponding to a luminosity of
∼1.1×1039 erg s−1. The 2018 source light curve is shown in
the right panel of Figure 3 and no significant intra-observation
variability was observed. Its spectrum was hard and could be
modeled with a single absorbed power law, with a photon
index of 1.9 (Figure 2-right and Table 3). The measured
column density is higher than the Galactic one. The 0.3–10 keV
luminosity was (1.3±0.1)×1039 erg s−1.

The hard spectrum and lack of intra-observation variability
make the association with a foreground flaring star unlikely
(e.g., Pye et al. 2015). Furthermore, in ESO/EFOSC2
observations in the B band (5×180 s) and R band
(5×300 s) we did not find any optical counterpart down to
B∼22 mag and R∼23 mag. However, Wide-field Infrared
Survey Explorer (WISE) detected within 2″ a source with a W1
magnitude of 17.4±0.2 mag.

A Galactic X-ray source, assuming a reasonable distance of
about 5 kpc, would have had a 0.3–10 keV luminosity of
∼2×1032 erg s−1. Should it be a magnetar, such a luminosity
would be expected only in late stages of an outburst (see e.g
Rea & Esposito 2011; Coti Zelati et al. 2018). However, the
sky position of the source, with a Galactic latitude l∼−34°, is
not likely, given the spatial distribution of magnetars in our
Galaxy (Olausen & Kaspi 2014). A long-lasting Galactic
accreting binary system outburst is unlikely as well, because
we would expect to observe an optical counterpart (not
detected). On the other hand, a low mass X-ray binary in
quiescence cannot be excluded (e.g., Plotkin et al. 2013).

Because of its position with respect to the galaxy and its hard
spectrum, we cannot rule out that it is a background active
galactic nucleus (AGN). In fact, the upper limit to the optical-
to-X-ray flux ratio of �0.8 is consistent with those typical for
AGNs and blazars (see, e.g., Maccacaro et al. 1988).
Furthermore, from the Log N–Log S of extragalactic sources
(Moretti et al. 2003), we could estimate that ∼100 objects are
expected to be found in a square degree at the observed flux of
ULX-5. Hence, for a galaxy dimension of ¢ ´ ¢5.01 1.78, we
estimated a ∼0.2 background AGN in the field. Although we
propose this source as a likely ULX candidate located in the
outskirts of NGC 7456, deeper multiwavelength observations
are needed to test its ULX nature and rule out a back-
ground AGN.

4. Discussion

In this work, we have carried out the first, detailed
investigation of the properties of several ULXs hosted in the
galaxy NGC 7456, thanks to a long-exposure XMM-Newton
observation taken in 2018 (the only X-ray observation apart
from a much shorter XMM-Newton observation taken in 2005).
Two sources, ULX-1 and ULX-2, are very bright, with
luminosities close to 1040 erg s−1, and were active during the
two XMM-Newton observations. On the other hand, two ULXs
in the galaxy (ULX-3 and ULX-4) may be considered
candidate transient objects because they were not detected

anymore in 2018 (although further monitoring is necessary to
confirm their nature). Moreover, a possible new ULX
candidate, with a luminosity slightly higher than 1039 erg s−1,
was discovered in the 2018 data.
Unfortunately, no Hubble Space Telescope observations of

the galaxy at the position of the ULXs have been taken,
therefore the optical data are of quite poor resolution and little
can be inferred about the ULX counterparts. We could
associate ULX-1, ULX-2, and ULX-4 with the spiral arms of
NGC 7456, while ULX-3 is close to the galactic center. We
searched multiwavelength archives and found only WISE and
Galaxy Evolution Explorer observations: their resolution is not
adequate, however, to distinguish the emission from the single-
ULX counterparts from the faint diffuse, unresolved emission
from the galaxy. For these reasons, no evidence of bubbles (or
nebulae) can be inferred. Deeper observations are necessary to
further investigate the nature of the ULX counterparts.

4.1. ULX-1

ULX-1 is a bright source (already reported in Walton et al.
2011) located in a spiral arm, at ∼2 3 from the center of NGC
7456. The archival optical/infrared images are not deep
enough to allow us to find evidence of a clear counterpart.
We only estimated a 5σ upper limit on the magnitudes
MJ�20.2 and M 18.1ks mag (from the Vista Hemisphere
Survey; McMahon et al. 2013). Our analysis showed that ULX-
1 is characterized by pronounced short-term variability on
timescales down to 500 s.
The 0.3–10 keV source luminosity varied across the 2005

and 2018 observations in the range (6−10)×1039 erg s−1.
The high-quality 2018 ULX-1 spectrum showed that the source
was quite soft (the ratio of the 1–10 keV and 0.3–1 keV fluxes
was ∼30%) and we found that its spectral shape can be well
modeled with the combination of two thermal components.
Because of its spectral and temporal properties, we can claim
that the source was not in the typical hard or soft states of the
Galactic accreting BHs in outburst (e.g., McClintock &
Remillard 2006; Belloni et al. 2011), hence we can consider
the scenario of sub-Eddington accretion onto a massive BH of
40–100 Me less likely.
If the source is accreting at super-Eddington rates, the

compact object might be surrounded by an accretion disk, or an
extended outflow, with an inner radius of 2000–7000 km.
Outflows are expected in the case of super-Eddington accretion
(Poutanen et al. 2007). These may be identified with the
discovery of blueshifted absorption and emission lines (e.g.,
Pinto et al. 2016; Kosec et al. 2018) or X-ray bubble nebulae
around ULXs (Belfiore et al. 2020). In our analysis, we report
on a possible absorption feature at ∼0.7 keV that is often
observed in ULX spectra (e.g., Middleton et al. 2015b). The
feature may then be associated with a blending of ionized
oxygen features (OVII–O VIII).
However, the line might also be interpreted as a cyclotron

line in an accreting NS scenario; this has been proposed for the
source M51 ULX-8 as a candidate NS because of the first
detection of a cyclotron absorption feature (Brightman et al.
2018; Middleton et al. 2019). The feature in ULX-1 might
correspond to an NS magnetic field of B12=(1+z)
Ec/11.6 keV∼8×1011 G and

= + ~ ´B z E1 6.3 keV 1.5 10c15
14( ) G for an electron

or proton feature, respectively, where z is the gravitational
redshift assumed to be 0.3 for an NS, Ec is the line energy
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(0.67 keV), and B12 and B15 are the magnetic fields in units of
1012 G and 1015 G, respectively.

According to Sutton et al. (2013), ULX-1 can be classified as
a soft-ultraluminous source. It has been shown that the sources
of this class are generally those with the highest short-term flux
variability. This is confirmed by the 2018 data of ULX-1, in
which there was a strong flux variability described by an
overall flux increment imposed on short-term variability on
timescales from hundreds to thousands of seconds
(Fvar∼50%). This is among the highest variability ever
observed in a ULX (e.g., Sutton et al. 2013). The source light
curve is characterised by flux variations of more than an order
of magnitude in ∼80 ks with indications of possible flares
or dips.

The flux evolution is also accompanied by spectral changes,
although the interpretation is not straightforward. We found
that the variability is mainly driven by the hard component, as
already reported for the variability of soft-ultraluminous ULXs
(e.g., Middleton et al. 2015a). The time evolution of the
hardness ratios suggests that the spectral softening detected
during low flux periods might be due to a reduction of the hard
component emission. Such a result rules out a dipping activity
caused by photoelectric absorption, as in such a case a
hardening rather than a softening of the X-ray spectrum would
be expected. However, the ULX-1 properties are similar to
those observed in NGC 6946 ULX-3 (Earnshaw et al. 2019),
NGC 253 ULX-1 (Barnard 2010), NGC 5907 ULX-1, and
NGC 55 ULX-1 (although this is markedly
fainter—∼1039 erg s−1

—and shows well defined dips on
timescales of hundreds of seconds; e.g., Stobbart et al. 2004),
which are all soft-ultraluminous sources. In particular, NGC
5907 ULX-1 and NGC 55 ULX-1 are characterized by very
soft spectra, where blueshifted (∼0.2c) absorption features are
observed and associated with powerful outflows that obscure
the inner and hotter regions of the accreting system (e.g., Pinto
et al. 2017).

It has been proposed that the short-term variability observed
in the soft ULX can be ascribed to the turbulence of the
outflows that intersect, from time to time, the LOS. Hence, this
leads to the conclusion that the sources are seen from a high
inclination angle. We may therefore propose that ULX-1 is
inclined so much that our LoS is close to the border of the
outflow photosphere, which can randomly obscure/unveil the
inner, hotter regions close to the compact object, as in NGC 55
ULX-1. Alternatively, the variability may be ascribed to an
unstable mass transfer rate. Furthermore, ULX-1 shows a
variability that may resemble some states of the Galactic BH
binary GRS 1915+105, such as the Θ or ρ classes (e.g.,
Belloni et al. 2000), which happen on shorter timescales (the
data quality is of course much higher than that of ULX-1). GRS
1915+105 is a well known swinging Eddington/super-
Eddington accreting source (e.g., Vilhu 1999) and its complex
variability was also ascribed to a variable wind (e.g., Neilsen
et al. 2012).

Furthermore, the high short-term variability of ULX-1 is
similar to that observed in M51 ULX-7 (Liu et al. 2002;
Earnshaw et al. 2016; Rodríguez Castillo et al. 2019), which is
a PULX and has variability of 30%–40% on timescales of a
few kiloseconds as well. This might be an additional hint that
ULX-1 hosts an NS in which pulsations are undetected because
of the high-inclination viewing angle. Nevertheless, it is
important to remark that M51 ULX-7 is spectrally hard, and

hence different from ULX-1. However, should the ULX-1
compact object be an NS with a spin period of ∼1s (as seen in
most PULXs), the observed source flux variability could not be
ascribed to propeller effects, as it would produce a bimodal
luminosity variation of more than two orders of magnitude:
D ~ ~-L P M R170 170M

2 3
1.4
1 3

10 cm
1
6

(e.g., Corbet 1996; Cam-
pana et al. 2001; Mushtukov et al. 2015; Tsygankov et al.
2016; Campana et al. 2018). On the other hand, a period
smaller than 1 s can produce the observed luminosity jump.
Finally, Earnshaw et al. (2019) showed that among a

population of ∼300 ULXs, only 8 sources were found to be
highly variable (rms>30%) on timescales of hundreds to a
few thousands of kiloseconds. Using the XMM-DR4 catalog,
we found that if we limit our investigation to the ULXs with
observations longer than 30 ks, we have 5–6 variable objects,
for a total of 182 selected sources. Furthermore, if we consider
only the sources with count rates higher than 0.1 cts s−1, the
number of variable ULXs is 4 from a total of 23 selected
sources. This implies that casual observing might lead to some
bias in the detection of periods of high amplitude variability.

4.2. ULX-2

The source was detected in both XMM-Newton observations
at a luminosity of 8–9×1039 erg s−1, with a low short-term
flux variability (apart for a slight decay in the 2018 data).
Our spectral analysis showed that a phenomenological model

given by two thermal components describes its spectrum.
Unfortunately, the quality of the 2005 data did not allow us to
constrain any spectral variability. From the higher-quality 2018
data, we estimated temperatures of 0.6 keV and 1.3 keV
associated with emitting radii of 400–1400 km and ∼100 km,
for the DISKBB and BBODYRAD model, respectively. However,
we cannot exclude a super-Eddington scenario in which
accretion is driven by an advection-dominated disk with a
temperature of ∼3 keV, as observed in other ULXs (e.g., IC
342 X-1, NGC 5643 ULX-1; Gladstone et al. 2009; Pintore
et al. 2016).
Because of its hard spectral shape, the source may be

classified as a hard-ultraluminous or a broadened disk ULX
(Sutton et al. 2013). In a super-Eddington scenario, the source
is likely observed from a low-inclination angle, where the LOS
enters into the funnel of the outflows (e.g., Middleton et al.
2015a). The nondetection of pulsations does not allow us to
establish if the compact object is an NS or a BH. Simultaneous
broadband observations with XMM-Newton and NuSTAR will
permit us to better constrain the source nature by, for example,
testing the existence of a third, high-energy spectral comp-
onent, usually observed in the PULX spectra and likely arising
from column accretion (e.g., Walton et al. 2018) on top of
the NSs.

4.3. Variable ULXs

In Walton et al. (2011), ULX-3 and ULX-4 were only
marginally classified as ULXs since their luminosity was
∼1039 erg s−1. Nevertheless, the two sources are not detected in
our new observation down to a limit of <2×1038 erg s−1,
making them candidate transient ULXs (tULXs). By now, only
a dozen ULXs are known to be transient; however, casual
observational scheduling might have some bias in the observed
variability pattern and the detection of periods of high
variability in ULXs. Furthermore, most of the tULXs have
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been discovered only by chance (e.g., Soria et al. 2012;
Esposito et al. 2013; Middleton et al. 2013; Carpano et al.
2018; Earnshaw et al. 2018; Pintore et al. 2018; van Haaften
et al. 2019). Therefore, the actual fraction of tULXs and their
duty cycle are poorly constrained. Regular high-quality X-ray
monitoring of a large sample of galaxies hosting ULXs (which
seemingly are a suitable environment for the production of
ULXs) are needed.

We stress that all confirmed PULXs belong to the transient
group, and the switch-off may be caused by propeller effects
(e.g., Tsygankov et al. 2016; Israel et al. 2017), which cause a
drop in luminosity ofD ~ -L P M R170 M

2 3
1.4
1 3

10 cm
1
6

. Assuming a
spin period �1s, the 3σ flux upper limits are compatible with
the entrance in the propeller for both ULX-3 and ULX-4.
Therefore, it is possible that, even though the pulsations are not
detected (perhaps due to limited statistics), ULX-3 and ULX-4
could potentially host NSs. We cannot rule out an alternative
explanation for the high level of variability among observation
being due to high amplitude super-orbital modulations.
Furthermore, another possibility is that these ULXs host BHs
and they were observed during a particularly bright outburst
(e.g., Esposito et al. 2013; Middleton et al. 2013; Earnshaw
et al. 2018)

Finally, similar considerations also apply to the new source
(ULX-5), should it be confirmed as a genuine ULX in the NGC
7456 galaxy.

5. Conclusions

In this work we have presented a full study of the ULX
population in the galaxy NGC 7456. Two of these are bright
sources with luminosities of 5×1039−1040 erg s−1 (which
might be persistent sources) and are spectrally described by a
two-component thermal model, as usually seen in ULX spectra.
However, at least one of the two (ULX-1) is highly variable
(varying by an order of magnitude) on timescales of hundreds
of seconds to kiloseconds, presenting one of the largest flux
variations ever observed in a ULX (∼50% fractional
variability). Such variability is mainly driven by the high-
energy part of the emission. The nature of its compact object is
not yet clear. We propose that the source is seen with an
inclination angle such that our LOS occasionally straddles the
optically thick turbulence of an outflow, which occasionally
covers the inner regions where the high-energy emission is
produced. Alternatively, the variability may be related to
changes in the accretion rate. ULX-1 increases the sample of
highly variable sources and we cannot exclude that the compact
object is an NS.

ULX-2 is instead spectrally rather hard and can also be
modeled by a single thick disk, suggesting a super-Eddington
accreting scenario.

Two other ULXs (ULX-3 and ULX-4) in the galaxy are
variable, and seem to reach and marginally overcome the ULX
threshold. These can be considered transient ULX candidates.
Finally, we found a possible new bright source (ULX-5) in the
galaxy, the nature of which is not yet constrained. Further
observations will be necessary to determine the possible
transient nature of these sources.
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