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ABSTRACT

Temporal variability in flux and spectral shape is ubiquitous in the X-ray sky and carries crucial information about the nature and
emission physics of the sources. The EPIC instrument on board the XMM-Newton observatory is the most powerful tool for studying
variability even in faint sources. Each day, it collects a large amount of information about hundreds of new serendipitous sources, but
the resulting huge (and growing) dataset is largely unexplored in the time domain. The project called Exploring the X-ray transient
and variable sky (EXTraS) systematically extracted all temporal domain information in the XMM-Newton archive. This included a
search and characterisation of variability, both periodic and aperiodic, in hundreds of thousands of sources spanning more than eight
orders of magnitude in timescale and six orders of magnitude in flux, and a search for fast transients that were missed by standard
image analysis. All results, products, and software tools have been released to the community in a public archive. A science gateway
has also been implemented to allow users to run the EXTraS analysis remotely on recent XMM datasets. We give details on the
new algorithms that were designed and implemented to perform all steps of EPIC data analysis, including data preparation, source
and background modelling, generation of time series and power spectra, and search for and characterisation of different types of
variabilities. We describe our results and products and give information about their basic statistical properties and advice on their
usage. We also describe available online resources. The EXTraS database of results and its ancillary products is a rich resource for
any kind of investigation in almost all fields of astrophysics. Algorithms and lessons learnt from our project are also a very useful
reference for any current and future experiment in the time domain.
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1. Introduction

Variability pervades the cosmos. Almost all astrophysical ob-
jects, from stars in the surroundings of the solar system to su-
permassive black holes in the nuclei of very distant galaxies,
display a distinctive variability. Their flux and spectral shape
change within a range of timescales. This is especially true in
the high-energy range of the electromagnetic spectrum. The X-
ray and gamma-ray sky is extremely dynamic, and new classes
of objects, some of them completely unexpected, have been dis-
covered in the past decades through their peculiar variability.

We may mention different examples of transient or highly
variable high-energy sources. (i) Gamma-ray bursts (GRBs) are

Send offprint requests to: andrea.deluca@inaf.it

the most powerful cosmic explosions for electromagnetic out-
put. They are likely produced by the collapse of massive stars
into black holes or by the coalescence of two neutron stars. (ii)
Soft gamma-ray repeaters (SGRs) are X-ray sources that are be-
lieved to be powered by magnetars, that is, by neutron stars with
the strongest magnetic fields in the Universe. (iii) (Transient) X-
ray binaries are black holes, neutron stars, or white dwarfs that
accrete matter from their stellar companion. (iv) Stellar flares
are X-ray flares from magnetically active, late-type stars that are
either isolated or in binary systems. (v) Blazar flares are gamma-
ray flares that are produced by the jets of supermassive black
holes at the centres of galaxies. (vi) Tidal disruption events are
the gravitational capture and disruption of a star by a supermas-
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sive black hole. (vii) Supernova X-ray flashes are produced by
the supernova shock that emerges from the exploding star.

Crucial information is often carried by periodic variability
that arises from the rotation of a (compact) star or from the or-
bital motion in a binary system. Examples of high-energy pul-
sators are (i) spinning up and down, accreting, magnetic neutron
stars in binary systems; (ii) spinning down young neutron stars,
whose emission is powered by the dissipation of rotational, ther-
mal, or even magnetic energy, as in the cases of classical radio
pulsars, the so-called Magnificent Seven neutron stars (Haberl
2007), and magnetars; (iii) accreting magnetic white dwarf sys-
tems, such as polars and intermediate polars; (iv) orbital modu-
lations (including periodic dips and eclipses) of the X-ray flux
in various classes of X-ray binaries with accreting neutron stars,
black holes, or white dwarfs (especially if seen from a high in-
clination).

Variability is key to understanding the nature and physics
of the sources. It is plainly impossible to summarise the range
of science topics in a few lines that can be accessed and ad-
dressed by time-domain investigations in the X-ray range. X-
ray variability yields unique insights into accretion physics (e.g.
radiation efficiency of accretion flows, mechanisms for generat-
ing winds and jets) and strong gravity physics (e.g. conditions
in the inner disk) through observations of active galactic nuclei,
tidal disruption events, and gamma-ray bursts (marking the birth
of a black hole). We can learn about the mechanisms of mas-
sive star explosions, and about the progenitors of supernovae, by
observing supernova shock breakout events (which would also
enable more sensitive searches for the long sought-after associ-
ated gravitational waves and neutrinos). X-ray variability allows
us to focus on the physics of magnetic field generation and dy-
namics in compact objects (e.g. through observations of violent
and less violent events related to the extreme magnetic fields of
magnetars) and in normal stars (observation of stellar flares and
coronal emission). The latter point holds great promise for our
understanding of planetary system formation and evolution (the
effects of flares on protoplanetary disks and on the habitability
of planetary systems), and for understanding our own Sun.

Most of the variable phenomena described above have been
discovered with instruments with a large field of view (FoV)
such as the All-Sky Monitor (ASM) on board the Rossi X-ray
Timing Explorer, the Imager on Board the INTEGRAL Satellite
(INTEGRAL/IBIS), the Burst Alert Telescope (BAT) on board
the Neil Gehrels Swift observatory, and the Monitor of All-sky
X-ray Image (MAXI) on the International Space Station, which,
constantly observing large portions of the sky, can also detect
relatively rare events. In the soft X-ray energy range (0.2-12
keV), focusing telescopes are much more sensitive than wide-
field instruments. The current generation of space observatories
each day collect a very large amount of data about serendipi-
tous sources located within their FoV, including a huge amount
of information regarding their variability. Data archives from
these telescopes have great potential for studying variability of
(serendipitous) X-ray sources, which in principle is only limited
by photon statistics and by the intrinsic time resolution of the
instruments. However, this information remains mostly unused.

In particular, the European Photon Imaging Camera (EPIC)
instrument on board the European Space Agency mission XMM-
Newton (Jansen et al. 2001), consisting of two MOS cameras
(Turner et al. 2001) and of a pn detector (Strüder et al. 2001),
is the most powerful tool for studying the variability of faint X-
ray sources because the combination of large effective area, good
angular, spectral, and temporal resolution, and large FoV is un-
precedented. More than 20 years after its launch, EPIC is still

fully operational, and its immensely rich archive of data contin-
ues to grow. Large efforts are ongoing to explore the serendip-
itous content in XMM data. The catalogue of serendipitous
sources extracted from EPIC observations is indeed the largest
and most sensitive compilation of X-ray sources ever produced
before the realisation of the eROSITA all-sky survey1. Its most
recent release (2019 December) at the time of drafting this pa-
per, dubbed 4XMM-DR92 (Webb et al. 2020), lists more than
810,000 detections of more than 550,000 unique sources over
more than 1,150 square degrees of the sky. The median flux of
these sources is ∼ 5.3×10−15 erg cm−2 s−1 and ∼ 1.2×10−14 erg
cm−2 s−1 in the 0.5-2 keV and 2-12 keV energy ranges, respec-
tively.

About ∼ 20, 000 sources have been detected in the so-called
XMM Slew Survey (XSS, Saxton et al. 2008), using data that
were collected while the telescope moved from one target to the
next. The data have a shallower sensitivity, but cover more than
70% of the sky. The XSS provides significantly better sensitivity
(limiting flux ∼ 3 × 10−12 erg cm−2 s−1) than any all-sky survey
currently available to the community. In the soft 0.2-2 keV band,
the XSS is almost as sensitive (limiting flux ∼ 6×10−13 erg cm−2

s−1) as the ROSAT All-Sky Survey (RASS).
The time-domain information on such a large sample of

sources remains largely unexplored. The 4XMM catalogue in-
corporates light curves of the top ∼ 36% brightest sources. These
light curves are generated with a time bin of 20 times the frame
time for the pn camera (resulting in time binning at 1.46 s in
most cases), or with a time bin yielding at least (on average) 20
counts per bin, with a minimum bin time (for bright sources)
of 10 s for the MOS cameras. A simple test for time variabil-
ity (a χ2 test) is automatically performed on these light curves
(pn light curves are rebinned at this stage to have at least 20
counts per bin), and a variability flag is assigned. A catalogue
from stacked data (4XMM-DR9s) is also generated for overlap-
ping observations, providing information on the long-term vari-
ability of sources between different detections. Systematic inves-
tigations of variability are not carried out by the catalogue team.
The XSS (and new slew data, which are routinely collected) pro-
vides the best opportunity at present, compared to the RASS, for
discovering extremely rare high-variability objects. A number of
such objects (novae, tidal disruption events, etc.) have indeed
been selected (e.g. Saxton et al. 2012). However, no systematic
dedicated study and cataloguing of the variability has yet been
performed.

We describe in this paper the main features of the project
called Exploring the X-ray variable and transient sky (EXTraS),
which was carried out in 2014-2016. It produced the most thor-
ough investigation of temporal properties of XMM-Newton and
EPIC sources ever performed. All results and products of EX-
TraS have been available since the end of the project through
a public data archive, which describes the variability of more
than 400,000 sources spanning more than eight orders of magni-
tude in timescale and six orders of magnitude in flux. Applica-
tions range from the search for rare events to population studies,
with an impact on the study of virtually all astrophysical source
classes.

The paper is organized as follows: In Sect. 2 we give a con-
cise overview of the EXTraS project, and in Sect. 3–6 we de-
scribe details of the EPIC data analysis that was carried out in

1 See https://www.mpe.mpg.de/eROSITA. See also Predehl et al.
(2021).
2 http://xmmssc.irap.omp.eu/Catalogue/4XMM-DR9/4XMM_
DR9.html
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different research lines. We describe new algorithms that were
designed and implemented within the project to deal with the pe-
culiar highly variable background noise of the EPIC instrument,
and to search for and characterise different types of variability.
We also report details of our main products and results, including
basic statistical properties and advice for their usage. In Sect. 7
we describe the web resources that were made available to the
community. In Sect.8 we briefly summarise. Appendices include
further details of the data analysis and products.

2. The EXTraS project

The EXTraS3 project was aimed at fully investigating and dis-
closing the serendipitous content of the EPIC database in the
time domain and to make it available and easy to use to the whole
community. EXTraS includes four different lines of EPIC data
analysis:

1. Short-term, aperiodic variability (STV), aimed at detect-
ing and characterising aperiodic variability in the largest pos-
sible number of sources from the XMM serendipitous source
catalogue on all timescales ranging from the instrument time
resolution to the duration of an observation (see Sect. 3).

2. Search for coherent pulsations, aimed at detecting and
characterising the largest possible number of X-ray pulsators
in a period range from ∼ 0.2 s up to the highest value allowed
by the duration of the observation (see Sect. 4).

3. Search for transients, aimed at detecting the largest possi-
ble sample of new, faint X-ray transients. These sources are
only above detection threshold for a very short time inter-
val and thus are missed by standard image analysis and are
not listed in the XMM serendipitous source catalogue (see
Sect. 5).

4. Long-term variability (LTV), aimed at detecting and char-
acterising long-term variability, taking advantage of the large
number of overlapping observations performed at different
epochs, using both pointed and slew data, combining detec-
tions and upper limits in long-term light curves spanning up
to 15 years (see Sect. 6).

All EXTraS products and results together with new soft-
ware tools have been released to the community in 2017 March
through a public archive (see Sect. 7). This includes (i) a
database of all results, describing temporal properties of ∼
400, 000 EPIC sources on timescales ranging from ∼ 0.1 s to
∼ 10 years and in flux ranges spanning from ∼ 10−9 to ∼ 10−15

erg cm−2 s−1 in the 0.2-10 keV energy range, and (ii) about ∼ 20
millions of ancillary files (light curves, hardness ratios, power
spectra, etc.). A science gateway was also implemented (see
Sect. 7) to allow users to run EXTraS pipelines on any dataset
from the XMM Science Archive.

3 EXTraS (Exploring the X-ray Transient and variable Sky) is a collab-
orative effort of six European partners: Istituto Nazionale di Astrofisica
(INAF, Italy, coordinator); Scuola Universitaria Superiore IUSS Pavia
(Italy), Consiglio Nazionale delle Ricerche (CNR, Italy); University
of Leicester (UK); Max Planck Gesellschaft zur Foerderung der Wis-
senschaften - Max Planck Institut für extraterrestrische Physik (MPG-
MPE, Germany); Friedrich-Alexander Universitat Erlangen-Nuremberg
- Erlangen Center for Astroparticle Physics (ECAP, Germany). EX-
TraS was funded (2014-2016) by the European Union within the Sev-
enth Framework Programme (FP7-Space). See the project web site
www.extras-fp7.eu for further details on the team and contact in-
formation.

As a part of the project, multiwavelength characterisation
of sources based on available catalogues and phenomenologi-
cal classification of sources using machine-learning algorithms
were also implemented. These activities are not described in this
paper, which focus on EPIC data analysis. We refer to Gatuzz
et al. (2018) for details.

3. Short-term, aperiodic variability (STV)

3.1. Aims and scope

The goal is to provide users with a thorough characterisation of
any type of short-term variability, ideally, on all timescales rang-
ing from the instrument time resolution to the duration of an ob-
servation for the largest possible number of sources included in
the XMM-Newton serendipitous source catalogue. This extends
the basic temporal analysis of bright sources included in the pro-
duction of the XMM catalogue in several ways: (i) we study a
larger fraction of sources, down to much fainter fluxes, (ii) we
use all EPIC data, including time intervals affected by soft proton
flares, (iii) we study variability at the shortest timescales even in
faint sources, overcoming limitations of uniformly binned time
curves with large bins, (iv) we perform an energy-resolved anal-
ysis, and we also study spectral variability, and finally, (v) we
compute a full set of quantitative parameters to describe vari-
ability patterns and properties.

Our analysis builds on the 3XMM-DR4 source catalogue,
which is the most recent release of the XMM serendipitous
source catalogue available at the start of the EXTraS project. It
includes 7437 observations performed between 2000 February
and 2012 December. We excluded 420 observations collected
in mosaic mode because processing pipeline subsystem (PPS)
products (see next section) are not available. Our analysis is per-
formed for each camera and for each exposure separately. Mul-
tiple exposures collected within a specific observation by a spe-
cific camera are studied independently. Following the 3XMM
selection, we considered only exposures taken in imaging mode
and discarded those taken in small window by the pn camera.
The small field of view precludes our approach for the charac-
terisation of the background.

3.2. Data preparation and filtering

For the MOS cameras, we used event files from the PPS prod-
ucts. For the pn camera, we were faced with a known bug in the
pipeline used to generate the PPS products, in which improper
management of counting mode occurrences can result in inco-
herent time tagging of events within an exposure, preventing a
consistent temporal analysis. This problem affected the data sets
of observations in the PPS archive that were processed with the
XMM-Newton Science Analysis Software (SAS) versions ear-
lier than 13.5 (see Appendix A). We reprocessed all pn data start-
ing from observation data files (ODF) using SAS v14.0, where
the issue had been fixed (PPS files in the current archive should
be free from this problem as a result of the recent bulk reprocess-
ing of data performed in 2019 December).

We selected good events by applying the same quality filters
as were used for the production of the 3XMM catalogue (e.g.
we excluded time periods with an attitude change >3’). As an
important difference, we also considered time intervals affected
by high particle background, which are generally discarded in
3XMM processing. This resulted in our recovering a major frac-
tion of XMM-Newton exposure time, more than 20%, for scien-
tific exploitation.
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We selected photons in the 0.2–12 keV energy range. An
energy-resolved analysis in the 0.2–1 keV (super-soft), 1–2 keV
(soft) and 2–12 keV (hard) energy ranges was also performed, as
described in Sect 3.9. We considered all the flags as in 3XMM-
DR4. Barycentric corrections were applied to all events and
GTIs using the SAS task barycen4.

3.3. Selection of 3XMM sources

We only considered point-like sources, excluding all those
marked as possibly extended by the 3XMM analysis (3XMM
parameter EP_EXTENT_ML>4 and extension larger than 12′′,
rejecting 52168 out of 531261 3XMM detections, correspond-
ing to 9.8%). This choice is aimed at preserving uniformity of
the analysis. Extended sources require a different background
treatment. We also excluded from the analysis all sources be-
low a minimum number of ten expected source events per cam-
era (3XMM parameter PN_8_CTS > 10, M1_8_CTS > 10,
M2_8_CTS > 10). This left 418,387 source detections (81.6%
of detections in 3XMM-DR4). A further selection was made at
a later stage based on the number of actually observed events in
the optimised source region for each specific exposure, camera,
and energy band under analysis (see Sect3.4). To identify se-
lected 3XMM sources at the single exposure and camera level,
we cross-correlated PPS source lists with the catalogue.

3.4. Source regions

For each source, we optimised a circular extraction region. As a
figure of merit, we used the signal-to-noise ratio (S/N) according
to the following definition:

S/N(r) =
E[src|r]√

E[src + bkg|r]
∼

E[src|r]√
max(C0, E[src|r],O[src + bkg|r]

,

where E[X] represents the expectation value of the quan-
tity X and O[X] is the value that is observed. In this case, X is
the number of counts from the source (src) or from background
(bkg), including the leakage from other sources, in the circle de-
fined by radius r. C0 is a small constant (10−6, chosen to be much
smaller than the other terms in any case) that is introduced to
numerically manage the cases where no events are expected or
observed. This approach allows us to compute the S/N without
having to model the background in advance. Selecting the maxi-
mum value in the set of three quantities in the square root in the
right-hand term of the equation takes care of cases where very
few counts are expected and none are observed. Expected counts
from the source as a function of the extraction radius were com-
puted based on the information provided by 3XMM. Assuming
the 3XMM count rate in the overall energy range (band 8, from
0.2 to 12 keV), we produced a map at the source position, for
which we multiplied the instrument point-spread function (PSF),
which is described by its King function parametrisation encoded
in the CCF, by the CCD-dependent exposure map (computed us-
ing the SAS task eexpmap). A resolution of 0′′.05 was used to
properly account for the effect of bad pixels and columns and of
CCD borders. The observed counts as a function of the radius
were directly evaluated from the cleaned event file.

As a first step, the source extraction radius was optimised
according to our figure of merit. Then we screened all nearby

4 We rely on the JPL DE405 planetary ephemeris, see http://
iau-comm4.jpl.nasa.gov/README

sources (within 5′) that might contaminate our source region.
For each of these sources, we optimised an exclusion radius ac-
cording to our figure of merit. These steps were iterated. First we
refined r and then the excluded region for each contaminating
source, until the maximum of our figure of merit was reached.
Last, we counted how many counts from the source were left
in the resulting region. All sources with fewer than ten photons
were not considered any further in our analysis.

3.5. Background modelling

The background noise of the EPIC cameras is the sum of differ-
ent components with different spatial and temporal properties. A
proper treatment of this background is of paramount importance
for characterising the variability of faint sources, especially dur-
ing high-background periods. We implemented a new approach
that is substantially different from common practice in EPIC data
analysis.

In our analysis, we considered as background anything that
was not listed as a point source (with 3XMM extension pa-
rameter S C_EXT ENT smaller than 12′′) in 3XMM: extended
sources, unresolved sources, and cosmic X-ray background and
instrumental background (particle-induced and electronic noise).
It has been common practice in X-ray imaging studies to ex-
tract the background from a background region that was inde-
pendent of the source region, but had supposedly similar back-
ground properties. However, the photon background, which in
our analysis includes extended sources, is far from flat; more-
over, the particle-induced background, including soft protons,
has a different vignetting with respect to the photon component
(e.g. Kuntz & Snowden 2008). Therefore we decided to model
the background over the entire FoV to deduce its properties in the
source region. We adopted a heuristic approach, considering the
overall background as the sum of two components: one variable
as a function of the time, and the other constant. Each compo-
nent was assumed to have its own spatial distribution that is not
known a priori and was assumed not to vary in shape within a
single exposure.

To produce a model for the steady background component,
we proceeded as follows: (i) We adopted the definition of good
time intervals (GTIs) for the non-flaring background that is
used by 3XMM. (ii) We generated a raw counts map by ap-
plying 3XMM GTIs to the event file. (iii) We removed point-
like sources by excluding circular regions centred on their posi-
tions. To do this, we adopted a cut-out surface brightness level
of 0.05 cts/square arcsec. (iv) We extended the map to the whole
FoV. This operation does not rely on standard spline-fitting algo-
rithms because they often incur large systematics at the edges of
the map (CCD edges, borders of the FoV) and for low statistics.
Instead we smoothed the map by preserving the overall normal-
isation and filled the holes at the positions of removed sources
by 2D linear interpolation. (v) Finally, the resulting map was di-
vided by the exposure map (all exposure information was taken
into account on a CCD-by-CCD basis.). Points (i) to (v) were re-
peated using the simulated image obtained through source mod-
elling (see Sect.3.4). Then, this was subtracted from the map of
the steady background component to subtract the tails of the PSF.

To produce the model for the variable background, we ex-
tracted a raw counts map by applying bad time intervals (i.e.
complementary to GTIs in the exposure) to the event file and
then repeated steps (iii), (iv), and (v) as above, and PSF tail
subtraction. The resulting map includes the variable background
component and the steady component (which is by definition
always present). To produce a map of the variable component
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alone, we then subtracted an exposure-rescaled version of the
steady background map.

Using source models together with the two background
maps, we can recover the map of counts we expect for the entire
exposure. We verified that the residuals obtained by subtracting
the actually observed counts and normalising by the square root
of the expected counts are distributed like a Gaussian.

3.6. Background region

We define as a background region the entire detector. From this,
we cut out optimised circles around sources. As a figure of merit,
we used the error bar we would obtain on an estimate of the
background,

FoM = −
ε C(x) +

√
B(x)

B(x)
,

where C(x) is the overall expected number of source photons
leaking into the background region, x is the maximum number
of leaked photons per source, and B(x) is the number of expected
photons in the background region. According to this definition,
the error bar has two components: a statistical one due to the
Poisson fluctuations, and a systematic one due to the leakage
from sources into the background itself. The two components are
combined linearly through a factor ε that weights their contribu-
tions. Setting ε to 0 would ignore source leakage and consider
the entire detector as background. Setting ε to 1 would instead
ignore statistical uncertainties and exclude all sources out to 5
arcmin (for technical reasons, we assumed that all the photons
from a source fall within this distance, although this is not the
case for XMM). We calibrated the value of ε in order to bal-
ance the need of minimising leakage from sources into the back-
ground and the risk of increasing Poisson uncertainties on the
background in crowded fields by running tests on a set of 200
exposures (including 10,000 detections with a large variety in
FoV content and background level). The most robust behaviour
is obtained when ε = 0.5. With this choice, the background has
enough statistics (B>9000) in all cases, it is a good representa-
tion of the detector background (B/Btot >0.15, where Btot is B
evaluated over the entire detector), and the source contamination
is minimal (C/B<0.06).

Optimisation of the figure of merit was obtained as follows.
The number of leaked photons as a function of the exclusion
radius was computed for each source based on source models.
The exclusion radius for each source ranged from 0 to 5 arcmin.
By construction, we required an equal number of leaked photons
for each source (x), which yielded a set of radii that correspond
to an overall source photon leakage. Background counts were
estimated based on background maps. Minimisation of the figure
of merit as a function of the collective leakage of photons from
sources yields the optimised background region.

3.7. Light curves with uniform time binning

Events were selected from the optimised source region, and a
raw light curve was generated with uniform time binning. We
generated a background light curve from the optimised back-
ground region with the same bins. Then we exploited our knowl-
edge of the spatial (background maps) and temporal (back-
ground light curve) background distributions to predict the con-
stant and variable background contributions inside the source re-
gion. The counts expected from each component were corrected

for GTIs on a CCD-per-CCD basis. Source counts were then cor-
rected for the PSF tails outside the extraction region, and for spa-
tial vignetting. For each exposure and camera, for all detections
passing the filter described above, a background-subtracted light
curve was produced with a bin time of 500 s, 5000 s, and op-
timal uniform binning, which is a source-specific binning with
(on average) at least 25 counts per bin (enough for the counts
to approximate a Gaussian distribution). If a source is expected
to produce fewer than 50 net counts, an optimal bin light curve
was generated with two bins. To limit the number of bins for the
brightest sources, the optimal bin size was always larger than
5s. We also produced light curves with 10 s bin size. These are
not released, but were used as an input for the analysis in the
frequency domain (see Sect.3.10).

The error bars were obtained by propagating Poisson uncer-
tainties in the expected background and source components in
each time bin. In particular, because the background accounts
for all or almost all the observed counts, we cannot assume that
the observed excess counts x coincide with the expected excess
counts µ, otherwise the Poisson uncertainty would be null. In-
stead, we assumed that µ = 0.375 + max(x, 0), and the asso-
ciated uncertainty dx =

√
µ =

√
0.375 + max(x, 0). This so-

lution to the Poisson bias is intermediate between the standard
assumption dx =

√
x and that introduced by Mighell (1999)

dx = max(
√

x, 1). See also Anscombe (1948).
The cumulative distribution of the rates, that is, the fraction

of time spent by the source below a fixed rate, as a function of the
rate itself was also computed for each light curve as a histogram
with error bars, with a step along the y axis (Fractional time) for
each bin in the original light curve.

3.8. Bayesian block light curves

The Bayesian block algorithm (Scargle et al. 2013) is designed
to provide an optimal representation of a time series as a se-
quence of segments over which the underlying signal is constant
to within the observational errors. Its application to EPIC data
is challenging because of the high variability of the background
as a function of time. Possible solutions for incorporating back-
ground subtraction in the Bayesian block algorithm were investi-
gated by Worpel & Schwope (2015) with the specific aim of de-
tecting transient or eclipsing sources in EPIC data. We adopted
a different approach in which the variable background count rate
was marginalised over.

We implemented a discrete application of the algorithm by
Scargle et al. (2013). Discreteness is introduced through the def-
inition of an initial set of cells that represent the finest segmen-
tation that could be achieved by the algorithm. We set an ar-
ticulated trigger to define cells: We need at least 50 counts in
the source region, or 50 × k photons in the background region,
where k is the ratio between the number of counts in the back-
ground and in the source region, and at the same time, the cell
duration must be longer than the frame time. These criteria bal-
ance the need of enough photons for background subtraction in
the Gaussian regime and the time resolution that allows detect-
ing narrow features. The finest resolution that can be achieved
uses the detector frames as initial time cells, but this requires a
careful rethinking of background subtraction in the low-counts
regime.

The initial set of cells is processed by joining in blocks the
cells that have compatible source rates. The positions of edges
between neighbouring blocks is also optimised. Optimisation is
performed according to a figure of merit (fitness function) addi-
tive over the blocks, assuming a prior distribution for the number
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Fig. 1. Top left: Distribution in count rate of point-like sources characterised in the time domain. Red: EXTraS/STV analysis. Blue: 3XMM; the
total source sample is shadowed. Top right: Same as top left, EXTraS/STV vs. 4XMM. Bottom left: Distribution in count rate of point-like sources
displaying variability. Red: EXTraS/STV analysis (p-value p < 10−5, according to results of the fit of a constant model on 500s or optimal time bin,
or with more than one Bayesian block in the sensitive segmentation). Green: EXTraS/STV analysis, based on uniform bin light curves only. Blue:
3XMM timing analysis (p-value p < 10−5, according to results of the fit of a constant model). Bottom right: Same as bottom left, EXTraS/STV vs.
4XMM. In all panels, all bar items start from the baseline.

of blocks. As a fitness function, we use the logarithm of the like-
lihood of the source count rate, summed over blocks. The log-
likelihood of the source count rate is marginalised over the distri-
bution of the variable background rate, given the measures of the
number of counts in the source region and in the background re-
gion, and knowing (from background modelling) the spatial dis-
tribution of steady and variable background and the count rate of
the steady background. A Gaussian approximation for the like-
lihood profile is used both for the variable background rate and
for the source rate, so that the marginalised likelihood profile
is another Gaussian whose width can be obtained by simple er-
ror propagation. We adopted a geometric prior on the number of
blocks, P(Nb) = P0 × γ

Nb where 0 < γ ≤ 1, assigning a lower
probability to a larger number of blocks. The standard prior for
Bayesian blocks (Scargle et al. 2013) is global, being related to
the number of blocks in the optimal representation. In our im-
plementation, the value of γ was fixed in order to locally reflect
a sigma cut in the separation of blocks: two blocks were sepa-
rated if their rates were not consistent within n sigma. Depend-
ing on the threshold for this separation, we generated two sets of
Bayesian block representations, one more sensitive to variability
(at the cost of a higher number of spurious blocks), and the other
more robust. The low prior (sensitive) and the high prior (robust)
correspond to a nominal difference at 3σ and 4σ, respectively,
in source rate between neighbouring blocks. We calibrated them
through Monte Carlo simulations of constant sources to evaluate
the number of expected false blocks. As expected, false blocks
are only due to statistical fluctuations (and therefore only depend
on the number of initial cells and on the prior). As in the case of

uniformly binned light curves, the cumulative distribution of the
rates was computed for each Bayesian block light curve

The Bayesian block representation of the light curve does not
allow distinguishing whether the rate of the source has changed
sharply or smoothly between neighbouring blocks. To this ex-
tent, we introduced a parameter that we call slope (S). This is
the minimum rate of change in the count rate of the source be-
tween two neighbouring blocks. To find S, we shrank each of the
blocks until their associated rates, R1 and R2, were compatible
within 3σ or 4σ in the sensitive or robust representation, respec-
tively, assuming that the uncertainty in the rates, δR1 and δR2,
decreases with time as T−1/2, as expected for Poisson events.
Then, we assumed that the rate of the source had changed lin-
early for the duration of the two blocks, T1 + T2, compatibly
with the two rates, and obtained

S =
2
9

(R2 − R1)3(
δR1 ×

√
T1 + δR2 ×

√
T2

)2 .

For similar blocks that are nσ apart (as expected from a source
that undergoes a linear trend in flux, with no background flares),
this relation reduces to

S ' 2
(n
3

)2 R2 − R1

T1 + T2
.

We also generated a Bayesian block light curve for the back-
ground. In this case, the Bayesian blocks algorithm reduces to
the standard Scargle et al. (2013) implementation, with Pois-
son likelihood and a single scalar time series. The segmentation
into blocks is very different from the one that we obtain for each
source, and it is unique for the entire exposure.

Article number, page 6 of 39



A. De Luca et al.: The EXTraS Project: Exploring the X-ray transient and variable sky

3.9. Energy-resolved analysis

Starting from the event files and source models used for the
full-band analysis, we extracted new event files and generated
source models in three sub-bands: super-low (0.1-1.0 keV, SL),
low (1.0-2.0 keV, LO), and high (2.0-12.0 keV, HI). As for the
full-band analysis, all sources expected to have fewer than ten
counts in a specific exposure and energy band were disregarded.
We were left with 356,984, 338,869, and 322,281 detections in
the SL, LO, and HI band, respectively. All steps of the energy-
resolved analysis are fully similar to those described above for
the full band. In each energy band, we generated four kinds of
light curves for each source: (i) uniformly binned, with 500 s
bin size; (ii) uniformly binned, optimal bin size; (iii) Bayesian
blocks, sensitive separation level; and (iv) Bayesian blocks, ro-
bust separation level. We analysed 305,403 sources in more than
one sub-band and 147,316 in all energy bands. For all sources
that were kept in more than one energy band, we produced
hardness ratio light curves starting from uniformly binned light
curves with 500 s binning. Hardness ratios were defined as an
estimator of the ratio of the difference between the net rates in
two bands and their sum,

HR =
R1 − R2

R1 + R2
,

where 1 corresponds to the harder and 2 to the lower energy
bands. We used a Monte Carlo simulation to estimate each single
hardness ratio and its uncertainty, taking the error bars in the two
rates into account. We defined the hardness ratio estimator and
its uncertainty as the midpoint and half-width of the smallest
interval with a coverage of 68%.

3.10. Analysis in the frequency domain

For each source, we produced a representation of the time series
in the frequency domain by applying the Fast Fourier Transform
(FFT) algorithm to the uniformly binned light curve with 10 s
time bin. All light curves were zero-padded up to T ∼ 160 ks be-
fore applying the FFT. This is longer than any observation while
giving a number of bins that is a power of 2, which yields a faster
FFT computing time. In this way, all the FFTs have the same for-
mat, the same sampling time, and the same size. This artificial
windowing alters the FFT properties. Moreover, the light curve
might have gaps due to gaps in the GTIs, which also introduces
a windowing effect.

3.11. Standard light curves

We also produced light curves with uniform time binning (500
s and optimal) by following standard data analysis prescriptions
using the SAS software. Data preparation and source selection
were performed as described in Sect. 3.2 and 3.3. Source events
were extracted from the same regions as described in Sect. 3.4.
Background was sampled locally: For each source, background
events were extracted from an annulus surrounding the source
region. This is the same approach as was used in 2XMM (Wat-
son et al. 2009), however, while in the 2XMM case the size of
the annulus is the same for all sources, we decided here to im-
plement a different approach in which the inner and outer radii
are related to each source count rate. We set the inner radius to
be 20% larger than the source region radius and the outer radius
to be the maximum between 40” and twice the source region
radius. This has the advantage of sampling the background as
close to the source as possible, keeping in any case the source

leakage in the background annulus at a low level. The specific
values for the radii were set after extensive testing on a set of
200 exposures.

We used the SAS tool evselect to generate light curves for
source and background, and we combined them with the tool
epiclccorr into a background-subtracted light curve, which
also corrects for a number of effects such as vignetting, bad pix-
els, chip gaps, quantum efficiency, and GTIs. These light curves
are released in our archive for comparison purposes only.

3.12. Characterisation of variability

Our STV analysis encompasses a large number of tests for vari-
ability and a set of measurements to extract synthetic informa-
tion from uniform bin and Bayesian blocks light curves, power
spectra, and hardness ratios. All results are stored in the EXTraS
archive and are also included in the headers of the files them-
selves.

We fit a series of analytical models of the source rate evolu-
tion to each light curve (both with uniform time bin and Bayesian
blocks). Every single light curve was tested against a constant
and a linear model, including all the light curves extracted in the
three energy sub-bands. Full band light curves were also tested
against more advanced models: a quadratic function, an expo-
nential decay, and local features such as flares and eclipses in
addition to a constant. For each model we extracted the best-
fit value for each parameter and its associated 1σ error, the χ2

value, the number of degrees of freedom, and the tail probability
for the model.

We provide a number of other variability indices to charac-
terise the light curves. These include the weighted average of the
count rate with its uncertainty; the weighted standard deviation,
skewness, and kurtosis of the distribution of the count rates; the
relative variance given by the ratio between the variance and the
average count rate; the relative excess variance with its uncer-
tainty; the correlation coefficients between the source and back-
ground light curves; the amplitude of count rate excursion given
by (max(rate)- min(rate))/2; the median absolute deviation; and
the maximum relative offset from the median given by max(|rate-
median|)/median.

Our characterisation of short-term variability did not take ad-
vantage of tools such as autoregressive models. This is a promis-
ing extension beyond EXTraS.

Other synthetic parameters were extracted by analysing the
cumulative distribution of the count rate. These include the frac-
tion of time spent more than 1, 3, and 5 σ below and above the
average count rate; the fraction of time spent within 10% of the
median count rate; the width of the range of rates in which the
source spends 90% of its time; the fraction of such a range in
which the source spends 20, 35, 50, 65 and 80% of its time; and
the asymmetry of the count rate distribution in which the source
spends 20, 35, 50, 65 and 80% of its time.

We provide a number of variability indices that are specific
to Bayesian block light curves. These include the number of
blocks; the fragmentariness, that is, the number of blocks per
ks of observation; the steadiness, defined as

∑
(rate2/rate4

err) per
ks; the minimum time for doubling and halving the count rate in
the light curve (derived from the maximum positive and negative
slope between any two blocks); and the maximum negative and
positive deviation of the rate from the weighted average in sigma
units.

We characterise the spectral variability of XMM sources
with two separate approaches. On the one hand, we fit simple
models (constant and linear) to the hardness ratios light curves,
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Fig. 2. Left panel: Gain in TS by adding a flare to a constant vs. the p-value associated with a constant model for 500s bin light curves. The two
lines indicate a threshold of p-value = 10−6 in both axes: the blue points are light curves that are overall compatible with a constant model, but
for which a flare improves the fit significantly. Right panel: Histogram of the number of bins for the light curves, colour-coded as in the left panel
(area of histograms normalised to unity; all bar items start from the baseline).
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Fig. 3. Same quantities as Fig. 2 for uniform bin light curves that have at least 25 counts per bin. Their behaviour is similar to that of 500s bin light
curves (see Fig. 2), but far fewer light curves that are compatible with a constant contain a significant flare.

and on the other hand, we provide a basic characterisation of the
light curves produced in each sub-band, including computation
of excess variance, weighted average, weighted standard devia-
tion (and their corresponding uncertainties), median, and median
absolute deviation.

We characterise the power spectra of each source by fitting a
constant+power-law model and a constant + Lorentzian model.
The results of these fits are stored in the archive, in the catalogue,
and in the header of the files themselves.

3.13. Products

The output of the STV analysis of EXTraS consists of (i) a cata-
logue that lists all results of the variability characterisation for all
detections included in our investigation. The catalogue is avail-
able as a fits file and is also included in the EXTraS database.
It can be fully searched with an online web form (see Section
7). A light version of this catalogue, that is, stripped down to
the most important quantities, is also available. (ii) A set of
FITS and ASCII files for each source, for each exposure, instru-
ment, and energy band: light curves in the 0.2-12 keV energy
range with uniform time bin of 500 s, 5000 s, and optimal (see
Sect.3.7); light curves in the 0.2-12 keV energy range with adap-
tive binning, based on the Bayesian block approach, with sen-
sitive (3σ separation) and robust (4σ separation) segmentation
of neighbouring blocks; cumulative distribution for uniformly
binned (500 s) and Bayesian blocks (sensitive and robust) light
curves; background light curve in the 0.2-12 keV energy range
with adaptive time binning; light curves in the 0.2-1 keV, 1-2
keV, and 2-12 keV energy ranges with uniform time bins (500
s and optimal); light curves in the 0.2-1 keV, 1-2 keV, and 2-

12 keV energy ranges with adaptive binning (both sensitive and
robust segmentation); hardness ratio light curves (1-2 keV ver-
sus 0.1-1 keV, 2-12 keV versus 1-2 keV, and 2-12 keV versus
0.2-1 keV) with uniform time bins (500 s); power spectrum of
the source variability (0.2-12 keV); and source and background
region files.

Table 1. Basic facts about the EXTraS STV analysis.

# Selected Observations 7,007
# Selected Exposures 19,962
# Selected Detections 418,387
# Unique sources 297,351
# Detections with Uniform Bin light curves (500 s) 327,104 (pn)

225,888 (MOS1)
247,274 (MOS2)

# Detections with Bayesian Blocks light curves 320,142 (pn)
221,236 (MOS1)
242,056 (MOS2)

# Detections with Hardness ratios 154,870 (2 bands)
144,293 (3 bands)

3.14. STV database and its properties

We provide here a very concise statistical analysis of results and
products of the STV analysis to help understand their meaning,
reliability, and usage. An overview of the basic properties of the
STV analysis is given in Table 1.

In Figure 1 we show the distribution in count rate of detec-
tions included in EXTraS/STV analysis together with the distri-
bution in count rate of detections displaying variability. These
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Fig. 5. Comparison of the number of bins in 500s bin light curves and in optimal bin size light curves, colour-coded as in Fig. 4. In each panel, the
top dashed line indicates the minimum allowed time bin of 5s; the middle dashed line indicates sources for which the optimal bin size is exactly
500s, and the bottom dashed line does the same for 5ks. The number of bins for the 500s bin light curve is an indication of the observation length,
while lines parallel to the three lines already drawn indicate sources with a similar rate.
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Fig. 4. Distribution of the p-value for a constant model as applied to op-
timal bin and 500s bin light curves for each source. The threshold lines
at p-value=10−6 divide the plot into four regions that are colour-coded
as in Fig. 5. Yellow points (2,789) in the top left corner correspond to
sources whose optimal bin light curves are compatible with a constant,
while 500s light curves are not. Red points (787,023) in the top right
corner correspond to sources whose light curves are compatible with
a constant in both cases. Magenta points (2,324) in the lower left cor-
ner correspond to sources whose light curves are not compatible with
a constant in either case. Blue points (2,257) in the lower right corner
correspond to sources whose 500s bin light curves are compatible with
a constant, while optimal light curves are not. See also Fig. 5.

were selected according to different markers for variability. In
the case of light curves with uniform time bins, we used the p-
value associated with a constant model. This is defined as the
probability of observing rates as scattered or more scattered than
those observed when the model holds, and the source is not vari-
able. We selected p < 10−5 here, yielding 7,279 and 5,650 can-
didate variable sources in the 500 s light curves and in the op-
timal bin light curves, respectively (9,265 candidates when the
condition is fulfilled in at least one light curve, either with 500

s bins or with optimised bins). In the case of Bayesian block
light curves, a number of blocks greater than 1 is an obvious
marker for variability. This yields 7,379 and 14,939 candidate
variable sources in the robust and sensitive Bayesian block seg-
mentations, respectively. In Figure 1 we include all detections
with either p < 10−5 in uniform bin light curves or more than
one block in the sensitive Bayesian block segmentation, totalling
18,529 candidate variable detections. In the same figure, we also
show the distribution in count rate of 3XMM-DR4 sources (and
variable sources, according to the 3XMM variability flag), and
the same information for the recent 4XMM-DR9 catalogue, re-
stricted to the DR4 dataset.

The expected fraction of false positives in selecting candi-
date variable sources can be estimated as follows: Based on
the number of light curves with 500 s bins and with optimal
bins in our archive (800,266 and 797,697, respectively), the as-
sumed threshold p < 10−5 yields about eight spurious candidate
variable detections for each sample (∼ 0.1% of the candidate
variable sources) due to statistical fluctuations. In the case of
Bayesian block light curves, as discussed in Sect. 3.16, through
extensive simulations of sources with a constant count rate, we
estimated the number of spurious blocks we expect for each de-
tection due to statistical fluctuations based on the number of cells
in the initial grid. This yielded 10 (∼ 0.1%) and 1,320 (∼ 8.8%)
detections with more than one expected block in the samples
with robust and sensitive segmentation, respectively.

A basic question regarding the description of variability is
whether it is possible to characterise the variability further if a
light curve is consistent with a constant model. We expect that
a local feature such as a flare might sometimes be detected with
good confidence, even if the global fit of the light curve to a con-
stant is acceptable. This is confirmed by Fig. 2, where it is clear
that a significant flare in uniformly binned light curves (500 s
bins) can be missed by the fit to a constant model when the light
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curves have a large number of bins. Statistical fluctuations can
lower the global test statistic against a constant for all points far
from the flare, and the contribution of the few discrepant points
to the global test statistic is negligible. In optimally binned light
curves (see fig. 3), far fewer cases that are compatible with a con-
stant contain a significant flare. This might be due to the lower
number of bins in the optimal bin size light curves with respect
to those with 500s bins.

We now compare some variability indicators between uni-
form bin light curves obtained with 500 s binning and with op-
timal binning. In the first type of light curves we expect many
more frequent departures from the Gaussian regime. The p-value
for a constant model applied to 500 s bin light curves may give an
incorrect indication in a fraction of cases for faint sources. For
sources reaching the Gauss approximation for bin sizes larger
than 500 s, the characterisation based on optimally binned light
curves is more robust. This is shown in Figure 4 and 5, where
we adopt a threshold at p-value=10−6, implying less than one
false positive when we try to reject the constant model. Sources
whose optimal bin light curves are compatible with a constant
while 500s light curves are not (yellow points in Figure 4 and
5) are mostly faint and reach the Gaussian approximation for
bin sizes of 2 to 4 ks, therefore 500s light curves are mostly
not appropriate. Sources whose light curves are compatible with
a constant in both cases (red points) have a distribution of bin
sizes that essentially mimics the distribution of the entire source
population, with faint sources (with fewer optimal bins) dom-
inating. Sources whose light curves are not compatible with a
constant in either case (magenta points) are uniformly scattered
in the plot of Fig. 5, indicating that it is easier to detect variability
in bright sources. Sources whose 500s bin light curves are com-
patible with a constant while optimal light curves are not (blue
points) have an optimal bin size that is concentrated beyond 5ks,
indicating that the 500s binning is not adequate.

We also compared some variability indicators between
Bayesian blocks and uniform bin light curves with optimal bin-
ning. Figure 6 shows that uniformly binned light curves are often
less effective in spotting localised short features such as flares or
eclipses than Bayesian blocks. Figure 7 shows that a consistent
fraction of sources described by a single Bayesian block have
an associated uniform bin representation that is highly variable.
This may be due to several reasons: If the initial grid for the
Bayesian block segmentation has only one cell, variability can-
not be tested, while optimally binned light curves always have at
least two blocks; a bug in the script that generates the Bayesian
block light curves misrepresents all light curves that should have
as many blocks as initial cells as a single block (see Sect. 3.16).

3.15. Some usage examples

In this section, we provide some usage examples to illustrate the
science capabilities of EXTraS STV products. First, we give a
short account of two investigations that were recently published
by our team: the discovery of an X-ray superflare from an L
dwarf star (De Luca et al. 2020), and the study of the properties
of flares from supergiant fast X-ray transients (Sidoli et al. 2019).
These two cases are selected as a clear demonstration of EXTraS
STV potentialities for the search for and characterisation of pe-
culiar objects and rare events, and for the study of the properties
of classes of sources. Further examples are for instance the dis-
covery of X-ray flaring activity from a young pre-main-sequence
star (Pizzocaro et al. 2016), the discovery of a puzzling flaring X-
ray source in the Galactic globular cluster NGC6540 (Mereghetti
et al. 2018), and the study of the X-ray activity-rotation connec-
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Fig. 6. Comparison of the p-value associated with a constant model
for uniform bin light curves that have at least 25 counts per bin and
the same p-value for Bayesian blocks. The top right region contains
786,262 sources whose light curves are both compatible with a con-
stant model. The bottom left region contains 6,272 sources whose light
curves are both incompatible with a constant model. The top left region
includes 1,501 sources that are variable according to their uniform bin
light curve, but are compatible with a constant in their Bayesian block
light curve. The bottom right region includes 3,582 sources that are vari-
able according to the Bayesian block analysis, but are compatible with
a constant in the uniform bin light curve.
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Fig. 7. Histogram of the p-value associated with a constant model for
uniform bin light curves with optimal bin size (see also Fig. 6). Sources
that are described by a single Bayesian block are plotted in purple. His-
tograms are normalized to the peak.

tion in cool stars (Pizzocaro et al. 2019). In the last part of this
section, we examine a science project published before the re-
lease of EXTraS catalogues: the study of the X-ray variability in
a large sample of stars by Pye et al. (2015). We also compare its
results to those quickly derived from our database (comparison
with the recent 4XMM-DR9 catalogue is also shown).

3.15.1. Discovery of an X-ray superflare from an L dwarf.

Magnetic activity in stars at the low-mass end of the main se-
quence is poorly understood. We cross-correlated the EXTraS
STV catalogue with the catalogue of L- and T-class ultra-cool
dwarfs by Carnero Rosell et al. (2019). This selected 3XMM
J033158.9-273925 (hereafter J0331-27) as a very interesting
case. J0331-27 matches the position of an L0 candidate object
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Fig. 9. Left panel: EXTraS/STV light curve of the star HD 283810 with uniform time binning (500 s). A large flare is seen in the second half of
the observation. The tail probability of a fit with a constant model is < 10−25. The flare is missed by the 4XMM variability analysis because it
occurred outside of the GTI (see right panel). Right panel: Background light curve of the same observation, taken from the 4XMM products. All
observing times with a background rate exceeding the threshold marked by the blue line are rejected. The time interval of the flare (see left panel)
is therefore excluded.
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Fig. 8. EXTraS Bayesian block representation of the light curve of the
source 3XMM J033158.9-273925 (pn camera, Obs.Id. 0555780101),
the first detection of flaring activity from an ultra-cool dwarf star of
spectral class L. See text.

within 1′′.1. Inspection of EXTraS light curves clearly shows
an X-ray flare (e.g. the Bayesian block light curve is shown in
Fig. 8). The source is located in the FoV of the Chandra Deep
Field South survey, and a large multi-wavelength dataset is avail-
able. As discussed by De Luca et al. (2020), analysis of these
data showed (i) the spectral type to be L1. This is only the second
L dwarf detected in X-rays after a previous four-photon detection
of the binary system Kelu-1 (Audard et al. 2007). (ii) The flare
energetics is in the regime of super-flares, showing that strong
magnetic reconnection events and the ensuing plasma heating
are still present even in objects with photospheres as cool as
∼ 2100 K. (iii) The flare energy number distribution is incon-
sistent with the canonical power law dN/dE ∼ E−2, suggesting
that magnetic energy release in J0331-27, and possibly in all L
dwarfs, takes place predominantly in the form of giant flares.

3.15.2. Statistical properties of flares from supergiant fast
X-ray transients.

The sub-class of high-mass X-ray binaries called supergiant fast
X-ray transients (see Sidoli 2017) shows flaring activity in their
entire dynamic range of luminosities, even outside outbursts. We
used EXTraS STV products to investigate the properties of these
X-ray flares in a sample of nine supergiant fast x-ray transients
(Sidoli et al. 2019). Adopting the Bayesian block decomposi-
tion of the EPIC X-ray light curves, we selected 144 X-ray flares
covering a wide range of luminosities (1032−1036 erg s−1), from
quiescence to outbursts. The Bayesian block light curves also al-
lowed us to measure in a model-independent way the rise time
to and the decay time from the peak of the flares, their duration,
and the time interval between adjacent flares. We also measured
the flare peak luminosity, the average accretion rate, and over-
all emitted energy. The observed properties of flares from su-
pergiant fast X-ray transients are in qualitative agreement with
the expectations of the subsonic settling accretion regime model
(see e.g. Shakura et al. 2012), where the development of flares
is related to the onset of Rayleigh-Taylor instabilities in the hot
quasi-spherical shell of plasma accumulated at the boundary of
the neutron star magnetosphere, resulting in unstable accretion
of the entire shell (see Sidoli et al. 2019, for details).

3.15.3. Variability in a large sample of cool stars

We focused on the sample of 2,357 X-ray emitting cool stars
selected by Pye et al. (2015) by matching the Hipparcos-Tycho-
2 catalogue with the 2XMM catalogue. In order to study X-ray
variability and flares, Pye et al. (2015) considered all light curves
flagged as variable by the 2XMM catalogue. This yielded 118
light curves. Of these, 22 had spurious variability, which is re-
lated to different issues in the analysis. This left 96 actually vari-
able light curves, called the cool variable sample (CVS). As a
further step, Pye et al. (2015) visually inspected all of the re-
maining 815 light curves that were not marked as variable in
2XMM and found that 12 of them displayed apparent variabil-
ity. These were called the cool low variable sample (CLVS).

As a simple exercise, we selected all EXTraS/STV prod-
ucts generated for the same sample of stars using the same data
and searched for variable light curves. First, we cross-matched
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Fig. 10. Number of light curves with at least one negative bin by more
than N σ and the overall number of bins below this threshold. The hor-
izontal green line indicates the overall number of bins (8 × 107) in 500s
bin light curves, and the green dots show their number at least Nσ be-
low 0. Similarly, we show the light curves that contain these points in
brown. The vertical separation between green and brown dots indicates
the average number of negative bins per light curve. The number of bins
per light curve increases as the threshold decreases.

Fig. 11. Histogram of the distribution of the number of standard devia-
tions below zero of all negative average rates for light curves with a neg-
ative average rate. The histogram is normalised to the peak. Red bars:
light curves with uniform bins of 500s. Blue bars: optimally binned light
curves.

the coordinates of all 2,357 stars with the EXTraS/STV cata-
logue by adopting a correlation radius of 15′′. Second, we se-
lected all matches related to the same observation ID in the
two catalogues. We also matched the resulting dataset with the
4XMM catalogue by using the DR4DETID identifier. This exer-
cise yielded 2,880 detections with EXTraS light curves of 2,039
stars (duplications related to light curves at the single-exposure
and camera level in EXTraS were not included in this count),
including 91 light curves (out of 96) from the CVS and all 12
sources from the CLVS of Pye et al. (2015). We searched for
variability in the resulting sample using the EXTraS/STV output.

As a simple selection criterion, we selected detections whose
EXTraS Bayesian block light curves had more than one block
in the sensitive representation and a tail probability < 10−3 for
a constant model fit to uniform time bin light curves with either
500 s or optimised time bins. This allowed us to select 217 detec-
tions with variable light curves (as above, possible duplications
related to light curves at the single-exposure and camera level in
EXTraS were not included in the count). These include 86 light
curves from the CVS and 11 from the CLVS and 120 additional
variable light curves that are not mentioned by Pye et al. (2015).
We visually inspected the EXTraS/STV results for these 120 de-
tections and identified 108 light curves with genuine variabil-
ity and 12 likely artefacts related to incorrect background sub-
traction during intense soft proton flares or to spurious Bayesian
blocks due to statistical fluctuations in very bright sources (see
Sect. 3.16).

As a further test, we repeated the same exercise using results
from the recent 4XMM-DR9 catalogue. First, variable sources
were selected based on the variability flag that is included in the
catalogue (set to true if the tail probability of the source is con-
stant < 1×10−5). This yields 109 variable light curves, including
82 light curves from the CVS and 5 from the CLVS, and 22 addi-
tional light curves that are not mentioned by Pye et al. (2015). By
visual inspection, we identified 16 actually variable light curves
and 6 likely artefacts among the latter. We also tried to assume a
different less conservative threshold for variability (tail probabil-
ity of a constant fit < 1×10−3). This allowed us to select 155 light
curves, including 86 from the CVS, 8 from the CLVS, and 43
additional light curves. Of these, 33 feature apparent variability,
and 10 are likely artefacts. Fig. 9 shows the case of the bright star
HD 283810, target of Obs.Id. 0203540501, that was included by
Pye et al. (2015) in their CLVS sample. It is selected by EX-
TraS/STV as a variable source, but is not flagged as variable by
4XMM. The left panel shows the EXTraS/STV light curve of the
source (pn camera, exposure S003). A large flare is apparent in
the second half of the observation. The flare was missed by the
4XMM variability analysis because it occurred outside of the
GTI. The observation is affected by proton flares: the right panel
shows the 4XMM background light curve and the GTI adopted
in the catalogue analysis. The resulting tail probability of a con-
stant model in the EXTraS/STV catalogue is < 10−25 (pn cam-
era, light curve with 500 s bins), while in 4XMM (where the flare
was excluded) it is ∼ 3 × 10−3.

Thus, using the EXTraS/STV catalogue, the number of vari-
able light curves identified by Pye et al. (2015) can be extended
by a factor of two using the same set of observations with rela-
tively little effort. While an astrophysical characterisation of the
variable stars that were not studied by Pye et al. (2015) is beyond
the scope of this work, the figures reported above show that the
EXTraS/STV catalogue allows us to perform a very sensitive but
robust search for variability in any sample of sources.

3.16. Known problems and caveats

In some light curves, one or more bins can assume negative
values. In principle, this is expected because we often subtract
the background component in a low-count regime. However, the
number of negative bins is larger than expected from simple
fluctuations. Figure 10 and 11 show that there are two kinds
of problems. Figure 10 shows that most light curves that have
bins at least 3σ below 0 have only some such bins on average.
Light curves that have bins at least 10σ below 0 have dozens of
such bins. Figure 11 shows that the distributions of the num-
ber of standard deviations below zero of all negative average
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Fig. 12. Left panel: Distribution of the number of cells in the initial grid and its effect on the Bayesian block algorithm (see Sect. 3.8). The dashed
line is an upper limit to the number of blocks that can never exceed the number of initial cells. A bug in the code, described in Sect. 3.16, prevents
us from reaching this line. The distribution in the left panel clearly shows that this bug has no effect on light curves that start from a grid with > 10
cells. Right panel: Cumulative distribution of the number of initial cells. We show the 0.9 and 0.99 values with solid lines. Currently, about 77%
of the sources are not characterised by Bayesian blocks because their initial grid has fewer than three cells.

rates for light curves with uniform 500s bins and for optimally
binned light curves have a clearly different shape. The bulk of
the points within 10σ from 0 in the former is not apparent in the
latter; the points beyond 10σ are instead very similar. In many
cases, light curves have a few negative bins whose errors are un-
derestimated due to the failing Gaussian assumption. Optimally
binned light curves are indeed less affected by this issue. In a
few cases entire light curves have a baseline much below 0. This
is due to problems in background modelling. This interpretation
was confirmed by visual inspection of problematic cases, which
we found flawed by rare issues in the background characterisa-
tion such as bright extended sources in the vicinity of the point
source under study. These entries are flagged as bad (QUAL-
ITY_FLAG) in the light version of our catalogue.

We describe below some caveats about the usage of a frac-
tion of Bayesian block light curves. By construction, the number
of blocks in the Bayesian block representation depends on the
initial segmentation in cells (see Section 3.8). An initial grid of
a few cells results in a light curve with at most several blocks.
This is the most common situation: 67% of the sources start with
an initial grid made of a single cell, 90% start from 5 or fewer
cells, and only 1% of the sources start from a grid with more than
50 cells (see Fig. 12). The user should therefore check the num-
ber of initial cells through the column BB_LC_NCELLS in the
light version of the catalogue. We also warn users that all light
curves that should have as many blocks as initial cells are mis-
represented as a single block because of a bug in the script that
generates the Bayesian block light curves. As shown in Fig.12,
this bug has no effect on light curves starting from an initial grid
with > 10 cells.

Visual inspection of Bayesian block light curves highlighted
recurring narrow spurious features, both flare-like and eclipse-
like, that are made of pairs of closely separated false blocks.
The occurrence of this feature is strictly correlated to the num-
ber of expected false blocks. The geometric prior in Bayesian
blocks gauges between the sensitivity to weak real features in
the light curve and the robustness against false features. We sim-
ulated constant sources in addition to real observations, span-
ning a wide range of parameters, to estimate the number of false
blocks in each single light curve. This number essentially de-
pends on the number of cells in the initial segmentation that gen-

erated the light curve. We included these estimates for sensitive
(BB_LC3_NFALSE) and robust (BB_LC4_NFALSE) segmen-
tations.

Finally, we include the description of some caveats affecting
our results for few peculiar cases. As reported in Section 3.2, and
following 3XMM selections, we excluded time periods with atti-
tude change >3’. These changes can lead to an incorrect coordi-
nate conversion within the SAS tools. During these occurrences,
our event selection, based on celestial coordinates, could fail to
extract events around the selected source but extract events from
a shifted region, thus resulting in spurious variability. We have
provided the user with a column in the light version of the cata-
logue, ATT_FLAG. This reports the maximum attitude variation
during the observation in arcseconds.
Because background maps are produced with a 1 arcmin smooth-
ing, sources falling at the edge of bright extended sources can
be affected by an incorrect background subtraction. Very bright
flares (> few counts s−1) could be underestimated because we did
not consider the loss of counts due to pile-up effects. Moreover,
because we did not treat OOT events, light curves of sources
falling on OOT trails can be contaminated.
Photons from extremely bright optical sources can excite a
significant number of electrons in the X-ray CCDs and can
be (falsely) recognised as (X-ray) events (this phenomenon is
known as optical loading). Sources contaminated by optical
loading do not follow the expected PSF. Therefore our modelling
over- or under-estimates their count rate. The 3XMM catalogue
does not flag such sources.

4. Search for pulsations

4.1. Aims and scope

The main goal is to search for signals in all the 3XMM detec-
tion time series with more than 50 counts in a systematic and
automatic fashion. In particular, our search is optimised for co-
herent signals, that is, signals that are characterised by only one
characteristic variability timescale, as opposed to quasi-periodic
oscillations (QPOs), for example, where an interval of charac-
teristic variability timescales is present. For more than 500,000
time series and about one million timing analyses, we searched
for coherent signals in a period range spanning from ∼150 ms
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(in the majority of cases) up to the highest value allowed by the
length of each specific time series (observation). In particular,
we worked directly on photon arrival times rather than on binned
light curves in order to optimise the signal search sensitivity that
is strongly dependent on the number of counts and the binning
time, among other things. This is particular relevant for sources
with relatively poor statistics and/or faint signals. In this respect,
we note that the corresponding time series of these sources pro-
vided by the 3XMM-DR4 products are often heavily rebinned,
which hampers a sensitive search for signals; see the upper panel
of Fig. 13 as an example where the signal at about 1.3×10−4 Hz
is not even sampled in the power spectrum of the 3XMM-DR4
light curve. While we drafted this paper, the 4XMM-DR9 cata-
logue and products were released. From the point of view of the
analysis discussed in this section, no major changes with respect
to 3XMM-DR4 are registered. In particular, although a differ-
ent rebinning is considered in 4XMM-DR9, including a pn light
curve that is rebinned to few seconds (in most cases 1.46s; see
the central panel and caption of Fig. 13), no search for signal is
foreseen or performed.

Our analysis was carried out on both the pn and the two MOS
detectors individually for about 50% of the total FFTs that were
carried out during the search in order to keep the original time
resolution and to rely upon unbinned data, and merging all the
available data from the three different instruments. Correspond-
ingly, depending on the observational mode and the position of
the source in the CCDs, it is possible to have one, two, or three
EPIC time series for each detection (in a small fraction of cases
more than three time series for a detection are available) in order
to maximise the statistics and therefore the signal search sen-
sitivity. Again, this is rather important for faint sources and/or
faint signals (see the central and lower panel of Fig. 13 as an ex-
ample where the power spectra of the pn only and pn plus MOS
time-series is shown, respectively).
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Fig. 13. EPIC power spectra of one of the new faint (∼
1.3 × 10−14 ergs s−1 cm−2 1-10 keV flux) X-ray pulsators discov-
ered within the EXTraS project with a period of about 128.5 min-
utes, namely 3XMM J221900.5+722508 (3XMM id. 233383, 4XMM
id. 204025302010035). Upper panel: based on 2XMMi/3XMM-DR4
binned light curves (in the specific case, the 3XMM-DR4 time bin is
11. 020s); mid panel: based on 4XMM-DR9 pn camera binned light
curve (bin time 3.98 s); lower panel: from EXTraS catalogue (pn+MOS
data, counting 300 photons).

4.2. Data preparation, filtering, and source event selection

As in the search for short-term aperiodic variability in the previ-
ous section, we used the PPS event files. For the pn data we used
the same reprocessed data as described in Section 3.2 in order to
cope with the counting-mode bug that causes incorrect time tag-
ging of events and strongly affects the search for periodic signals
and that is not filtered for time intervals affected by high particle
background. Good events were selected using the PPS extraction
flag parameters, which for the pn camera exclude events near
the CCDs borders. By using the events flag #XMMEA_2 in the
SAS tool evselect, we selected sources near borders. For these
sources we performed an additional extraction with the standard
#XMMEA_EP & PATTERN<=4 filters, as described in the of-
ficial SAS threads5. For each source we used the GTIs, the time
intervals during which cameras are properly working and look-
ing at the target field, which correspond to the CCD in which the
source is observed. Sources that fall near the borders may have
photons in two or more CCDs. In these cases we used the GTI
of the CCD that contained most of the photons. When more than
one exposure in a single observation was available, the events of
single sources were merged with the SAS tool merge if the time
resolution used in each exposure was the same. Otherwise, the
event files of different exposures were analysed separately. After
extraction and before the search for signal, we shifted the time
of arrival (ToA) of each event to the Solar System barycenter
reference frame using the SAS task barycen and the relevant
*ROS.ASC PPS file. About 99.7% of the event lists were suc-
cessfully corrected. When the file was missing (and a correction
was not possible), the timing analysis was carried out while a
warning flag was set and added to the final database for future
checks. For the correction of each events file we used the central
coordinates of the corresponding circular extraction region.

4.3. Search for a coherent signal

The pn and MOS event files extracted and prepared as described
above were then ingested into the signal search pipeline. This
pipeline is structured as described below.

Step 1. It sets the file groups (in order of decreasing time
resolution) for the file events of each source in order to cope
with the different observational modes and sub-modes of each
EPIC detector. Sub-modes affect the time resolution of events,
which is an important parameter for the timing analysis: the bet-
ter the resolution, the higher the frequency range in which we
can search for signals. For a given source, the pn and MOSs
can have different time resolution, and different sources within
the MOSs can have different time resolutions depending on the
CCD in which they lie. For each source, a decision tree has there-
fore been implemented, starting from the instrument and/or sci-
ence mode event file with the highest time resolution and sub-
sequently adding all the other instrument and/or science mode
event files (whenever available) with lower resolution. This ap-
proach optimises the signal search capability in different fre-
quency intervals based on the specific sub-modes of each single
source. Correspondingly, for each source in a given observation,
we can have from one to several groups of event files where the
signal search is applied.
When the ratio of the length of the observation and the sampling
time is higher than 2 million, the analysis is split into two modes:
The first mode is aimed at keeping the maximum Fourier resolu-
tion, 1/T , and rebinning the original sampling time such to have

5 https://www.cosmos.esa.int/web/xmm-newton/sas-thread-timing
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only one interval with two million or fewer time bins. The sec-
ond mode keeps the original time resolution and cuts the obser-
vation into two or more time intervals, each one with 2 million
time bins.

Step 2. It carries out the signal search with the validated de-
tection algorithm for all the groups with more than 50 counts.
Different algorithms were taken into account, such as the Z2

N
(Buccheri et al. 1983), the Rayleigh periodogram, and the FFT.
For several reasons, an FFT was considered the best solution
for the specific task or project. The choice was driven by the
CPU-time consumption and frequency resolution among other
things, independent of the signal frequency itself (1/T rather than
P2/2T, where T is the observation length). The adopted FFT in-
cludes a logarithmic smoothing algorithm in order to evaluate
the spectrum continuum plus a detection algorithm that derives
the main signal parameters from the Fourier transform proper-
ties (such as period, pulsed fraction, and statistical significance).
The smoothing module is needed in order to cope with non-
Poissonian power spectrum noise components, which might be
present as a consequence of source intrinsic aperiodic variability
or background radiation flares (Israel & Stella 1996; note that the
different length of pn and MOSs time series also introduces spu-
rious aperiodic variability in power spectra). Correspondingly,
a local (frequency-dependent) power threshold level for candi-
date signals is computed. For the project, we set a 3.5σ detec-
tion threshold assuming a number of trials equal to the number
of FFT frequencies in each power spectral density (PSD; see also
Sec. 4.7). The inferred main signal parameters are the period 1/ν j
(where ν j is the j-th Fourier frequency), the pulsed fraction (de-
fined as the semi-amplitude of the sinusoid divided by the source
average count rate), and the probability of being a noise fluc-
tuation. For the latter quantity, for which we cannot apply the
properties of the χ2 statistics, we refer to Israel & Stella (1996).
Upper limits to the pulsed fraction are inferred at the 3σ level if
no significant peak is found in the PSD. For the source groups
with fewer than 50 counts a FFT is computed but no search is
attempted due to the poor statistics.

Step 3. It further inspects the candidate signals by means of
a Rayleigh periodogram and inferring the pulse shape, pulsed
fraction, and period. With the aim of confirming the goodness
and source-origin of each detected signal, a number of follow-
up analyses were carried out. These include a search for spuri-
ous signals with similar frequency in the background event file
(one for each CCD and after removing the extraction regions of
all detected sources in it), a Rayleigh periodogram with a slight
overestimation (about a factor of 10) of the period Fourier reso-
lution (P2/2T ), and a light curve folded on the detected period.
The latter algorithm does not have an automatic routine to de-
cide whether the detected peak is intrinsic to the source (true) or
spurious (false). The decision is left to the archive user and to a
more accurate analysis (see also Sec. 4.7).

Step 4. It creates the database and products. We divided the
information contained in the catalogue into four categories: 1)
Observation (OBSID) parameters, 2) single source (SRC) infor-
mation, 3) parameters of the periodic signals search, and 4) peak
parameters. For the last item, different information is stored in
the catalogue depending on whether a peak is found above the
statistical detection threshold. If no signal is found, the analy-
sis efficiency was recorded, measured in terms of the percentage
of Fourier frequency with upper limit values below 100%, to-
gether with the highest value of the ratio of the detection thresh-
old and the powers in the FFT. Furthermore, for each group of
event files the following plots were generated (in gif format): the
light curve, the power spectrum with the 3.5σ detection thresh-

old if at least a peak is found, or the 3σ upper limits in the case
of negative detection (see Fig. 14). The Rayleigh periodogram
carried out around the detected signal and the folded light curve
were also stored.

4.4. Products

The products of our search for periodic signals consist of (i) a
PSD per detection, (ii) a discrete periodic search (DPS) with the
signal detection threshold, (iii) a DPS with the pulsed fraction
(PF) upper limits (if no significant signal is found), (iv) a folded
light curve (for each signal found), and (v) a catalogue that lists
all results of the search for periodic variability, the parameters
used for the search, in particular, the smoothing width of the
DPS, the probability of the power spectra being chi-squared dis-
tributed, the time resolution of the search, its Nyquist frequency,
the quantity of frequencies analysed, and the quantity of PSD
used in the analysis. The most relevant information about the
analysed source is listed there as well: its unique identifier, its ce-
lestial coordinates, its International Astronomical Union name,
the OBSID of the specific detection, the quantity of significant
peaks in its DPS or the efficiency of the PF upper limits (if no
peaks were detected), a flag indicating whether the event ToA
was shifted to the Solar System barycenter, the instrument that
made the current detection, the best period found, its amplitude,
the probability of the signal being noise, and if there were no
peaks detected, then the ratio of the detection threshold and the
power of the highest peak found; and if a signal was detected, its
associated power and its Fourier frequency. The catalogue also
contains information about the observation in which the source
was observed: its exposure time, the quantity of events in the
source region, the CCD in which the source is located, a flag in-
dicating if there is a CCD border near the source (see Section
4.2), the observation pointed object, and a link to the Simbad
database6 for the source position. A detailed description and full
list of all the catalogue columns and the catalogue itself are in-
cluded in the EXTraS database. This is fully retrievable via an
online web form (see Section 7.1).

4.5. Statistical properties

In order to validate the reliability of the catalogue parameters,
a number of statistical checks were made and the results are
briefly outlined below. As a first step, the distribution of all sig-
nals found within the whole 3XMM-DR4 dataset by the pipeline
was extracted. This is shown in Fig. 15 (blue region). The main
feature is the relatively large and high (in terms of number) peak
at ∼100s, which is mainly composed of spurious signals that are
due to the counting-mode switch that still affects the results. This
is also emphasised by superimposing the distribution of periods
detected in observations that are not affected (or are slightly af-
fected) by counting-mode switches (red region). The spurious
signals are present in the pn and pn plus MOS time series FFTs
(see also Section 4.7). The second less evident feature in the sig-
nal distribution is for long periods above about 5. 000-10. 000
seconds. These candidate signals are partly due to spurious de-
tections due to intrinsic aperiodic variability of the sources (af-
fecting the low-frequency part of the FFTs) and partly due to
time intervals that are affected by high particle background (of-
ten related to the counting-mode switch). However, after inspect-
ing a large sample of these signals, we found that there are also
genuine signals, although the spurious peaks constitute the ma-

6 http://simbad.u-strasbg.fr/simbad/
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Fig. 14. Left panel: EPIC pn power spectrum of 3XMM J004301.4+413016 (Obs. Id. 0650560301) unbinned events, the first accreting NS found
in the nearby galaxy M31 (Esposito et al. 2016; Zolotukhin et al. 2017; see also Section 4.6). One peak is above the 3.5σ detection threshold
(solid red line) and corresponds to the 1.2s period. Right panel: EPIC pn power spectrum of the same source for an earlier pointing (Obs. Id.
0112570101) during which the signal is not detected: the 3σ upper limits (red dots) are obtained. Upper limit units are in %/100 (e.g. 0.1 stands
for 10%). The increasing values towards high frequencies are due to the x/ sin x term in the relation between the signal amplitude (pulsed fraction)
and FFT powers (Leahy et al. 1983; see also section 4.7).

jority. The third distribution peak is in the range of 5-15 sec-
onds and is dominated by XMM observations of known rapid
pulsators (mainly magnetars). In all cases, a visual inspection is
strongly recommended.

Fig. 15. Comparison of period distributions between recorded peaks
(above the 3.5σ threshold) over observations affected by counting-mode
switches (blue bars) and a cleaned sample of observations that is not (or
almost not) affected by the counting-mode switch (red bars).

For all the FFTs (in the maximum Fourier resolution mode)
for which no signal was detected, the timing analysis capability
of obtaining meaningful constraints on the average values (above
all the Fourier frequencies) of the 3σ upper limits were derived
and stored in the catalogue. The distribution of the average val-
ues of the 3σ upper limits is shown in the bottom left panel of
Fig. 16. About 38% of all the FFTs have PF upper limits (ULs)
below 100%. In the best (a few) cases, ULs close to 1% are ob-
tained (for the pulsed fraction, we adopted the definition of the
semi-amplitude of the sinusoid divided by the source average
count rate).

Fig. 16. Distribution of the average 3σ upper limits to the pulsed frac-
tion (defined as the semi-amplitude of the sinusoid divided by the source
average count rate) as inferred for the single-interval FFTs where no
signals have been detected.

Finally, the above defined pulsed fractions of detected sig-
nals were plotted with respect to the total counts (of the cor-
responding time series) for periods in observations with none
or moderate counting-mode switches (red dots and histograms
in the bottom right panel of Fig. 17) and for periods in obser-
vations that are highly affected by the problem (blue dots and
histograms). The comparison of the two samples clearly shows
that for time series with decreasing statistics, the spurious sig-
nals have large pulsed fractions. Although these findings con-
firm that the majority of signal detection in the ∼ 20-200 seconds
range is from spurious signals, genuine signals in the same pe-
riod interval cannot be excluded. Correspondingly, we decided
to keep all the detections in the catalogue. We did not reject any
period range. More in general, these findings further strengthen
the need of carefully inspecting the signal(s) in the catalogue that
one might be interested in.
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Fig. 17. Distribution of all detected period pulsed fractions (defined as
the semi-amplitude of the sinusoid divided by the source average count
rate) vs. source counts. The blue dots correspond to observations that
are affected by counting-mode switches. The red dots correspond to pe-
riods detected in observations that are not (or almost not) affected by the
counting-mode switch. Histograms of the PFs and counts are presented
at the top and left, respectively, for the two datasets.

A final check concerns the capability of the smoothing algo-
rithm to recover a white-noise FFT from a noisy FFT in which
additional non-Poissonian noise components are present. This
control was conducted by means of a Kolmogorov-Smirnoff (K-
S) test in which the original FFT was locally (for each Fourier
frequency) normalised to the obtained smoothed power spectrum
continuum and multiplied by 2N (where N is the number of av-
eraged FFTs) and finally compared with the statistical properties
of a pure white-noise FFT (see Israel & Stella 1996 for extensive
simulations and checks). In this framework, K-S numbers of the
statistics close to 1 mark a good agreement, that is, the capability
of the smoothing algorithm to model the power spectrum contin-
uum well. As expected, the greatest part of the smoothed FFTs
has K-S probabilities close to one. The number decreases for
decreasing probability values. We note that the FFTs in which
signals are detected are less cleaned on average. the smoothing
algorithm is less efficient in modelling the peaks themselves (as
expected). Correspondingly, it is worth emphasising that a low
K-S value in the catalogue for an FFT with a signal does not
necessarily mark a failure of the smoothing algorithm. We em-
phasise that the K-S is mainly used as a control test to confirm
whether there are substantial issues in running the algorithm, and
it does not affect the solidity of the results in any way.

4.6. The case of M31

The EXTraS catalogue for periodic variability has a huge poten-
tial for new discoveries, as demonstrated by our detection of pul-
sations in the ultraluminous X-ray sources (ULXs) NGC 7793
P13 (Israel et al. 2017b) and NGC 5907 ULX-1. The latter is the
most extreme accreting pulsar ever observed (Israel et al. 2017a).
We do not describe these findings in this section, but show and
briefly discuss the case of the nearby Galaxy M31. With tens
of XMM archival observations, its relatively large number of X-
ray sources, and properties similar to those of the Milky Way,
M31 is one of the best regions of the sky in which to search for
X-ray pulsations. In particular, despite the similarities with the

Milky Way and the extensive monitoring of M31 since the Ein-
stein mission, no accreting X-ray pulsar was found before the
beginning of the EXTraS project. Within the project, 85 point-
ings of M31 have been analysed, and signals were searched for
among 14438 detections (with more than 50 counts) and 36584
FFTs. About 860 peaks above the 3.5σ limit have been found
for 498 sources. When objects with known periodicities (mainly
orbital periods) were removed, only two sources showed con-
vincing signals in their power spectra. These objects are 3XMM
J004301.4+413017 (hereafter J004301) with a period of about
1.2 s and 3XMM J004222.9+411535 (hereafter J004222) with a
period of about 464 s. No periodicity is reported for them in the
literature. In Table 2 we list the main parameters of the EXTraS
catalogue for the filtered signals detected by the pipeline in M31
(see also section 4.7 for a comment on the low-probability val-
ues of J004222). The “Prob.” column reports the probability of
the detected peak to belong to the power estimate noise distri-
bution. Values above 1 are often due to the presence of strong
non-Poissonian noise components lying below the peak(s). Be-
low we report the main characteristics of the latter two sources
and the corresponding signals.

3XMM J004301.4+413017: The 1.2 s period signal from
this source testifies to the spin of the first accreting X-ray pul-
sar ever discovered in M31 (Esposito et al. 2016). The 1.2 s co-
herent signal is affected by the Doppler motion of the neutron
star around its companion in a 1.27-day orbit. Seven further de-
tections of the 1.2 s signal were obtained after correcting for the
orbital motion in the event files of all the M31 pointings where
J004301 was detected (see also Fig. 18 and the upper left inset).
This allowed the timing parameters to be sampled as a func-
tion of time over a baseline of about 11 years. The nature of the
binary system is still unclear and ranges from an intermediate-
mass X-ray binary similar to Her X-1 in our Galaxy to a peculiar
low-mass X-ray binary such as 4U1822–37 or 4U1626–67 to
the slowest spinning neutron star in a globular cluster (Esposito
et al. 2016; Zolotukhin et al. 2017). Regardless of its real nature,
J004301 represents a milestone in the study of extra-galactic X-
ray pulsars.

3XMM J004222.9+411535: The nature of this source is
unclear. In particular, it might be a super-Eddington accreting
neutron star or black hole at the distance of M31 or a foreground
closer cataclysmic variable. Correspondingly, the ∼ 464 s signal
might be ascribed to the spin of an X-ray pulsar or the orbital
period of a compact low-mass X-ray binary, if at the distance
of M31, or to the spin of an accreting white dwarf (likely an
intermediate polar) if within the Milky Way (see Fig. 18 and
upper right panel of Fig. 19). A more detailed analysis of the
whole sample of XMM data for J004222 has revealed that
the modulation is detected at high confidence level in three
observations over a baseline of one year, during which the flux
was significantly higher than the remaining pointings and with
virtually no change in the period over the same time interval. All
these findings together disfavour the super-Eddington accreting
X-ray pulsar scenario.

During the last year of the EXTraS project, we followed
two distinct data analysis approaches. We started analysing the
new archival XMM observations of M31 that are not included in
the 3XMM-DR4 release, and we developed more sophisticated
timing analysis pipelines aimed at taking the possible presence
of a strong period first derivative of the putative signal and/or
an orbital motion of the compact object (causing the signal)
around its companion star into account. During this process, we
detected a new signal from the same source, namely 3XMM
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Table 2. M31 EXTraS signals

ObsId Inst. Nγ Peaks Period Frequency PF Prob. Power
# # (s) (Hz) (×100 %)

3XMM J004301.4+413017
0650560301 EPXPN 1286 1 1.2038 0.8307 0.44 3×10−8 60.07
0505720301 EPXPN 870 1 1.2036 0.8309 0.42 3×10−5 46.45

3XMM J004222.9+411535
0600660501 EPXPN 13463 1 457.9091 0.00218 0.16 87.63 70.91

— EPXPNM1M2 22843 1 463.0261 0.00216 0.51 1.17 149.61
0650560601 EPXPN 10623 2 469.0776 0.00213 0.15 0.30 82.35

— EPXPN 10623 2 463.4261 0.00216 0.18 31.74 124.56
— EPXPNM1M2 18042 3 468.1143 0.00214 0.42 0.39 133.64
— EPXPNM1M2 18042 3 463.0261 0.00216 0.48 4.08 176.06
— EPXPNM1M2 18042 3 232.7782 0.00430 0.34 4.30 86.55

  

Fig. 18. XMM pn plus MOSs cleaned image of ObsId 0112570101 (64ks effective exposure time) for the galaxy M31. The insets show the
pn power spectra (solid black lines) together with the local 3.5σ detection threshold (solid blue lines) obtained from the unbinned event lists
of the three pulsating sources discovered during the EXTraS project and discussed in Section 4.6: J004301 (ObsId 050572030), J004222 (ObsId
0600660401, 0600660501, and 0650560601 together) and J004232 (ObsId 0764030301) from top to bottom. In the cases of J004301 and J004232,
the discovered X-ray pulsars revolve around a companion star. In the corresponding insets we show the power spectra with (corrected) and without
(raw) the best inferred orbital corrections (shifted by 100 in power on the y-axis for clarity).

J004232.1+411314 (hereafter J004232) by using the EXTraS
pipeline on new archival data and by applying the newly devel-
oped pipelines to old data. Although this result is not included in
the EXTraS catalogue, we briefly comment on it because it is a
natural evolution of the project.

3XMM J004232.1+411314: Pulsations at about 3 s have
been detected from this bright hard X-ray source located at 3.7’

from the bulge of M31, and it is known to show dips with a likely
orbital period of about 4.01 hr (Rodríguez Castillo et al. 2018;
Marelli et al. 2017). By correcting the archival data for the un-
known orbital parameters, we detected the 3 s signals from nine
datasets over a baseline of 16 years (see also Fig. 18). J004232
is another milestone in the study of extragalactic X-ray pulsars.
It is the first low-mass X-ray binary hosting a young magnetised
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Fig. 19. Cumulative power spectrum of pn plus MOSs data for observa-
tions 0600660401, 0600660501, and 0650560601 of J004222. Super-
imposed, we show the local 3.5σ detection threshold (solid red line):
both the 464 s fundamental and first harmonic peaks are detected at a
∼6σ confidence level. The light curve folded to the best period is shown
in the inset for the same data.

neutron star (rotating at or close to its equilibrium period Peq)
outside the Milky Way, a rare evolutionary path for a binary sys-
tem. Alternatively, it might be a mildly magnetised NS (rotating
close to Peq; Rodríguez Castillo et al. 2018).

4.7. Known problems

As for any adopted approach or algorithm, a number of assump-
tions and/or approximations potentially affect the signal search
capability in this case as well. We discuss these below.

Background: FFTs have been obtained without taking into
account the background component, mainly because a relatively
constant count rate background level, even when it represents
a significant fraction of the periodic source count rate, does
not affect the powers of the noise and of the signal. The sta-
tistical significance of the signal is not affected either. What
is affected is the pulsed fraction of the signal, which must be
evaluated in a different way by the catalogue user. The situa-
tion is different for a highly variable background (proton flares),
which introduces non-Poissonian components in the power spec-
tra. Nonetheless, the detection algorithm we used takes into ac-
count any additional noise components (regardless of their in-
strumental or source-intrinsic origin). On the other hand, the ad-
vantage of considering the whole observation length is reflected
in a higher Fourier resolution (important in the search for co-
herent signals). Correspondingly, the pulsed fractions stored in
the catalogue represent a lower limit and need to be carefully
inferred by the catalogue user by subtracting the corresponding
background level.

Number of trials: In principle, the number of trial periods
that should be considered to infer the probability of each candi-
date signal to be a noise fluctuation is the total number of Fourier
frequencies in all the FFTs carried out in the whole project. How-
ever, this precept cannot be applied for two main reasons. One
is that the total number of searched sources and Fourier frequen-
cies are unknown until the end of the project (the search for co-
herent signals in the XMM archive is an ongoing project, and
the total number of final trials is therefore still unknown). More

importantly, the second reason is that a good number of sources
has been observed more than once with Chandra and/or XMM-
Newton (or with other missions). We therefore preferred to select
the candidate signals based solely on the statistical properties of
each individual time series so as to leave open the possibility to
later confirm the recurrence of the same signal within the project
or confirm based on data from other missions (Swift, NuSTAR,
Suzaku, ASCA, etc.). This recipe has been adopted for a similar
project on the Chandra archive, namely CATS@BAR in Israel
et al. (2016a), and it proved to be rather efficient, with about
10 signals confirmed by further Chandra pointings carried out
during the 20-year interval of the project, and about 20 signals
confirmed by archival data from other missions and/or follow-up
observations. Furthermore, in the case of XMM, the goodness of
a candidate signal detected in the time series of one EPIC detec-
tor can also be verified by means of the other cameras within the
same observation.

Spurious Signals: As already discussed above (see Section
4.2), independently of the other work packages of the EXTraS
project, we found several spurious signals in those observations
during which EPIC cameras switched to the so-called counting
mode. Correspondingly, in order to minimise the spurious signal
and maximise the signal detection capability of the pipelines in
the affected period interval (mainly in the ∼ 20 − 200 second
interval), we relied upon reprocessed data provided within the
project. This solved the problem for the greatest majority of the
time series. Still, a significant fraction of spurious detections oc-
curred within the same period interval for reprocessed data due
to the timing properties (distribution and/or length) of the GTIs
introduced to correct for the counting-mode switches. Nonethe-
less, these spurious signals are relatively easy to spot: First, in
most cases they present a very wide profile in the PSD (simi-
lar to a QPO component), and second, they are often present in
other sources of the given observation. Generally, we urge users
to carefully inspect the corresponding PSDs of the signal under
investigation (verifying if similar signals have been detected in
PSDs of other sources of the pointing).

Low-frequency signal sensitivity: The FFT capability of
recovering the signal power, and therefore the intrinsic signal
detection efficiency, is known to be maximum towards the first
Fourier frequencies due to the (x2/ sin2 x) term in the pulsed
fraction formula (see eq. 10 and Fig. 3 in Leahy et al. 1983;
x = π j/N, where N is the number of time bins and j the j-
th Fourier frequency). However, the logarithmic smoothing al-
gorithm adopted here (in order to cope with the low-frequency
noise) is such that there is a significant decrease in signal detec-
tion sensitivity in the same frequency interval if low-frequency
noise components are present in the FFT. Correspondingly, it is
very likely that many low-frequency signals have not been de-
tected by the algorithm, even though they can easily be spotted
by a visual inspection. Moreover, the algorithm provides under-
estimated probability values for detected signals at low frequen-
cies, in particular when low-frequency noise components are
present. Correspondingly, no probability filter has been applied
to the detected signals and all the detections have been stored in
the catalogue. Therefore low-probability values in the catalogue
for detected signals at low frequencies do not necessarily im-
ply a weak or spurious detection: A visual inspection is strongly
suggested in this case as well.

Finally, we note that different new versions of the catalogue
and products have been obtained with the aim to mitigate some
of the aspects and limits we have presented in this section. In par-
ticular, we mitigated the counting mode effects and increased the
capability of detecting low-frequency signals (see also Fig. 15).
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Relying upon a personal effort basis, we will try in the future to
update and upgrade the EXTraS database.

5. Search for new transients

5.1. Aims and scope

The goal is to find new X-ray transient sources, that is, sources
that can be detected in a short time interval, but not by a time-
integrated analysis of the whole XMM observation. This hap-
pens to strongly variable sources that are too dim to emerge from
the background of a long observation or that are bright enough
only during periods of high particle background that is removed
by the standard analysis. Such sources are thus not listed in the
XMM serendipitous source catalogue. We implemented a detec-
tion algorithm that (i) applies existing source detection tools to
time-resolved images, and (ii) compares the positions of the de-
tected sources with those of the source list included in the PPS
products of the full observation. To identify the time intervals
containing the flare candidates, we applied a Bayesian block
analysis (Scargle et al. 2013) of time variability in different re-
gions of the EPIC detectors. The search for short X-ray transients
was performed by systematically running our software pipeline
on all the XMM-Newton observations from which the 3XMM-
DR5 catalogue (Rosen et al. 2016) was derived. After this step,
we carefully selected the high-confidence transients through vi-
sual screening of the pipeline products in order to distinguish
astrophysical transients from spurious transient candidates and
to study them in detail. Our search can be divided into different
steps that we describe below.

i Data cleaning and preparation. The aim is to select, filter,
and format the data of the observations for the analysis.

ii Time interval construction and source detection to be applied
to these intervals. Depending on the selected options, the
time intervals can have a fixed or variable (optimised through
a Bayesian block analysis) duration, and the detection algo-
rithm can also operate with different parameters with respect
to the full observation.

iii Position matching to identify transient sources. The aim is
to compare the source lists obtained in the full observation
(list present in the PPS products) and in each time interval in
order to identify new sources, which we define as transients.

iv Position matching to compare results in different instru-
ments, bands, and catalogues. They are needed to identify
the presence of the same transient or variable object in dif-
ferent lists of candidates obtained in the same observation
with different options.

5.2. Overview of the pipeline

The software tools run by our pipeline are combinations of C-
shell scripts, C++, and Python programs and already existing
FTOOLS (HEASOFT version 6.15.1), and SAS (version 14.0)
tasks. The datasets selected for our analysis include observations
of different durations, operating modes (full frame, extended full
frame and large window for the pn, full frame and, partially, any
other mode for the two MOSs), and targets (young star clusters,
nearby galaxies, and extragalactic fields, including multiple vis-
its of the same objects, in some cases at different off-axis po-
sitions). Several fields are very crowded and contain regions of
bright diffuse emission.

Here is a summary of the main steps of the pipeline:
Step 1. Production and standard cleaning (PATTERN 0-4 for

the pn and 0-12 for the MOS, FLAG=0 to avoid pixels close to

CCD boundaries and dead columns) of the event file. The pn raw
data (at ODF level) were reprocessed in order to correct the PPS
event files for the counting-mode bug reported in Appendix A.
The time intervals with a high background rate were not filtered
out. In order to maintain consistency with other work-packages,
we decided to barycenter the data, that is, correct the arrival time
of each event for the satellite orbit, as if it were detected in the
reference frame of the Solar System barycenter.

Step 2. Source detection based on the SAS emldetect task
was performed on snapshot images obtained by dividing the ob-
servations into adjacent time intervals of a fixed duration, or
into variable time intervals optimised through a Bayesian block
analysis. To maximise the sensitivity, we decided to analyse the
data of the combination of the three EPIC cameras, selecting
the seven energy bands included in the 3XMM-DR5 catalogue
(Rosen et al. 2016): 0.2–0.5 keV; 0.5–1 keV; 1–2 keV; 2–4.5
keV; 4.5–12 keV; 0.5–4.5 keV; and 0.2–12 keV.

Step 3. Matching positions of all point-like sources (i.e. with
null extension according to emldetect) detected at step 2 with the
reference sources available from PPS products. When no coun-
terpart (within a given tolerance accounting for both statistical
and systematic uncertainties) is found, a ”transient” flag is set.

Step 4. Identification of transient sources, avoiding duplica-
tions within the same observation (transient sources with consis-
tent positions detected in different snapshots are considered the
same object, and the time intervals of these snapshots are regis-
tered). A transient is defined as any source flagged as ”transient”
at step 3 and with a detection likelihood above a given threshold
(DET_ML7>6, the standard detection threshold adopted for the
XMM-Newton source catalogues).

5.3. Time intervals with fixed duration

As a first step, we implemented a software pipeline to perform
the source detection on images of fixed time duration and com-
pare its output with the source list of the full observation that
is included in the PPS products. We define transient candidates
as all the sources detected in at least one time interval, but with
no counterpart in the PPS source list. This pipeline was system-
atically run on all EPIC observations included in the 3XMM-
DR5 catalogue (Rosen et al. 2016) with time intervals of 1000
and 5000 s. This analysis required more than 45,000 computing
hours, and produced a very large number of transient candidates:
104,583 and 95,410 sources for the 1 ks and 5 ks time bins, re-
spectively. Because only point-like sources are expected to be
variable, we could consider as promising transient candidates
only those with EXT=0, but their number was still very large
(80,211 for 1 ks and 60,883 for 5 ks) and the manual screening
of a random sample unveiled a very high fraction of false posi-
tives (mainly spurious detections close to bright and/or extended
sources).

5.4. Variable time intervals

Instead of searching for transients by dividing the observations
into many intervals of equal duration and analysing the point
sources in each of these snapshots, it is more convenient to per-
form this analysis only for those time intervals that contain an
indication for the presence of a variable source. Determining the
best interval for the analysis is indeed a key aspect for the detec-
tion of transient sources. For this purpose, we used the Bayesian

7 http://xmm-tools.cosmos.esa.int/external/sas/
current/doc/emldetect/node3.html
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Fig. 20. Differential (left panel) and cumulative (right panel) distribution of transient durations (in seconds), defined as the length of the time
interval where the source was most significantly detected. The subset of transients discovered using the Bayesian block algorithm is indicated
(blue) to exclude the sources discovered with the close-to-source algorithm, whose durations can only be integer multiples of 1000 s.
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Fig. 21. Source counts as a function of transient durations (left panel) and detection likelihoods (right panel) in all active instruments and in
the 0.2–12 keV energy band (corresponding to band 0 for the transients and band 8 in the 3XMM-DR5 catalogue). Red points indicate the 136
transient sources in the EXTraS catalogue. In the right panel, yellow points represent all transient candidates before selection and screening, black
points are all 3XMM-DR5 sources, and green points their subsample with EP_EXTENT=0, DET_ML>15 and SUM_FLAG=0.

block algorithm (Scargle et al. 2013). Bayesian block is a well-
known adaptive-binning algorithm that finds the statistically sig-
nificant count rate change-points by maximising the fitness func-
tion for a piecewise-constant representation of the data, starting
from an event list. The time interval of an active transient is then
identified by two count-rate change points. Specifically, for each
observation we divided the active FoV into many small partially
overlapping regions, with a size comparable to the EPIC PSF
(about 10,000 30′′×30′′ regions in the current version). For each
region, we independently ran the Bayesian block algorithm, find-
ing change points in which the count rate varied significantly. We
defined λ as the average rate of the whole signal during a block;
in the case of an ideal background with a constant count rate
when there is no active transient, λ = λB (λB, this parameter rep-
resents the background average rate of events during the block).
In the case of EPIC data, the background signal is variable and
its count rate is seldom constant, especially over long time in-
tervals, that is, λB = λB(t). We therefore modified the Bayesian
block algorithm to remove the effects of background variations.

We started by noting that a non-stationary Poisson signal with a
time-dependent count rate λ = λB(t) can be transformed into a
stationary Poisson signal by introducing the time transformation

t′(t) =

∫ t

0
λB(z)dz. (1)

We defined ti the ith time series of the arrival times of n Pois-
son events detected between the start time < t1 and the stop time
> tn.

When we start from the time series ti and transform it in the
time series t′i using eq. (1), the count rate of the Poisson sig-
nal is constant in the new system if the only source of events is
the background. Any variation in count rate found in this space
corresponds to a variation with respect to the background count
rate. It is clear that the accuracy with which the variability of the
background is measured becomes fundamental to finding these
change points. We can then run the normal Bayesian block algo-
rithm in this transformed space. When we found a block corre-
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sponding to a possible transient, we transformed it back into the
original time reference and obtained the optimal time window.

Regions with no significant variability with respect to the lo-
cal background light curve return only one block covering the
whole observation, while regions containing candidate transients
return more blocks. Our modified version of Bayesian block
takes time-varying exposure into account, resulting, for exam-
ple, from changes in attitude or gaps or defects of the CCD,
and highly variable background such as that found during proton
flares in XMM-Newton data.

To properly evaluate the background light curve and to min-
imise the contribution from the possible variability of known
sources, the Bayesian block algorithm was applied only to the
events that are not included in sufficiently large (depending on
the source intensity) regions around the point sources detected
in the full observation. To examine these regions, as well where
interesting transients might be hidden (especially in crowded X-
ray fields, such as star-forming regions and nearby galaxies), we
developed a dedicated algorithm (dubbed the close-to-source al-
gorithm). For each observation, it creates images integrated over
a fixed time interval (1000 s in the official EXTraS pipeline run)
of regions with a side of 40′′ around the sources excluded from
the analysis performed using the Bayesian block algorithm and
tests for the presence of excesses in addition to known sources
on a grid of fixed positions using a sliding cell. After perform-
ing this analysis on each time bin, all intervals where the same
source was active are merged. From the time intervals identified
either in this way or by the Bayesian block analysis, we selected
only those with a duration shorter than 5 ks (the minimum dura-
tion of standard EPIC exposures) and triggered by regions with a
spatial distribution of the events that are better fit (at a > 5σ con-
fidence level) with the addition of a point-source model rather
than by a simple isotropic background.

In every observation, the identification of transient source
candidates is based on the comparison with the reference source
list present in the PPS products. Because of statistical and sys-
tematic uncertainties in the object coordinates, it is necessary to
allow a coordinate tolerance to match the positions and identify
different sources as the same object. The tolerance is determined
by two parameters, called the sigma value (the minimum number
of sigmas separating the candidate transient from any catalogue
source) and the systematic error (a fixed value representing the
EPIC astrometric accuracy).

All the sources detected in (at least) a time interval and
within the region from which the time interval was generated
by the Bayesian block algorithm, but that are not detected in the
full observation, are defined as transient candidates. The same
object can be detected as a transient candidate in more than one
time interval: In this case, it is identified as a single source, and
these time intervals are registered.

5.5. Candidate transient sources

The analysis was performed with the Bayesian block algorithm
(with 5000 s as the maximum time interval duration), using a
computer cluster made available by the University of Leices-
ter. The total number of transient candidates is 41,881, but only
4,254 of them were detected within the triggering region of the
Bayesian block algorithm. Most false transients produced by
bright columns and particle tracks were removed from the tran-
sient candidate list by an automatic tool, which identified the
sources formed by events aligned along a straight line that is
inconsistent with the instrumental PSF. The screening of the re-
maining candidates was mainly performed using a visualisation

tool with the support of TOPCAT8 and on-line multi-wavelength
catalogues and images. Because a careful screening was possi-
ble only for a maximum of several hundred sources, we limited
this analysis to ∼50% of the transient candidates by selecting
the sources detected with the highest confidence by the detec-
tion algorithm (DET_ML > 15 in the 0.2–12 keV band in all the
active EPIC cameras). We defined nine different quality groups
that identify spurious detections (produced e.g. by out-of-time
events or straylight rings of bright sources, or by a poor satellite
attitude reconstruction) or encapsulate the confidence level of
the transient nature of the candidate (high if a flare and a point
source are visible in all active instruments, but much lower for
marginally variable or confused X-ray sources). In the final tran-
sient catalogue we included only the candidates classified in the
first two groups (high and good reliability) for a resulting list of
136 new X-ray sources).

5.6. Products

The output of the EXTraS search analysis for short X-ray tran-
sients consists of (i) a catalogue that lists all parameters for all
the 136 transient sources – the catalogue is available as a FITS
file and is also included in the EXTraS database; (ii) a set of
BITMAP, FITS, and ASCII files for each source (Bitmap image,
all detected sources marked; Bitmap image, transient marked;
EPIC background image of the interval; EPIC exposure map of
the interval; EPIC image of the interval; region file, all detected
sources; region file, transient).

A list of the 136 transients with their basic properties is
shown in Appendix B in Table B.1. The full transient source cat-
alogue and all products are available online and can be searched
via a dedicated web form9.

5.7. Transient catalogue statistics

The final catalogue of transients includes 136 X-ray sources.
Most of them (122) were discovered with the Bayesian block
algorithm and 14 were discovered through the analysis of the
regions close to 3XMM sources using the close-to-source algo-
rithm with 1 ks time bins.

5.7.1. Transient time durations

The (differential and cumulative) distribution of the transient du-
ration, defined as the length of the time interval where the source
was most significantly detected (BIN0), is shown in Fig. 20. The
transients discovered using the Bayesian block pipeline are also
separately considered because the total distribution also contains
the 14 sources that were discovered with the close-to-source al-
gorithm. These sources are associated with time intervals that are
integer multiples of 1 ks. The sharp cut-off of the distribution at
5 ks is also an artefact of the analysis pipeline, which rejects all
time intervals with longer durations.

We note that only a few transients are shorter than 700 s (and
none are shorter than 5 minutes), as expected for a population
dominated by X-ray flares of active stars (see e.g. Fig. 20 in Pye
et al. 2015). This interpretation is confirmed by the positional
coincidence of a large number of these transients with relatively
bright optical and near-infrared stars (see Section 5.7.4).

8 See http://www.star.bris.ac.uk/~mbt/topcat/.
9 See https://www88.lamp.le.ac.uk/extras/adv-query/
extras_transients.
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5.7.2. Transient counts and detection likelihood

The left panel of Fig. 21 displays the number of counts de-
tected in all the active instruments in the 0.2-12 keV band
(EP_0_SCTS) as a function of the transient duration (defined
as in Section 5.7.1). A mild positive correlation is visible, which
can be explained by the fact that faint transients in longer time
intervals are more difficult to distinguish from the background
and that transients with many counts in short time intervals are
intrinsically brighter and therefore less frequent.

The expected correlation between counts and detection like-
lihood is clearly visible in the right panel of Fig. 21 for different
data samples. The black points are all the sources of the 3XMM-
DR5 catalogue (Rosen et al. 2016), and the green points indicate
only the clean (SUM_FLAG = 0), point-like (EP_EXTENT =
0) detections with DET_ML>15. For this subsample, selected
according to the same criteria as the sources in the transient cat-
alogue, the correlation between the number of counts and the de-
tection likelihood is even more striking than in the global sample
because almost all the sources that were detected with a large
number of counts but relatively low detection likelihood were
either extended or displayed some anomaly in the screening per-
formed by the Survey Science Center (SSC).

Similar considerations also apply to the comparison of the
yellow points, which are all the transient candidates before the
screening process, and the 136 transients included from the EX-
TraS catalogue (red points). A remarkable difference with re-
spect to the 3XMM sources is the group of yellow points located
below the region of clean sources: All these transient candidates,
with a particularly high ratio of their detection likelihood over
the number of counts, were detected in very short time intervals
(from a fraction of a second to several dozen seconds) and only
in one EPIC camera, and turned out to be either bright or flick-
ering pixels or short tracks of high-energy particles.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

abs(BII)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f 
so

u
rc

e
s

Transients

3XMM-DR5

Fig. 23. Cumulative distribution of the absolute value of the Galac-
tic latitudes of the EXTraS transients (red) and of the point sources
(EP_EXTENT=0) with DET_ML>15 and SUM_FLAG=0 in the
3XMM-DR5 catalogue (green). The excess of transients at low latitudes
is clearly visible.

5.7.3. Sky distribution of the transients

To estimate the sky coverage of our systematic search, we pro-
duced and merged the exposure maps for each instrument (with-

out correcting for the telescope vignetting) for all the observa-
tions that we processed with the EXTraS pipeline. The global
exposure maps of the pn, MOS1, and MOS2 instruments corre-
spond to the observation of the full sky (41,253 square degrees)
for 8.7, 12.4 and 13.9 minutes, respectively.

To evaluate the sky coverage of the Bayesian block pipeline
without considering the close-to-source algorithm, which has a
different sensitivity, we also created so-called cheesed exposure
maps by removing the regions that were used to exclude the
3XMM sources from the Bayesian block analysis. In this case,
our search for transients corresponded to an all-sky survey last-
ing 8.2, 11.9, and 13.3 minutes for the pn, MOS1, and MOS2,
respectively.

The distribution of XMM-Newton pointings is far from being
isotropic, however, and therefore we computed the same spa-
tially averaged exposure times in ∼12,000 sky regions with a
size of ∼3.5 square degrees. The corresponding map of the time
coverage of the EXTraS search for transients with the pn camera
(without removing the regions around 3XMM sources) is shown
in Fig. 22, together with the positions of the 136 transients in
Galactic coordinates. The sky distribution of EXTraS transients
is clearly clustered on the Galactic plane, in particular, in its cen-
tral part. To understand whether this effect is due to the longer
exposure time dedicated by XMM-Newton to the study of Galac-
tic objects, we compare in Fig. 23 the cumulative distribution
of (the absolute value of) the Galactic latitude of the EXTraS
transients with that of the clean sample of 3XMM-DR5 sources.
The striking difference between these two distributions indicates
that the newly discovered transients mainly have a Galactic ori-
gin, whereas the fraction of extra-galactic objects in the 3XMM-
DR5 catalogue is significantly larger. This is another confirma-
tion that the majority of the EXTraS transients are very likely
flares from relatively nearby stars (see Section 5.7.4), whereas
the 3XMM catalogue contains a large number of active galactic
nuclei, whose X-ray variability on timescales <5 ks is much less
prominent.

On the other hand, the position of the shortest EXTraS tran-
sient (EXMM J023135.0–603743, with BIN0=315 s) is consis-
tent with a galaxy at redshift z = 0.092 and has been interpreted
as the X-ray flare of a core collapse supernova (Novara et al.
2020). The same transient has independently been discovered in
a systematic search for supernova shock break-out candidates in
XMM-Newton archival data (Alp & Larsson 2020). The other 11
candidates listed in Alp & Larsson (2020) could not have been
detected by the algorithm described in this section because they
were either already included in the 3XMM-DR5 catalogue or oc-
curred in more recent observations that were not covered by our
analysis.

5.7.4. Cross-match with the GAIA source catalogue

To estimate the fraction of EXTraS transients with stellar coun-
terparts, we used TOPCAT to cross-match their positions with
the Gaia DR2 catalogue of stars with well-determined parallax
(Bailer-Jones et al. 2018). Specifically, we found that 58 out of
136 transients in the EXTraS catalogue are located within 5 arc-
sec from a Gaia star with parallax/parallax_error>5, which can
be considered a very robust indicator of stellar nature (see e.g.
Bai et al. 2018). By counting the number of these stars within
3 arcminutes from each transient, we evaluated a <10% chance
coincidence probability even for the most crowded fields, and
therefore only a few false associations are expected.

On the other hand, the majority of the transients with no clear
stellar counterpart are also consistent with stellar flare shape and
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Fig. 22. Sky distribution of transients (red circles) over the map of pn sky coverage (∼3.5 square degree regions with the total exposure indicated
by the colour bar) is clearly visible.

duration. They might be produced by farther and/or fainter stars,
whose parallax could not be precisely measured by Gaia.
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Fig. 24. Distribution of EPIC counts in the 0.2–12 keV energy band
detected by the EXTraS pipeline for all the simulated transients (red)
and for those that were also detected in the full observation (blue).

5.7.5. Comparison with the 4XMM-DR9 and 3XMM-DR5
serendipitous source catalogue

After the release of the 4XMM-DR9 catalogue, we verified
whether this more complete catalogue included a fraction of the
136 new transients detected by the EXTraS algorithm. Although
the positions of 29 EXTraS transients are within 5 arcsec of a
4XMM-DR9 source, only 15 of them were detected during the
same observation. One of them (EXMM J162714.7–245135),
detected with the close-to source algorithm, is ∼4 arcsec from
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Fig. 25. Cumulative distribution of the SPCLEAN_FLAG parame-
ter, indicating the fraction of the BIN0 interval that is not affected by
soft protons flares for the EXTraS transients (green), all the simulated
transients detected by the EXTraS pipeline (red), and those that were
also detected by the 3XMM-DR5 pipeline applied to full observations
(blue).

a source that is also included in the 3XMM-DR5 catalogue, but
this catalogue source and the EXTraS transient are very likely
produced by two distinct bright stars in the Rho Ophiuchus open
cluster, with GAIA parallaxes of 7.24±0.05 mas and 7.3±0.07
mas, respectively. In the remaining cases, the transient emis-
sion detected through the EXTraS analysis was missed by the
standard detection procedure, which instead detected either the
persistent emission or a different flaring episode from the same
sky position. Both cases would not be surprising for stars that
can emit multiple flares and typically have faint persistent X-
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ray emission that might only be detectable during relatively long
XMM-Newton exposures.

We note that of the 14 EXTraS transient events that were gen-
uinely detected by the standard analysis, only 2 are classified as
variable sources in the 4XMM-DR9 catalogue. The high sensi-
tivity of the EXTraS algorithm in detecting fast transients is also
confirmed by the fact that an independent search for X-ray tran-
sients in the XMM-Newton archive, using a different approach,
did not discover additional sources with respect to the 4XMM-
DR9 catalogue (Pastor-Marazuela et al. 2020).

To further explore the advantages of the EXTraS search for
transients in comparison with the variability study of catalogue
sources, we can take advantage of the simulations performed in
Novara et al. (2020) to evaluate the sensitivity of the EXTraS al-
gorithm to short transients. Taking as a template the spectrum
and light curve of the ∼5-minute X-ray flare associated with
SN 2008D (Soderberg et al. 2008), we simulated the events of
∼48,000 transients with different fluxes as they would be ob-
served by the three EPIC cameras at different off-axis angles,
and added them to the event files of a randomly selected sam-
ple of the XMM-Newton observations that were used to extract
the EXTraS transient catalogue. The simulations took the instru-
mental configuration (operating mode, filter, and good time in-
tervals) and pointing direction (to correct the simulated spectrum
according to the total Galactic absorption expected along the line
of sight) of each observation into account (more details of the
simulation can be found in Novara et al. 2020).

We then applied the EXTraS transient algorithm and the
same detection pipeline as was used to obtain the 3XMM-DR5
source catalogue to these data. By matching the known positions
of the simulated sources with those of the sources detected by
the two pipelines, we found that 34,476 of the simulated sources
were detected (with DET_ML>15) by the EXTraS algorithm
and that the standard pipeline detected 24,296 of them in the full
observation as well. As shown in Fig. 24, the fraction of sources
that was detected in the full observations as well is much larger
for the brightest simulated transients.

As anticipated in Section 5.1, the new transients in the EX-
TraS catalogue are missed by standard analysis because their
X-ray signal is either too faint to significantly emerge from the
background of the full observation or because it occurred during
a time period of high background, which is filtered out by the
standard detection procedure. The relative importance of these
two effects can be evaluated by exploring the parameter SP-
CLEAN_FLAG, which for each transient detected by the EX-
TraS algorithm is defined as the fraction of the time interval
where the source was most significantly detected (BIN0) that
would not be excluded by the 3XMM-DR5 pipeline, which re-
moves high particle background time intervals. As shown in
Fig. 25, ∼90% of the simulated transients that were also de-
tected in the full observations occurred during a time interval that
was not affected by soft protons flares (SPCLEAN_FLAG=1),
whereas this fraction decreases to 77% and 57% for the to-
tal sample of the simulated sources and the EXTraS transients,
respectively. On the other hand, 11% of the simulated tran-
sients that were detected by the EXTraS algorithm and 14%
of the 136 EXTraS transients occurred in a time interval that
was completely excluded by the 3XMM-DR5 pipeline (SP-
CLEAN_FLAG=0).

6. Long-term variability (LTV)

6.1. Aims and scope

Many parts of the sky have been observed at least twice by
XMM-Newton in pointed mode and/or during slews between
pointings. The LTV component of the EXTraS project exploits
X-ray photometry of a subset of sources that were multiply ob-
served by XMM-Newton together with upper-limit data to fa-
cilitate the study of potential long-term (inter-observation) vari-
ability. As scheduling of XMM-Newton observations covering a
given source is generally random, the data sampling for most
sources is sparse and very non-uniform, so that only simple
measures are employed to characterise potential variability. Fig-
ure 26 shows the frequency distribution of repeat observations.

The EXTraS LTV catalogue is based on the set of 7781
pointed observations from the 3XMM-DR5 catalogue (Rosen
et al. (2016)) and a new processing of 2059 available XMM-
Newton slews that form a large subset of the XMMSL2 slew
catalogue10. The pointed data span 14.9 years, from 03 Febru-
ary 2000 to 20 December 2013, and cover ≈2% of the unique
sky, while the slew data cover 13.35 years, from 27 August 2001
to 31 December 2014, and image around 84% of unique sky.
All photometric measurements are observation-integrated snap-
shots of sources. Pointed observation exposures are generally in
the range ∼1 ks to ∼130 ks, while slew observations typically
amass an exposure of about 10s. The median 0.2-12.0 keV (total
band = band 8) source fluxes are ∼2.1×10−14 erg cm−2 s−1 and
∼2.7×10−12 erg cm−2 s−1 for pointed and slew data, respectively.

Fig. 26. Numbers of sources in the LTV catalogue comprising a given
number of observations for pointed data only (red), slew data only
(blue), and both (black). The latter histogram starts at 2 because sources
comprising only one data point in total are not counted.

6.2. Slew data processing

Slew data are only obtained with the pn camera in the prime full
window, prime full window extended, or prime large window
modes, and always with the medium filter. The new slew pro-
cessing exploits improvements in both software and calibration
since the XMMSL1 catalogue (Saxton et al. 2008), still broadly
following the approach described there but with upgrades to the

10 https://www.cosmos.esa.int/web/xmm-newton/xmmsl2-ug
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pipeline that were partly undertaken within the remit of the EX-
TraS project and that incorporate three significant changes to
slew processing. We outline them below.

First, a ∼ 0.25◦ overlap region is now included between ad-
jacent ∼ 1◦ x 0.5◦ sub-images along the slew, ensuring that a de-
tected source can always be adequately fitted with the PSF in at
least one sub-image (if a source is detected in both sub-images,
its photometry is taken from the image in which the source is
closer to the centre).

Second, a new PSF, averaged over the whole FoV, is
used in obtaining slew photometry, replacing the previ-
ous single on-axis point PSF that did not account for the
varying PSF of a source image as it crosses the FoV (see
https://www.cosmos.esa.int/web/xmm-newton/xmmsl2-ug).
The new PSF matches source profiles better than the simple
on-axis PSF.

Third, the filtering of periods of high background is applied
on an individual sub-image basis; previously, all data were re-
jected from any slew that was affected by high background. This
allows including data from many more slews.

The better slew PSF yields systematic increases in the recov-
ered source counts and count rates (by ∼2%) compared to the
XMMSL1 catalogue and corresponding increases in the detec-
tion likelihoods, along with an ∼ 0′′.35 improvement in the astro-
metric accuracy (by comparing to astrometric catalogues). Pho-
tometry (count rates and fluxes) of slew detections is obtained
in the broad soft (0.2-2.0 keV = band 6), hard (2.0-12.0 keV =
band 7), and total (0.2-12.0 keV = band 8) energy bands. Fluxes
(Fi) are computed, in each band, i, from the count rate, Ri, as
Fi = RiEi, where Ei is the energy conversion factor (ECF) (see
Saxton et al. (2008) and https://www.cosmos.esa.int/web/xmm-
newton/xmmsl2-ug#Fluxes).

6.3. Pointed data photometry

Standard pipeline processing of pointed data determines count
rates in five energy bands by fitting energy-band-dependent PSFs
to source images in all five bands simultaneously, as described
in Watson et al. (2009) (see also Rosen et al. (2016)). Because
of the much shorter exposure times (thus lower counts), as noted
above, slew data are binned into three broad bands. Slew pro-
cessing also fits sources separately in each band and uses PSFs
extracted at a fixed (1.5 keV) energy in all three bands. Conse-
quently, simply combining narrow-band pointed data count rates
into the broad slew bands for comparison with the slew measure-
ments can yield discrepancies of several percent in count rate.
Furthermore, the use of ECFs based on a fixed spectral profile
for sources that often deviate from that profile can yield much
larger discrepancies in fluxes. The effect is largest in the broad-
est (i.e. hard and total) bands. To maximise the consistency of
pointed and slew data in long-term light curves, we re-extracted
the pointed data in the broad bands in the same way as used for
slew processing.

The analysis of pointed data was performed for all source
detections in the 3XMM-DR5 catalogue. Images for each avail-
able instrument were created directly in bands 6, 7, and 8, with
count rates separately derived in each from fitting of the relevant
instrument PSF model, extracted at 1.5 keV (hereafter referred
to as the direct approach). The PSF normalisation (related to the
count rate) was fitted for each detection, but its position and ex-
tent were fixed at its 3XMM-DR5 catalogue values. ECF values
used for computing fluxes are given in Appendix C.

6.4. Matching of pointed and slew sources

To build long-term light curves, astrometric information was
first used to associate pointed and slew detections with unique
sources on the sky. Detections from the 3XMM-DR5 catalogue
are already matched into unique sources as described in Rosen
et al. (2016), exploiting the Bayesian algorithm of Budavári &
Szalay (2008). Slew detections were separately matched into
unique sources as follows:

– Detections in the same band within 30′′ of each other in two
consecutive slew sub-images are considered to be the same
source, and the detection farthest from its sub-image centre
is removed from the source list.

– Detections in the total and soft bands within 30′′ of each
other in the same sub-image are deemed to be the same
source and are merged into one record per source. Any hard-
band detection, also within 30′′ of them and from the same
image, is then associated with them.

– The slew source is then identified with the detection in the
band that has the highest detection likelihood.

– A further check is made for sources that lie in consecutive
images with a separation of <30′′, which have detections in
different bands. These are joined.

– Finally, sources seen in two or more slews are combined to
set the UNIQUE_SRCNAME to the one with the highest de-
tection likelihood (in any band).

Pointed source positions reflect the position-error-weighted
average of the detections involved. Where possible, slew sources
were then matched to existing pointed sources using the above-
mentioned Bayesian approach to decide on the association.
Some 6.3% of the slew sources are associated with pointed
sources. Where a single match is found (76% of cases), the con-
stituent slew detections acquire the source identifier (SRCID) of
the pointed source. Where a slew source matches more than one
candidate pointed source (i.e. an ambiguity), it is assigned to
the pointed source with the highest match probability, but a flag
(NPMATCH) is set, indicating how many other pointed sources
it matches. Where a slew source has no match with a pointed
source, a new source is established in the LTV catalogue with
the IAUNAME of the slew source.

Pointed data astrometry is generally more precise (mean sta-
tistical uncertainty, σ, ∼ 1′′.4) than slew data (σ ∼ 5′′.3) because
of (i) better statistics from the longer exposures, (ii) the tighter
PSF, and (iii) because pointed detections are generally recti-
fied against an astrometric reference catalogue (see Rosen et al.
(2016) and references therein), which is not possible for slew
data. Thus, the position of a source that contains both pointed
and slew detections is taken as that of the original pointed source.
Sources containing only pointed detections or only slew de-
tections acquire the positions of the respective pointed or slew
source.

6.5. Upper limits

Where a source is covered by an observation but is not de-
tected, upper-limit data can still provide useful constraints
on the source brightness. Upper limits were obtained from
all pointed and slew images covering source positions de-
scribed in section 6.4, even where the source was de-
tected, broadly following the approach used in the FLIX tool
(http://www.ledas.ac.uk/flix/flix_dr5.html), but tailored to the
LTV data and energy bands. Upper-limit count rates were ex-
tracted for a detection likelihood, L = 10 (corresponding approx-

Article number, page 26 of 39



A. De Luca et al.: The EXTraS Project: Exploring the X-ray transient and variable sky

imately to a Gaussian sigma of 3.9), for each band and available
instrument.

All available count rate and flux upper limits are provided
in a dedicated row in the LTV catalogue for any observation
of a source where it is not detected in any band or instrument.
Its detection identifier, DETID, comprises the observation ID
(OBS_ID), followed by the relevant source identifier (SRCID).
For observations where a source is detected but not in all avail-
able bands or instruments, upper limits are inserted for the bands
or instruments with non-detections. In addition, where the detec-
tion likelihood, Li, in band i of a real detection is <8.0 for any in-
strument, we replace the relevant photometric information with
the upper limits. Upper-limit values appear as negative numbers
in the catalogue, and the error columns for these quantities con-
tain nulls. Where an all-EPIC detection likelihood is <8.0, the
EPIC photometric value is replaced by the highest upper limit
from the available individual instruments because the calcula-
tion of all-EPIC upper limits is not trivial and the upper-limit
software does not compute them.

6.6. Long-term variability characterisation

The generally limited quantity and sparseness of the data for
each source and the presence of upper limits makes a detailed
systematic analysis difficult. The analysis of long-term variabil-
ity therefore involves some simple variability tests and a set of
measurements that characterise the scale and timescale of vari-
ability. All quantities are provided for each instrument and for
each of bands 6, 7, and 8 where possible.

Three primary measures are computed for variability. One of
these is a reduced χ2 (DRCHISQ columns), that is,

1
(n − 1)

n∑
1

(
Fi − F̄
σi

)2

, (2)

and the associated probability (DPROB columns) for the null
hypothesis of the data being constant, where Fi is the flux of the
ith data point in a light curve comprising n data points, σi is its
error, and F̄ is the variance-weighted mean flux.

The second measure is the largest error-normalised flux
change (MDDE columns) between any pair of points, i and j,
in the light curve, that is, max[(Fi − F j)/σi j], where σi j is the
quadrature sum of the flux errors on the two points. Both quan-
tities are only based on detections.

A third quantity is the ratio of the maximum flux to the min-
imum flux and its error (MR and MRE columns). The minimum
flux point can be a detection or upper limit value; if it is an upper
limit, the result is essentially a lower limit on the MR ratio. If
the maximum value is an upper limit, it is not used. The error
(MRE) on the maximum flux ratio (MR = Fmax/Fmin) is simply
computed as

MRE = MR
[(

∆Fmax

Fmax

)2

+

(
∆Fmin

Fmin

)2]
, (3)

where Fmin and Fmax are the fluxes of the minimum and max-
imum points, respectively. If the lower point is an upper limit, the
flux is taken as the upper limit (see section 6.5). In these cases,
we ascribe a 1σ equivalent Gaussian uncertainty to the upper
limit of ∆Fmin = Fmin/3.9.

While these quantities are provided in the LTV catalogue, no
attempt is made to impose a threshold and thus identify sources

as variable or not. This is left to the user. These three measures
are augmented by a number of additional quantities that provide
information about the scale and timescales of variations in the
long-term light curves. These are listed below.

i The time-span (TMDDE) over which the largest error-
normalised flux change (MDDE see section 6.6 above) oc-
curs.

ii The error-weighted mean flux (WMEAN and DWMEAN).
Quantities that are preceded by a ’D’ involve only detections.

iii The maximum upward (EMFU) and downward (EMFD) flux
ratios as measured between (F − σ)max and (F + σ)min, that
is, a conservative measure of the largest change.

iv The timescales over which the largest upward (TEMFU) and
downward (TEMFD) flux transitions occur.

v The shortest timescales between two points, i (bright) and
j (faint), in which the flux increases (ET2U) and decreases
(ET2D) by at least a factor 2, that is, where (F − σ)i/(F +
σ) j > 2.

vi (ET10U) and (ET10D): as for (ET2U) and (ET2D), but for
changes by a factor >10.

vii The significance associated with a runs (Wald-Wolfowitz)
test (Bradley 1968) to gauge the degree of any systematic
variations in a time series (DSIGNIF). 11

6.7. LTV catalogue and its basic properties

The LTV catalogue format is broadly modelled on the 3XMM
catalogues but (i) contains only a subset of the most important
columns, (ii) includes the aforementioned upper-limit data, and
(iii) includes the long-term variability measures (see section 6.6)
and some additional quality information. Each row of the cata-
logue refers to one of a pointed detection, a slew detection, or a
pointed or slew upper limit, with identifiers for the sources they
are associated with. Information is provided for each instrument
(and all-EPIC) and per energy band.

The contents of the LTV catalogue (410 columns) are de-
scribed by descriptors in the EXTraS database (see 7.1). For each
source, a graphic (gif) LTV light-curve product is also created
for each instrument and energy band. URL links to the graphics
are contained within the FITS LTV catalogue file. They are also
accessible within the EXTraS database. An example graphic is
shown in Fig. 27.

A summary of the catalogue contents is given in Table 3.
In figure 28 we show the area-normalised distribution of the

EPIC band 8 MDDE parameter for all LTV catalogue data and a
clean subset. Including data with quality issues shifts the distri-
bution of each quantity in a direction that indicates more sources
might be deemed long-term variable, that is, sources whose long-
term light curves involve lower quality data are more likely to
yield spurious detections of variability. Quality filtering is thus
an important step when the catalogue is used.

A number of simulations were pursued to gauge the level of
spurious variability detection in good-quality sources in the LTV
catalogue. A simple approach was adopted in which each source
in the catalogue was considered to be constant, with a flux, Fc,

11 The statistic is computed as Z = (R− R̄)/s, where R is the number of
observed runs, R̄ = 2n+n−/(n + 1), is the expected number of runs, and
s is the standard deviation of the number of runs (s2 = 2n+n−(2n+n− −
n)/[n2(n− 1)] ): n+ and n− are the number of positive and negative runs,
respectively, and n = (n+ + n−). A run is a sequence of consecutive
points above or below the mean flux. It only has relevance to time series
with ∼ 10 or more points.
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Fig. 27. Example long-term light curve of a source (SRCID=262733)
in the LTV catalogue. The main measures and points involved are indi-
cated in the plots by connecting lines, e.g. dashed blue lines join points
used in the MR and EMFU/EMFD quantities, while dashed orange and
red lines signify changes by a factor 2 and factor 10 in flux between
pairs of points. Some of the key LTV measurement values are printed in
the graphic for convenience. In some cases, high slew upper limits are
not displayed where they suppress the visibility of low-level changes in
other data.

Table 3. Overview of catalogue properties. The cleanest sources are
those in which any or all constituent pointed detections have a summary
flag of 0, are point-like and not piled up, and none (nor any constituent
slew detections) show indications of astrometry problems.

Detections & upper limits 2,030,040
Pointed(slew) detections 565,962 (29,944)
Unique sources 419,240
Unique sources with > 1 EPIC band 8 measurement 357,178
Unique sources with > 1 EPIC band 8 measurement 286,215
& ≥ 1 detection
Unique sources with EPIC band 8 MDDE > 5 10,980
Cleanest unique sources with EPIC band 8 MDDE > 5 2,954

equal to the error-weighted mean of its flux values. Each simu-
lated point took the 1σ error associated with the real detection
or upper limit, and its flux was randomly drawn from a Gaussian
distribution with Fc as its mean and standard deviation, σ. Points
assigned a negative flux, however, were set equal to the upper
limit value estimated from the image at the source location. For
each source, 10000 simulations were run and the simulated data
from each run were processed using the same analysis approach
as for the real data. We find that for clean sources, we expect a
false-positive rate of detecting variability of < 0.1% when adopt-
ing ∆F/σ (MDDE) > 5 as the definition that a source is variable.

6.8. Quality issues

A number of issues can affect the quality and reliability of detec-
tions and upper limits, such as image artefacts, problems arising
from inadequately characterised extended sources, high back-
ground levels, imperfections in the PSF model description, as-
trometry errors, and event pile-up in bright sources. In the worst-
case scenarios, these can give rise to spurious detections or re-
duce the accuracy of photometric data in other cases. It is im-
portant to identify sources that contain one or more detection or
upper-limit data compromised by such issues because inaccurate
photometry can lead to erroneous detections of (or missed) vari-
ability.

For pointed data, the 3XMM-DR5 catalogue already con-
tains multi-element flag sets per detection that reflect issues that
are automatically identified by the processing pipeline together

Fig. 28. Distribution of the EPIC band 8 MDDE parameter for all the
LTV catalogue sources with valid values (red) and for a clean sub-
set (black). Including sources affected by data quality issues shifts the
distribution to higher values, suggesting quality issues may lead to in-
creased detections of spurious variability.

with the results of manual screening which sought to identify
problems associated with complex regions, high source densi-
ties, bright sources, and image artefacts, for example. The multi-
element flags are subsequently collapsed into a summary flag
SUM_FLAG, ranging from 0 (cleanest) to 4. All these flags are
explained in Watson et al. (2009), see also Rosen et al. (2016).
For user convenience, this flag information is propagated to the
LTV catalogue for pointed data. For slew data, the main quality
issue arises where attitude reconstruction is less reliable, poten-
tially affecting astrometric information. This is reported with the
VER_PSUSP flag.

Pile-up in pointed detections is identified by testing whether
the total band count rate exceeds a tabulated threshold value 12

for the instrument or mode. Thresholds for untabulated modes
are estimated from tabulated modes by scaling by the inverse of
the frame time. Where a mode involves CCDs operating with
different frame times, the adopted threshold applies to the CCD
in which the source appears. For slew data, the slew motion re-
duces pile-up, and a higher count rate of 4.0 cts/s is adopted as
the pile-up limit for all slew detections. Where the total-band
count rate of a detection exceeds the relevant pile-up threshold
in a given instrument (<inst> (=PN, M1, M2 or EP)), a logical
flag (<inst>_PU_FLAG) is set for that instrument. For a given
detection, if any of the instrument pile-up flags are set, a further
flag, EP_PU_FLAG, is set.

Together with detection-level flags, the LTV catalogue con-
tains additional flags to highlight sources that contain detections
with potential issues. These values are set the same for all rows
associated with a source, whether pointed or slew detections or
upper limits. We list them below.

– WORST_SF: The worst SUM_FLAG value of any constituent
pointed detection.

– FRAC_EP_PU: Indicates the fraction of detections (pointed
and/or slew) with set EP_PU_FLAG . This highlights
sources where pile-up may be a causing one or more under-
estimated detection count rates.

12 https://heasarc.gsfc.nasa.gov/docs/xmm/uhb/epicmode.
html
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– FRAC_EXT: Quantifies the fraction of detections whose all-
EPIC band 8 (or for slew, band 6, 7 or 8) intrinsic extent is >
6′′.

– SLEW_FLAG: Indicates sources containing one or more slew
detections where the VER_PSUSP flag is set. 13

– FRAC_STV: The fraction of pointed detections show-
ing evidence of short-term variability (identified by their
VAR_FLAG being set in 3XMM-DR5). Such short-term vari-
ability (e.g. short-lived flares) could be a contributing factor
to any apparent long-term changes. Because pipeline pro-
cessing only extracts exposure-level light curves for detec-
tions with > 100 EPIC counts, there is no information on
short-term variability available from the 3XMM-DR5 cata-
logue in many cases. More sensitive information on short-
term variability can be explored through EXTraS (see sec-
tion 3), however.

– N_NEARSRC: The number of other sources within 20′′ of
the source. This alerts users to cases with increased risk that
the assignment of detections to sources may be suspect.

– FRAC_POSCOROK: Provides the fraction of pointed detec-
tions with POSCOROK=T, that is, where astrometric rectifi-
cation was considered successful.

6.9. Example usage

Long-term X-ray variability data can provide key insights into
astrophysical sources, such as tidal disruption events, the flar-
ing activity in active galaxy nuclei, the cause of accretion rate
changes in X-ray binaries and catalclysmic variables, flare fre-
quencies and intensities in active stars, and outbursts from ultra-
luminous X-ray (ULX) sources. Here, we briefly illustrate the
potential of the LTV catalogue data for studies of ULX sources.

We take as one example the catalogue of 2139 detections
of sources from 3XMM-DR4 that were identified as having
non-nuclear associations with bright galaxies (Earnshaw et al.
2019; hereafter E19). Converting the LTV catalogue EPIC band
8 fluxes of these detections into luminosity, L8 (and 1σ error,
∆L8), using the same flux-to-luminosity factors as E19, and ap-
plying their criteria for selecting ULX candidates (i.e. L8 > 1039

ergs s−1 or L8 + ∆L8 > 1039 ergs s−1), we isolated 351 sources
that met the criteria. This compares with 384 found by E19. We
find 330 sources in common that meet the criteria, that is, 86%
of the E19 sample. Fifty-six sources in the E19 catalogue have
no match in the LTV sources and 23 LTV sources have no match
in the E19 sources. The differences stem from the difference in
the determination of the count rates and the ECFs used to con-
vert count rates to fluxes. While the EPIC band 8 fluxes used by
E19 (from 3XMM-DR4) and the LTV band 8 fluxes broadly fol-
low a one-to-one relation, there is significant scatter due to this
difference in method.

Earnshaw, Roberts & Sathyaprakash (2018) (hereafter E18)
selected an initial subsample of 12 candidate transient ULX
sources from the 384-source superset of E19 based on those
showing at least a factor 10 change in luminosity amongst the
detections or upper limits. Subsequently, this was filtered down
to 5 sources with a secure factor >10 variability, following care-
ful scrutiny of the data.
13 The LTV catalogue excludes all upper limits from slew observations
that might be affected by astrometry issues (i.e. those that would have
VER_PSUSP=T). This is because when they are included, they trig-
ger the setting of the SLEW_FLAG in 7900 sources, but in the vast
majority of cases, it is a single slew upper limit entry that causes the
SLEW_FLAG to be set, but the slew upper limit entry usually adds no
useful value to the light curve of the source.

We used the 351 LTV candidate ULX sources mentioned
above to perform a similar selection based on EP_MR8 >10.
This selected 15 sources. After we applied a quality threshold
to the LTV subset, requiring the lowest summary flag to be ≤1,
10 sources remained. As in E18, 4 sources are a consequence
of a duplication of catalogue identifiers associated with a pair of
close sources that are incorrectly identified as a single but dif-
ferent source in two separate observations. These are excluded.
The resulting subset of 6 sources are the first 6 entries shown in
table 6.9. The table includes where measurable the fastest factor
2 and factor 10 upward and downward changes in flux observed
in the available LTV data. This subset includes 3 of those in the
final subset of 5 ULX transient sources discussed by E18, but
does not include NGC 6946 ULX-1 (203500.1+600908) from
the E18 final subset of 5 sources because in the LTV catalogue,
the maximum/minimum ratio is 7.5, which is below the factor 10
variation threshold. The maximum/minimum of the XMM EPIC
band 8 luminosity data provided in the E19 catalogue is also be-
low the threshold. Another of the final 5 sources of E18, M51
ULX-4 (132953.3+471042), passes the EP_MR8 >10 threshold
but is also absent from the list because it has three LTV detec-
tions with a summary flag of 3. These two E18 cases are shown
at the end of table 6.9. The 5 sources in the E18 ULX transient
list are indicated by a ’Y’ in the last column.

Three of the 6 LTV sources are not in the E18 list. The
first, 022134.1-053105, is a marginal case of a factor 10 change.
In the two observations where it is detected, both are short
(2ks) exposures with very few counts in the MOS cameras,
while the pn data has a high background. Furthermore, one of
the two EPIC band-8 detections is characterised as slightly ex-
tended, rendering the flux less reliable. For the second source,
073650.0+653603, the variation (a single detection and two up-
per limits) is clear and real. This is likely to be one of the
sources considered as a blend by E18 as there is a faint source
about 20′′ away. Based on the high (>100) max/min ratio of
073650.0+653603, however, accounting for contamination by
the faint source would be very unlikely to reduce the ratio to
below 10. The third source, 213631.9-543357, is likely to be the
other blended case that E18 excluded. Again, this source com-
prises one EPIC band-8 detection and two upper limits in the
LTV catalogue. One of the observations yielding an upper limit
is affected by high background in all three cameras, but in the
observation where the detection is claimed, the source is clearly
present in the available (pn, MOS2) cameras. The LTV catalogue
indicates the presence of another source within 20′′ so that some
contamination is likely.

The above very simple process, which mimicks the analy-
sis of the XMM-Newton data performed by E19 and E18 and
broadly confirms their sources as long-term variable, shows the
merit of the LTV catalogue in quickly finding potential long-
term variable X-ray sources in the 3XMM-DR5 catalogue data
from user-defined samples, exploiting the auxiliary global source
quality information to filter or check the data. Nevertheless, we
urge users always to inspect the data (including the image data)
because use of the quality information alone may be not good
enough.

6.10. Known problems and issues

Whilst the photometric measurements of detections are gener-
ally robust, problems can arise in some circumstances. We dis-
cuss some residual points that are relevant to the LTV data and
analysis.
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Table 4. Six clean sources (lowest summary flag ≤1) in the LTV catalogue with EPIC band-8 luminosities above the threshold adopted by E19 to
be considered as ULX candidates, and with maximum-to-minimum flux ratios >10 (values in the EP_MR8 column). All measurement quantities
refer to EPIC band-8 data. The EP_ET quantities are the shortest timescales (in days), in which factor 2 or factor 10 up (u) or down (d) changes
of flux are seen in their LTV data. The last two rows are for two of the five sources from E18 that do not appear in the LTV set. The reasons
are discussed in the text. For 022134.1-053105 and 230457.6+122028, the EP_ET10u8 and EP_ET10d8 values are absent because with the more
conservative definition of these measures (see section 6.6), which include the errors, the changes are smaller than a factor of 10.

Source EP_MR8 EP_ET2u8 EP_ET2d8 EP_ET10u8 EP_ET10d8 in E18 list
013636.4+155036 13.2 339.5 339.46805 Y
022134.1-053105 10.4 0.14 1078.1
073650.0+653603 115.2 133.7 367.7 133.7 367.7
121847.6+472054 34.8 156.7 1640.0 339.3 1640.0 Y
213631.9-543357 21.9 1239.6 1239.6
230457.6+122028 11.4 1465.7 Y
132953.3+471042 29.3 1839.6 4.1 1839.6 327.1 Y
203500.1+600908 7.5 502.7 518.6 Y

6.10.1. Spatially extended detections of point sources

Point sources can sometimes be erroneously characterised as ex-
tended, which can yield incorrect photometry. This might lead to
spurious identification of variability or failure to detect real vari-
ability. While we could forcibly characterise sources as point-
like (because the LTV catalogue is mainly about point sources),
but this can also produce incorrect photometry in some cases.
Instead, the FRAC_EXT flag is used to indicate the fraction of
detections of a source that are characterised as extended. Less
than 1.5% of ∼27000 otherwise clean sources 14 comprising two
or more pn detections have one or more of those detections (but
not all) measured as extended.

6.10.2. Slew upper limits

Pointed and slew upper limits are estimated by aperture photom-
etry (circular with 28′′ radius), centred on the source position in
each observation covering the position and effectively corrected
for the encircled energy fraction (EEF) using an empirical ap-
proach (Carrera et al. 2007). The empirical correction factors,
however, were derived from pointed sources, but for slew upper
limits, should instead reflect the slew-specific PSF discussed in
section 6.2. As a result, we estimate that the slew upper limits in
the LTV catalogue are ∼5% lower than when correction factors
based on slew data were used.

6.10.3. Spectral effects

Because the ECFs used to convert count rates into fluxes (see
section 6.3) assume a fixed spectral profile, spectral changes in
a source between epochs can introduce or mask variations in
source flux. Simulations of a power-law model whose slope is
changed by ±0.6 from the nominal 1.7 used to create ECFs sug-
gest that such spectral changes can leave the count rates unal-
tered but yield flux changes up to ∼ 20%, 35%, and 70% in the
soft, hard, and total bands, respectively (see also Mateos et al.
(2009)). Furthermore, until the time of creating the 3XMM-DR5
catalogue, while the pn camera sensitivity and thus its ECFs had
been deemed stable, the sensitivities of the MOS cameras had
evolved, being effectively characterised by 13 time-dependent
ECFs. The LTV catalogue MOS fluxes are, like 3XMM-DR5,
based on epoch-13 MOS ECFs. Rosen et al. (2016) outlined

14 clean here means detections whose slew flag is not set and whose
lowest summary flag ≤ 1, which are not piled up and have no other
source within 30′′.

the effect of using a fixed MOS ECF, but for most sources
away from the central ∼40′′ degraded patch, the worst devia-
tions from using the most relevant time-dependent MOS ECF
are <2.5%. The band-8 MOS1 long-term light curve of the mod-
estly extended (assumed flux-stable) supernova remnant calibra-
tion source, 1ES0102-72.2, shows a declining trend in measured
flux of ∼6.5% over the mission duration, supporting this con-
clusion. As a soft X-ray source, usually observed within the de-
graded central patch, it is subject to a greater change in sensitiv-
ity than sources outside the patch.

6.10.4. EPIC upper limits

Although all-EPIC (combined instrument) count rates (the sum
of the instrument count rates) and fluxes (the error-weighted av-
erage of the instrument fluxes) are computed in each band, com-
puting equivalent all-EPIC upper limits is not straightforward,
and they are not calculated by the upper-limit software. EPIC
flux upper limits provided in the LTV catalogue for pointed data
are instead the highest of the available instrument upper-limit
values. This means that they are generally a conservative (high)
estimate of the rate and flux upper limit. All-EPIC upper lim-
its based on more than one instrument would generally be lower
due to the lower statistical noise. In addition, instrument upper
limits (where available) also replace EPIC flux and rate values
when the all-EPIC detection likelihood value is <8.0.

6.10.5. Systematic uncertainties

For the per-instrument, per-band long-term light curves, system-
atic errors between photometric data from a given instrument
are not relevant, other than the ECF issues discussed in sections
6.2, 6.3, and 6.10.3. Systematics affect the all-EPIC data, how-
ever, which is a combination (weighted average) of the available
instrument fluxes for a given observation. Comparing simultane-
ously observed pn and MOS fluxes for clean sources following
a similar approach to Lin et al. (2012), we estimated systematic
errors of 0.13, 0.13, and 0.16 (as fractions of the MOS flux) be-
tween pn and MOS (average of MOS1 and MOS2) in bands 6,
7, and 8, respectively. These systematics, however, are not in-
tegrated into EPIC flux error values or used in the LTV analy-
ses. Another potential systematic uncertainty is that between the
pointed and slew flux data. This is difficult to estimate, however,
because measurements of sources in pointed and slew mode can
never be simultaneous. Based on very limited (<10) sources ob-
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served in a slew and in a pointed observation within a day of each
other, it proved impossible to determine any such systematics.

6.10.6. Short-term variability

Short-term variability within an observation can contribute to the
appearance of long-term variability. To explore this, the subset
of LTV sources containing one or more individual pointed de-
tections that are known to show variability within the observa-
tion (i.e. where the var_flag is set in the 3XMM-DR5 catalogue),
were isolated and the LTV analysis run on their LTV pn band-
8 light curves, with any short-term-variable detections excluded.
We find that when all detections are included, the ∆F/σ (MDDE)
values are notably shifted to higher MDDE values than when
detections affected by short-term variability are excluded. The
same effect is seen in clean sources. The median MDDE values
are 9.72 (7.58 for the clean subset) when STV detections are in-
cluded, compared to 4.50 (3.22) when they are excluded. Corre-
sponding medians for the MR parameter are 5.29 (2.64) and 2.66
(1.93), and for the DRCHISQ parameter, are 43.68 (32.11) and
9.78 (5.70). When all detections are included, 224 out of 1163
sources (19.3%) have pn band 8 MDDE > 5, while when short-
term variability detections are excluded, 65 out of 758 sources
(8.6%) have pn band 8 MDDE > 5.

We note that the indication of short-term variability, that is,
that the var_flag is set, does not exclude the possibility that some
points in the real data light curves exhibit short-term variabil-
ity but are not flagged as such. Observation-level light curves
are only produced for sources with > 100 EPIC counts in their
XMM-Newton light curves, so that any detection that is fainter
than this will not have a light curve, hence short-term variability
cannot be tested.

6.10.7. Variability detection: alternative approaches

The analysis applied to the LTV data computes the flux ratio,
which makes use of detections and upper limits, and the maxi-
mum significance and chi-square values, which are restricted to
detections. The computations assume a Gaussian error analysis.
Importantly, those involving upper limits effectively treat them
as data points with uncertainties (as outlined in section 6.6),
but this is evidently a simplifying approximation. An alternative
likelihood approach that more formally takes the non-detections
and the Poissonian nature of the data into account, was con-
sidered late in the project, broadly following the approach de-
veloped as part of the aperiodic variability analysis within the
EXTraS project. This requires raw count information, however,
which was not originally envisaged as part of the LTV work and
was not pursued.

7. Online resources

7.1. The EXTraS public data archive

The EXTraS public data archive can be accessed from
http://www.extras-fp7.eu/index.php/archive. It is the primary on-
line repository for all data generated by the project, supporting
a wide range of products such as X-ray light curves, hardness
ratios, power spectra, and source catalogues with measures of
variability. We summarise the basic functionalities below. For
technical details regarding the software implementation, we re-
fer to D’Agostino et al. (2019a).

The archive is an outgrowth of the existing Le-
icester Database and Archive Service (LEDAS,

https://www.ledas.ac.uk) at the University of Leicester,
which hosts data from several major X-ray missions. Within the
EXTraS project, the core archive system originally developed
for LEDAS has been fully rewritten to current software devel-
opment standards. Catalogues and bulk products for all EXTraS
data analysis pipelines have been incorporated in LEDAS. A
total of 18 TB of EXTraS data is currently held in the LEDAS
central archival storage.

The main page of the archive provides a top-level menu to
access EXTraS data products by analysis line: short-term aperi-
odic variability, search for periodicity, transients, long-term vari-
ability. Results of multiwavelength characterisation and classifi-
cation (not described in this paper, see Sect. 2) are also included.
A combined catalogue allowing simultaneous source search-
ing across all EXTraS catalogues and a basic catalogue cross-
matching facility are also provided. Online help is available for
all catalogues.

The catalogue basic search form allows searches in a given
sky region (using either a cone, box, or rectangle search area),
or by identifier (resolved by the Simbad database, Wenger et al.
2000). The catalogue advanced search form, shown in Fig. 29,
allows users in addition to position searches to search for sources
by setting filters on any parameter in the EXTraS catalogues. A
filter search can be performed either as a match (i.e. selecting
database entries where a specific parameter is equal to a desired
value) or over a range (i.e. select all database entries where a
specific parameter lies in a desired range). Filter searches can be
performed as inclusive or exclusive filters by selecting the appro-
priate option. In the basic and advanced searches, a minimum or
full set of output table columns can be selected and a variety of
output formats (HTML, ASCII table, CSV, VOTable etc) can be
displayed.

Fig. 29. Advanced catalogue search form.

In addition to the download of the results data, an expanding
set of dynamic interactive visualisations for the EXTraS cata-
logue and bulk product data is provided. The visualisations are
generated directly in the browser (i.e. by clicking on the blue
“PREVIEW” button at the left links in Fig. 30) and require
no additional software installation. Examples of EXTraS Public
Data Archive visualisation output are shown in Figures 31 and
32. The user can zoom and pan the plot, read values and uncer-
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Fig. 30. Summary page of the catalogue results for each single source.

tainties by clicking on data points, overplot best-fit models, and
save the customised plot.

Fig. 31. Interactive visualisation of products from the short-term ape-
riodic variability analysis. The case of a light curve with uniform time
binning is shown. By using command buttons on top of the window, the
user can e.g. zoom or pan, read count rate and errors by clicking on data
points, and overplot best-fit models.

7.2. The EXTraS portal for online analysis

Different strategies can be adopted to provide the scientific com-
munity with software tools. The first, basic solution is to release
an installer or an archive, containing all the files required to com-
pile and run the analysis tool. This approach has been adopted
for some important tools for the astronomical community, such
as the XMM-Newton SAS. A second solution is to make the soft-
ware available by exporting the corresponding workflows, which
can thus be executed using a workflow management system. This
solution has commonly been adopted by the astronomical com-
munity (Ruiz et al. 2014). The third solution is to release a virtual
machine with all the software installed on it. This is possibly the
most effective solution for non-expert astronomers, who wish to

Fig. 32. Same as Fig. 31 for the case of an LTV light curve.

Fig. 33. Jobs management module interface.

Fig. 34. Transient analysis user interface shown by the workflow con-
figuration module.

run a few experiments, and for dissemination purposes, for ex-
ample for educational programs or citizen scientists. It is worth
noting that the SAS is also made available as a Linux virtual
machine. The fourth solution is to release the software as a set
of services through a Web portal designed following the science
gateway paradigm (Kacsuk 2014). We adopted this strategy be-
cause science gateways are gaining increasing interest in many
communities (Lawrence et al. 2015), such as the astronomical
one (Becciani et al. 2015).

The EXTraS portal (D’Agostino et al. 2019b) has the goal
of providing users with a seamless environment to process the
observations made available from the XSA with the EXTraS
pipelines, hereafter called ’experiments’. A user-friendly inter-
face is available, with no need for the installation of any soft-
ware.
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The main page, shown in Fig. 33, is a web app (Galizia et al.
2019) that provides users with the possibility of creating, submit-
ting, and managing the different analysis experiments based on
the software developed within the EXTraS project. In particular,
it presents all the submitted or configured analyses, offering the
possibility of creating a new analysis starting from an existing
configuration or share results with other users. After the parame-
ter definition (see Fig. 34) and the selection of the observation to
be analysed, the analysis job is managed by the portal, based on
computing resources provided by EGI Fedcloud (Wallom et al.
2015) to virtual organisations (VO), i.e.groups of users where
members are usually in related research activities. In particular
it can be used also for citizen science activities, as discussed in
D’Agostino et al. (2019a).

All the information related to a job (e.g. the configuration pa-
rameters, the logs, the results, the ownership or sharing of infor-
mation and possible comments) are stored in the portal database
via the Persistence API until it is deleted by the user who owns
it.

The EXTraS portal offers two further key features: The pos-
sibility of sharing an analysis (i.e. the namelist and possibly the
results), and support for the interaction and discussion (in terms
of comments) among the users sharing it. Sharing a completed
job means not only that the experiment results are visible to other
users, but also that the configuration is shared and can be used as
a starting point for re-submitting the experiment on a new set of
data. Thus, a job execution can be replicated by other users that
can, for example, validate the experiment results or explore the
behaviour by changing one or a few parameter values.

Any result computed within the portal is not automatically
transferred to the public data archive. It has to be validated by the
project community, who can use the portal to publicly discuss it.

8. Summary and conclusions

The EXTraS project produced the most sensitive and thorough
search for and characterisation of temporal variability in the soft
X-ray sky.

We produced a complete characterisation of short-term ape-
riodic variability (on timescales shorter than the exposure time)
for about 420,000 point sources included in the 3XMM cata-
logue. This was based on modelling of time-averaged proper-
ties of point sources in 3XMM and on careful modelling and
characterisation of the variable EPIC background noise. For each
source we generated (i) background-subtracted light curves with
uniform time binning at 500s, optimal, and 5 ks, (ii) background-
subtracted light curves with adaptive time binning based on the
Bayesian block approach, with different (sensitive and robust)
segmentations, and (iii) power spectra. Starting from these prod-
ucts, we computed a set of synthetic parameters quantifying dif-
ferent aspects of each source’s variability. We ran a simplified
version of the pipeline to extract light curves for the same set
of sources in three energy sub-ranges and to generate hardness
ratios. A set of simulations and statistical tests were used to con-
firm and validate our products and results.

We systematically searched for periodic modulations in more
than 300,000 sources in the 3XMM catalogue, running a pipeline
based on a generalisation of the FFT approach accounting for
non-Poissonian noise components. For each detected signal, a
refined search was performed using the Rayleigh technique. Dif-
ferent parameters were computed (e.g. significance level, pulsed
fraction) and several products were generated (e.g. light curves,
folded light curves, power spectra, periodograms). If no pulsa-
tions were found, the 3.5σ upper limit to the pulsed fraction was

evaluated. Statistical tests were performed to confirm the validity
of the analysis and its sensitivity.

We ran a blind search for transients and highly variable faint
sources. Two approaches were implemented. In the first, a source
detection was run on short time intervals of uniform length. In
the second, promising time intervals of optimised duration were
spotted by searching for count rate changes (using a Bayesian
block approach) in spatially independent portions of the FoV,
and a standard source detection was performed on the selected
intervals. Different runs were carried out on the whole sample
of EPIC observations using different pipelines with different set-
tings. Cross-check and statistical analysis of results together with
a complete visual screening allowed us to identify a robust sub-
sample of 136 short-duration highly-significant transient sources
that are not listed in the 3XMM catalogue.

We systematically investigated long-term variability (on
timescales longer than XMM exposures) in all detected EPIC
sources from pointed and slew observations. The analysis was
performed in three different energy ranges (total, soft, and hard)
and was based on (i) an improved slew data processing pipeline,
resulting in an updated slew survey catalogue, (ii) a consistent
computation of upper limits in slew and pointed data, (iii) a col-
lation of slew and pointed photometry together with upper lim-
its, and extraction of long- term light curves, and (iv) a search
for and characterisation of variability in the resulting typically
very sparse time series. Particular attention was devoted to the
study of the compatibility of flux measurements in slew and
pointed data. The main output was an LTV catalogue includ-
ing more than two million photometric measurements for about
420,000 unique sources together with meta-data for the obser-
vations used, quality information, and a number of variability
parameters that gauge the level and timescales of variability.

All results have been released to the community in early
2017 in a public archive, including a database of variability pa-
rameters and more than 20 million products. A user-friendly in-
terface for accessing data is operational. A visualisation server
was implemented to provide users with a powerful facility for
interactive display of all archived data and metadata. We also
released the source code of the software tools developed by EX-
TraS to perform searches for and characterisation of short-term
aperiodic variability, searches for periodicity, search for new
transients, and characterisation of long-term variability. We im-
plemented the EXTraS Science portal, a new science gateway,
for providing search for short-term aperiodic variability, search
for pulsations, and search for new transients on EPIC data. Users
can select their dataset from the XMM-Newton archive and run
selected EXTraS pipelines via a simplified interface, with no
need to install any software. All jobs are managed by the portal
based on computing resources provided by the European Grid
Infrastructure.

EXTraS results and products are proving to be a very rich re-
source for investigations in almost all fields of astrophysics, with
applications ranging from the search for rare events and peculiar
objects to the study of the properties of large samples of sources.
We encourage the community to explore the EXTraS archive and
to develop projects based on our results and tools. The outcome
of EXTraS will also serve as a learning case for new experiments
focusing on the X-ray variable sky, from SVOM to eROSITA to
Athena.

At a different level, our project also offers an extensive test
for different data analysis approaches and methods that could be
directly applied to the analysis of data from other current and
future experiments. We list a few examples below.
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First, the overall strategy we devised to measure source and
background contributions, including new recipes for (i) optimi-
sation of the source region (Sect. 3.4), (ii) modelling the spatial
distribution of a constant and of a variable background compo-
nent (Sect. 3.5), and (iii) optimisation of a background region to
extract a representative background light curve (Sect. 3.6). This
might be adopted to compute accurate time-dependent photom-
etry in any imaging photon-counting instrument.

Second, our implementation of the Bayesian block algorithm
(Sect. 3.8), designed to take the highly variable background rate
of the EPIC instrument into account, might easily be used for
the production of adaptive binning light curves from any other
photon-counting detector, using time-resolved photometric data,
on-source (source + background) and off-source (background)
measurements.

Third, our periodicity search algorithm that takes the prop-
erties of broad-band noise into account (Sect. 4.3, Step 2), was
designed by Israel & Stella (1996). It can be applied to the analy-
sis of power density spectra independent of the detector that was
used to collect the time series. It has already proved to be suc-
cessful in searching for pulsations in a range of different cases
(ROSAT, Chandra, XRT, NuSTAR; see e.g. Israel et al. 2016b).

Fourth, the core of the algorithm we developed to search for
new transients is based on the segmentation of the field of view in
angularly independent regions and on the Bayesian block anal-
ysis of time series from each region to select time intervals dis-
playing deviations from the background count rate (Sect. 5.4).
This could be used for any imaging photon-counting detector
and could also be implemented as a (near) real-time monitor for
transients in future experiments.

EXTraS results, products, and tools are also proving to have
great potential for the popularisation of science in general and
of astronomy in particular, offering excellent opportunities to
promote exciting science to students and to a general public
audience. With this in mind, an experimental didactic program
was designed within the project and was implemented in sev-
eral workshops for high-school students in Italy, Germany, and
the UK. The final goal of the program is to engage the students
(and in perspective, citizen scientists) by involving them in a re-
search program. Based on the use of EXTraS online resources,
they examine the data and try to select new phenomena, or to
characterise already known sources. To do this, they follow the
whole validation process. One of these workshops resulted in a
very interesting discovery: a peculiar flaring source in the globu-
lar cluster NGC6540 (Mereghetti et al. 2018)15. Our educational
activity will also turn to an experiment of citizen science, allow-
ing us to assess the viability of involving non-expert (but trained)
people in a complex classification task. See D’Agostino et al.
(2019a) and references therein for more details.
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Appendix A: XMM Science Analysis Software
counting-mode issue

We describe the bug that is present in old versions of the SAS
software. It produces incorrect time-tagging of events. The prob-
lem was found to affect a significant fraction of PPS event files
at the time of the EXTraS project. The recent bulk reprocessing
of XMM data in late 2019 fixed the problem in all PPS files.

At the beginning of the project, we compared event files in
PPS products to event files generated using SAS v14, starting
from observation data files (ODF) in order to select the start-
ing point for the analysis. We recall that ODF files are level-0
products that require a time-consuming pre-processing to obtain
a level-1 event file. We used SAS v14.0. PPS files instead that
contain level-1 event files processed with a specific configura-
tion (i.e. specific version of SAS tools) that is usually updated
on a yearly basis16. We found large differences between event
files from PPS (hereafter ’PPS’) and event files generated from
ODF (hereafter ’reprocessed’) for a number of test cases.

Good time intervals in PPS and reprocessed files can be dif-
ferent, with reprocessed files listing additional GTI and events
after the last ones in PPS (see Fig. A.1). Moreover, in PPS event
files we found time intervals that were included in GTIs with no
recorded photons, with durations up to a kilosecond. Finally, the
background light curves taken from different CCDs (quadrants
for pn) from the PPS event file can display a progressive shift of
flares with time (see Fig. A.2) up to few kiloseconds at the end
of long exposures. These differences are only seen in event files
that are affected by high-background time intervals. When the
telemetry rate is exceeded by the data rate in one CCD (or quad-
rant in the case of the pn), the so-called counting mode is trig-
gered and that CCD (quadrant) stops recording individual events
for a few time intervals. Only the number of dropped events is
then transmitted. It is apparent that the software used to produce
PPS can make an incorrect reconstruction of time-of-arrival of
events after counting-mode occurrences. Then, events with in-
correct time of arrivals that fall outside GTIs are deleted.

This software problem has a potentially strong effect on
the timing analysis of XMM-Newton data, which is the main
focus of EXTraS. Analysis of aperiodic variability is mostly
impacted by an incorrect characterisation and subtraction of
the background. The search for pulsations can be hampered by
incorrect times of arrival. The absolute time at which new X-ray
transients are detected can be incorrect.

We evaluated the number of exposures that are affected by
this problem. Starting from PPS event files, we produced light
curves with 50 s time bins for each CCD of MOSs and with 20
s time bins for each quadrant of pn. We selected these time bins
in order to have at least 25 counts s−1 per bin from the quiescent
background, and thus a lower than a 5σ probability of zero-count
bins. When the flaring background and the celestial sources that
are not subtracted in this exercise are also taken into account, the
probability of a zero-count bin is negligible. Thus, we produced
new bad time intervals from time bins with zero counts. These
were compared with the GTIs reported in the PPS event files.
We obtained differences for at least one quadrant in 27% of pn
exposures and 3% of MOSs exposures. For pn, time shifts of
>100 s (up to few kiloseconds) at the end of the observation are
registered for at least one quadrant in 15% of exposures. These
figures were computed for the PPS archive at the epoch of the

16 Seehttps://www.cosmos.esa.int/web/xmm-newton/
pipeline-configurations

EXTraS project. As already stated, the current archive is free
from this problem.

The summary of changes from SAS v13.0 to 13.5 reports a
change in the FIFO resets that would cause an underestimated
deadtime due to FIFO losses and resets in the epframes pack-
age, which is part of the pre-processing pipeline. This can ex-
plain the incorrect time reconstruction for SAS versions before
13.5.

Appendix B: Catalogue of new transients

We give in Table B.1 the full list of the 136 new transients dis-
covered by the dedicated analysis described in Section 5.
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PPS - MJD 54924.99465 to 54925.00210 ODF - MJD 54924.99465 to 54925.00210

Fig. A.1. Comparison between pn images obtained for the same time period starting from PPS and ODF event files (left and right panels, respec-
tively). In the upper panels we extracted events from the last former GTI listed in the PPS event file, while in the lower panels we extracted events
after that time period.

Fig. A.2. Comparison between two light curves of different pn quadrants (left panel: first, right panel: third) of the same observation (obs.id
0560181301), obtained from the PPS event file.

Article number, page 36 of 39



A. De Luca et al.: The EXTraS Project: Exploring the X-ray transient and variable sky

Table B.1. List of 136 new transient sources discovered by the dedicated analysis
described in Sect. 5. Basic properties of each source are shown: the EXTraS
transient name, the XMM Observation ID, Galactic longitude (l) and latitude (b)
in degrees, overall uncertainty on the position (arcsec), transient duration (s),
and EPIC counts (0.1-12 keV). Sources are sorted by increasing duration of the
transient. See Sect. 5 for more details. A full version of the catalogue is available
online at https://www88.lamp.le.ac.uk/extras/archive.

Transient Observation l b Error Duration EPIC counts
ID ID (degrees) (degrees) (arcsec) (s)
EXMM J023135.0-603743 0675010401 283.0184 -52.4543 1.4 315.1 54±9
EXMM J083215.8-452454 0672040101 263.4212 -3.3647 2.7 322.5 18±5
EXMM J061723.5+225537 0600110101 188.7580 3.2281 1.5 359.3 38±7
EXMM J070900.0-492415 0653510501 260.0442 -17.5718 2.3 388.9 13±4
EXMM J174033.7-310504 0301730101 357.5970 -0.1976 1.8 431.3 21±5
EXMM J215653.6-114708 0103860501 44.7440 -46.3584 2.1 494.8 22±5
EXMM J164340.4-542138 0603220201 332.7182 -5.5218 1.5 600.2 45±8
EXMM J003954.6+401810 0402560601 120.5529 -22.5156 2.3 717.7 12±4
EXMM J174535.5-285929 0674601101 359.9495 -0.0234 1.0 741.1 76±11
EXMM J161510.5-224401 0555650301 352.5542 19.9434 1.6 761.6 32±6
EXMM J174628.4-290617 0202670701 359.9531 -0.2471 1.5 784.4 42±7
EXMM J171042.4-280452 0206990401 356.4635 6.8619 2.1 797.6 23±6
EXMM J173613.1-353035 0606200101 353.3705 -1.7951 1.3 808.6 38±7
EXMM J181008.1-194543 0301270501 10.7321 -0.2319 1.8 833.3 23±5
EXMM J111245.2-603617 0051550101 291.1095 -0.0183 1.3 856.6 60±9
EXMM J203347.9+601124 0401360101 95.6707 11.8029 1.5 859.6 69±12
EXMM J111653.2+440231 0651330301 165.0809 64.5643 1.5 903.1 38±7
EXMM J104620.4+524822 0200480201 156.4753 55.3929 1.1 921.5 80±11
EXMM J151033.9+333059 0303930101 53.5763 59.4535 1.1 922.2 61±12
EXMM J163547.9-472914 0502140101 337.0444 -0.0340 2.2 939.6 28±7
EXMM J182806.2+063510 0201730301 36.1774 8.1730 1.1 997.1 89±11
EXMM J182903.1+003008 0402820101 30.8220 5.2091 1.0 1000.0 59±9
EXMM J174544.9-290504 0202670601 359.8882 -0.1012 1.7 1000.0 85±11
EXMM J162721.5-244146 0305541101 352.9841 16.5582 1.1 1000.0 66±10
EXMM J162714.7-245135 0305540701 352.8380 16.4694 0.7 1000.0 253±18
EXMM J154227.2-522431 0152780201 327.4138 2.1399 1.4 1000.0 52±11
EXMM J141328.4-651755 0111240101 311.3692 -3.7796 1.3 1000.0 72±9
EXMM J031659.2-663214 0405090101 283.5192 -44.7121 0.9 1000.0 116±11
EXMM J180041.1-224343 0135742601 7.0675 0.2362 1.4 1064.7 62±10
EXMM J092441.0-213122 0065940501 251.8552 20.2413 2.5 1134.9 42±8
EXMM J183205.9-191433 0404720201 13.6242 -4.5572 2.1 1138.2 23±5
EXMM J212805.1-651052 0670380101 328.2836 -40.5255 1.0 1142.5 99±12
EXMM J103154.4-142301 0203770101 259.4147 36.4357 1.9 1143.0 28±7
EXMM J002115.2+592518 0693390101 119.0952 -3.2250 1.2 1150.1 74±10
EXMM J124840.7-055437 0153450101 301.6735 56.9547 1.3 1203.8 58±9
EXMM J203222.9+414045 0305560201 80.4210 1.1353 1.9 1258.1 36±8
EXMM J111939.8-611834 0672790201 292.1454 -0.3745 1.1 1292.5 94±11
EXMM J025737.3+132247 0112260201 164.0056 -39.2247 1.9 1328.5 27±6
EXMM J232545.2+613150 0404720301 112.9056 0.3380 1.7 1362.0 28±6
EXMM J174553.3-290445 0604300801 359.9087 -0.1246 0.7 1396.0 243±20
EXMM J224259.1+530613 0654030101 104.2452 -5.0432 0.6 1419.1 238±19
EXMM J213452.0+473048 0650591701 92.1561 -3.2663 1.9 1428.4 41±7
EXMM J080344.1-400619 0159360501 256.0783 -4.7350 1.4 1433.2 48±7
EXMM J180452.2-274315 0305970101 3.1866 -3.0451 0.7 1435.7 185 ±15
EXMM J084839.3-453548 0159760301 265.3207 -1.2019 1.3 1486.7 118±18
EXMM J063553.4+054141 0146870401 206.0927 -0.8473 1.0 1497.9 97±14
EXMM J104439.0-593700 0112560201 287.5195 -0.5937 1.4 1515.9 61±10
EXMM J230201.7+584917 0057540301 109.1685 -1.0956 1.4 1520.5 59±11
EXMM J171420.6-381830 0670330101 348.6015 0.2541 0.7 1536.9 218±19
EXMM J141157.0-651343 0111240101 311.2392 -3.6635 1.4 1622.7 55±8
EXMM J165415.0-415314 0109490401 343.4259 1.1329 1.5 1724.0 64±10
EXMM J164709.7-455034 0505290201 339.5665 -0.4111 1.0 1724.4 113±13
EXMM J131233.2-624631 0510980101 305.3441 -0.0024 1.3 1863.9 61±9
EXMM J161132.6-603430 0550451101 325.2074 -6.6767 1.9 1874.0 39±8
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Table B.1 – Continued from previous page
Transient Observation l b Error Duration EPIC counts
ID ID (degrees) (degrees) (arcsec) (s)
EXMM J224401.5+531513 0654030101 104.4542 -4.9850 1.7 1907.4 36±7
EXMM J144350.6-621945 0504810301 315.5771 -2.2495 1.2 1923.5 95±12
EXMM J065442.8-240004 0652250601 234.8727 -10.0120 0.7 1929.5 195±16
EXMM J170213.4-295801 0205580201 353.8250 7.2331 1.0 1940.3 96±13
EXMM J022701.8-053144 0404964801 173.7029 -58.6311 2.8 1951.0 23±6
EXMM J191119.6+045739 0694870201 39.6172 -2.1445 1.9 1972.5 25±6
EXMM J215645.3-074944 0404910701 49.6538 -44.4155 2.1 1973.8 40±8
EXMM J181836.6-134818 0605130101 16.9337 0.8349 1.2 2000.0 69±12
EXMM J164707.0-455158 0410580601 339.5437 -0.4203 1.3 2000.0 88±14
EXMM J053546.1-051051 0134531701 208.8725 -19.1798 0.7 2000.0 215±19
EXMM J053521.8-055403 0112660101 209.5052 -19.5948 0.8 2000.0 272±20
EXMM J142517.6+225545 0143652301 26.9391 68.3630 1.0 2012.2 148±17
EXMM J203304.8+410048 0165360101 79.9632 0.6342 1.6 2035.8 40±9
EXMM J023126.0-712906 0510181701 292.2680 -43.5134 1.1 2177.0 144±18
EXMM J203254.4+410638 0505110401 80.0220 0.7184 0.6 2225.2 513±31
EXMM J020825.7+352826 0084140101 140.1353 -24.8127 1.6 2228.2 40±7
EXMM J161753.9-505650 0113050701 332.5270 -0.3394 1.2 2325.9 39±8
EXMM J181243.3-104054 0500030101 19.0002 3.5845 1.1 2361.5 82±11
EXMM J051723.2-685921 0113000501 279.6914 -33.5711 2.2 2379.1 28±6
EXMM J061751.0-325214 0092360101 240.1367 -20.8940 1.2 2443.7 66±9
EXMM J104421.4-593453 0112560201 287.4701 -0.5800 1.2 2474.6 89±13
EXMM J203400.9+412801 0505110401 80.4322 0.7634 1.4 2493.1 45±8
EXMM J042225.1+281148 0101440701 169.5137 -15.0331 1.5 2503.4 56±10
EXMM J170208.5-485246 0204730301 338.7994 -4.2920 1.1 2545.8 74±13
EXMM J230219.5+583338 0057540101 109.0973 -1.3493 1.5 2603.8 51±9
EXMM J151552.5+561021 0673920301 91.3784 51.1752 1.7 2615.8 31±7
EXMM J183630.3-064816 0503320601 25.1775 0.2015 1.6 2723.9 41±8
EXMM J180614.4-212650 0673690101 8.8161 -0.2533 2.0 2763.5 34±8
EXMM J150230.1-413335 0555630301 327.7098 14.9210 1.8 2804.4 57±11
EXMM J053219.8-072932 0690200201 210.6656 -20.9786 0.8 2813.7 142±16
EXMM J190757.0-205142 0671850301 15.8578 -12.8410 0.7 2818.3 263±22
EXMM J070206.1-111429 0654880301 224.1490 -2.7677 1.9 2902.3 54±9
EXMM J170759.6-410042 0406580101 345.6993 -0.3605 1.6 2962.7 30±7
EXMM J104450.1-594208 0160160901 287.5800 -0.6585 1.1 3000.0 39±8
EXMM J203317.5+411303 0200450201 80.1510 0.7238 1.6 3016.7 52±10
EXMM J201744.3+372759 0670480401 75.3524 1.0094 1.6 3030.8 42±8
EXMM J180152.2-231706 0145970401 6.7192 -0.2759 1.3 3075.0 40±9
EXMM J171924.9+264033 0500670201 49.2190 31.0319 1.6 3100.6 52±12
EXMM J072837.7+674629 0302400301 148.0559 28.4566 1.5 3106.6 41±8
EXMM J083916.3-454613 0603510701 264.4420 -2.5964 1.3 3206.9 65±11
EXMM J175954.5-240928 0503850101 5.7387 -0.3190 1.4 3239.6 49±10
EXMM J070238.9-114145 0654880401 224.6152 -2.8557 2.0 3250.2 32±8
EXMM J151819.8-615757 0555690901 319.2918 -3.8536 0.6 3252.3 381±31
EXMM J173602.1-444555 0146420101 345.5071 -6.7156 1.2 3290.6 70±11
EXMM J083833.5-355215 0303230301 256.4936 3.3111 2.0 3301.4 36±8
EXMM J113835.0+170650 0066950201 239.9104 70.4156 1.3 3410.4 55±10
EXMM J235822.8+563209 0553510301 115.6285 -5.5817 0.8 3507.2 183±18
EXMM J004449.9+415244 0109270301 121.6149 -20.9759 1.0 3531.4 114±14
EXMM J113622.2-613751 0201160401 294.1390 -0.0474 1.2 3615.3 74±12
EXMM J082521.5+261559 0603500301 197.2481 31.3173 1.0 3641.7 69±10
EXMM J184100.9-053819 0604820301 26.7275 -0.2600 1.6 3740.9 51±9
EXMM J104520.8-593254 0311990101 287.5656 -0.4922 1.7 3760.1 36±8
EXMM J035849.7+541255 0112200301 148.1860 0.8005 2.3 3815.0 29±6
EXMM J174617.8-291150 0505670101 359.8540 -0.2621 1.4 3977.8 62±12
EXMM J053508.2+095532 0402050101 195.0594 -11.9997 0.6 4000.0 554±37
EXMM J100422.2-701215 0099020301 289.6087 -11.7843 1.4 4030.8 52±8
EXMM J173432.0-255552 0202680101 1.2433 3.6790 0.9 4037.2 163±18
EXMM J174537.2-285500 0506291201 0.0167 0.0102 1.3 4128.7 55± 9
EXMM J203138.2+413027 0305560201 80.2001 1.1458 1.3 4131.8 59±10
EXMM J203352.8+412516 0505110301 80.3804 0.7564 0.9 4174.3 144±18
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Table B.1 – Continued from previous page
Transient Observation l b Error Duration EPIC counts
ID ID (degrees) (degrees) (arcsec) (s)
EXMM J165430.4-415455 0109490601 343.4343 1.0781 1.2 4193.9 57±10
EXMM J132724.8-620703 0036140201 307.1246 0.4610 2.1 4215.2 23±6
EXMM J104435.8-593120 0112580601 287.4694 -0.5135 1.3 4275.8 66±11
EXMM J004322.3+413432 0690600401 121.3132 -21.2708 1.5 4313.4 53±10
EXMM J045638.4+302913 0671960101 172.6676 -7.8720 1.8 4439.7 30±7
EXMM J162705.9-244015 0305540601 352.9629 16.6193 1.2 4538.7 60±11
EXMM J180542.6-211847 0405750201 8.8730 -0.0799 1.4 4622.2 69±12
EXMM J111844.6-612232 0150790101 292.0649 -0.4749 1.4 4647.0 66±12
EXMM J103528.6+631021 0403760401 144.9605 47.7256 1.8 4660.3 157±22
EXMM J070810.2-492944 0653510301 260.0817 -17.7308 1.7 4677.2 45±8
EXMM J172020.7-290720 0552002601 356.8339 4.5330 0.6 4745.0 319±23
EXMM J165201.9-415313 0602020201 343.1648 1.4526 1.4 4746.8 51±9
EXMM J111116.9-602649 0051550101 290.8826 0.0603 1.6 4761.5 68±11
EXMM J144707.3-622053 0504810201 315.9137 -2.4283 1.5 4799.5 57±10
EXMM J001930.4+591440 0693390101 118.8525 -3.3741 1.0 4809.4 120±14
EXMM J084638.5-525906 0201910101 270.8901 -6.0828 0.7 4861.8 223±20
EXMM J203412.5+602046 0691570101 95.8314 11.8507 2.0 4879.6 48±8
EXMM J203323.8+411847 0200450501 80.2396 0.7648 1.1 4916.7 61±12
EXMM J191400.9+045016 0075140401 39.8175 -2.7953 1.4 4942.2 55±11
EXMM J214407.1+382511 0602310101 87.3095 -11.1691 0.9 4985.2 96±13
EXMM J053928.4-691943 0113020201 279.7217 -31.5785 1.5 4993.5 37±8
EXMM J162729.5-243917 0305540701 353.0372 16.5628 0.7 5000.0 151±14

Appendix C: Energy conversion factors for pointed data for the LTV analysis

The ECFs used for the pointed data analysis for the LTV catalogue, defined as Fi = Ri/Ei, where Fi is the flux, Ri is the count rate,
and Ei is the ECF (each in band i), are shown in table C.1.

Table C.1. Energy conversion factors (in units of 1011 cts cm2 erg−1) used to convert pointed data count rates into fluxes for each instrument, filter,
and energy band.

Filters
Camera Band Thin Medium Thick
pn 6 7.3868 7.030 5.4091

7 1.1089 1.0992 1.0561
8 3.3245 3.1924 2.5929

MOS1 6 1.9237 1.8492 1.5293
7 0.3745 0.3713 0.3585
8 0.9232 0.8949 0.7736

MOS2 6 1.9286 1.8536 1.5316
7 0.381 0.3775 0.3644
8 0.9292 0.9004 0.7782
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