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ABSTRACT

Context. XMM-Newton provides unprecedented insight into the X-ray Universe, recording variability information for hundreds of
thousands of sources. Manually searching for interesting patterns in light curves is impractical, requiring an automated data-mining
approach for the characterization of sources.
Aims. Straightforward fitting of temporal models to light curves is not a sure way to identify them, especially with noisy data. We used
unsupervised machine learning to distill a large data set of light-curve parameters, revealing its clustering structure in preparation for
anomaly detection and subsequent searches for specific source behaviors (e.g., flares, eclipses).
Methods. Self-organizing maps (SOMs) achieve dimensionality reduction and clustering within a single framework. They are a type
of artificial neural network trained to approximate the data with a two-dimensional grid of discrete interconnected units, which can
later be visualized on the plane. We trained our SOM on temporal-only parameters computed from '105 detections from the Exploring
the X-ray Transient and variable Sky catalog.
Results. The resulting map reveals that the ≈2500 most variable sources are clustered based on temporal characteristics. We find
distinctive regions of the SOM map associated with flares, eclipses, dips, linear light curves, and others. Each group contains sources
that appear similar by eye. We single out a handful of interesting sources for further study.
Conclusions. The condensed view of our dataset provided by SOMs allowed us to identify groups of similar sources, speeding up
manual characterization by orders of magnitude. Our method also highlights problems with fitting simple temporal models to light
curves and can be used to mitigate them to an extent. This will be crucial for fully exploiting the high data volume expected from
upcoming X-ray surveys, and may also help with interpreting supervised classification models.

Key words. methods: statistical – methods: miscellaneous – catalogs – astronomical databases: miscellaneous – X-rays: general –
methods: data analysis

1. Introduction

X-ray astronomy probes highly diverse phenomena related to
the most extreme physical conditions observable in the Uni-
verse: very strong gravitational and/or electromagnetic fields,
very high temperatures, and populations of particles moving
close to the speed of light. Variability as a function of time is
the rule in the X-rays, and studying the temporal properties of
the sources is crucial to understanding their physics. The current
generation of space-based X-ray observatories, by performing
single-photon spectral imaging over a relatively large field of
view, collect an enormous amount of information on hundreds
of new serendipitous sources and their variability each day.

The European Photon Imaging Camera (EPIC) on board
the European Space Agency (ESA) X-ray Multi-Mirror Mis-
sion (XMM-Newton) spacecraft (Jansen et al. 2001), consisting
of two MOS1 cameras (Turner et al. 2001) and one pn detector
? The movie associated to Fig. 12 is available at
https://www.aanda.org
1 Metal Oxide Semi-conductor.

(Strüder et al. 2001), is the most powerful tool currently available
with which to study the soft X-ray sky thanks to the unprece-
dented combination of a large field of view, high sensitivity to
point sources, and good time resolution. More than 20 years
since its launch, it is still fully operative. Based on its serendipi-
tous data, a very rich catalog of X-ray sources has been produced,
including more than half a million unique sources. The long time
actively spent in orbit (exposure time of ∼300 million seconds up
to now, with the prospect of further years of observations) guar-
antees unprecedented sky coverage for an X-ray telescope and
the possibility of discovering relatively rare events.

All available temporal domain information were extracted for
serendipitous XMM-Newton sources within the EU-FP7 EXTraS
project (Exploring the X-ray Transient and variable Sky; De
Luca et al. 2021). We characterized the aperiodic, short, and
long-term variability (on timescales ranging from the EPIC time
resolution2 to years) and searched for periodicity in more than
300 000 unique sources; we also searched for fast transients in

2 The pn detector has the time resolution of 73 ms.
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all observations. All EXTraS results are available in the EXTraS
Public Archive. These include short-term and long-term light
curves, power spectra, and a database of synthetic parameters
(several hundred for each source, quantifying and describing all
aspects of temporal variability). The potential of these results for
science is very large for all classes of X-ray sources – from the
detection of a superflare from a nearby ultracool L dwarf star
(De Luca et al. 2020), to the observation of a supernova shock
breakout in a distant galaxy at z ≈ 0.1 (Novara et al. 2020), to the
discovery of pulsations in ultraluminous X-ray sources (Israel
et al. 2017a,b).

The EXTraS project is an example of astronomy entering into
the big data era. There are at least two ways in which a data
set can be considered “big”: because it contains many objects,
such as stars or galaxies, and because for each of these objects
a large number of attributes has been measured. Imagined as a
table, the first case corresponds to a large number of rows, and
the second to a large number of columns, resulting in a high-
dimensional data set. While, traditionally, authors have had to
deal with the problem of having too little data, the era of big data
poses a set of new, complementary problems. Condensing a data
set by reducing its size becomes useful and even necessary (see
e.g., Bien & Tibshirani 2011). Many unsupervised methods in
machine learning focus on this exact task: “clustering” attempts
to reduce the number of rows, extracting or synthesizing a lim-
ited number of representative instances; variable selection and
“dimensionality reduction” on the other hand attempt to reduce
the number of columns by either selecting few relevant variables,
or by combining several variables into new ones.

In this paper, we make use of a technique that accomplishes
both dimensionality reduction and clustering at the same time:
self-organizing maps (SOM; Kohonen 1982, 2001). This tech-
nique identifies groups of sources with shared characteristics,
mapping them out onto a plane. This allows us to optimize visual
inspection of the sources, revealing groups that share astrophysi-
cally relevant behavior (e.g., flares, eclipses) despite the fact that
the method is agnostic with respect to the underlying physics.

While this approach is very well suited to our data, a broad
variety of machine learning techniques, both unsupervised and
supervised, is being increasingly applied to astronomy. The for-
mer are concerned with extracting patterns from a data set
without direct guidance in the form of labeled data, while the
latter focus on learning a function from labeled examples to
carry out classification or regression. Examples of the former are
anomaly detection (Protopapas et al. 2006; Baron & Poznanski
2017; Giles & Walkowicz 2020), clustering (e.g., Pasquato &
Chung 2019), dimensionality reduction (e.g., Reis et al. 2018),
and even integrated approaches including interactive visualiza-
tion (Reis et al. 2021). While we do not discuss supervised
methods in the following (nor even unsupervised methods except
for SOM), we point the interested reader to two relevant reviews:
Ball & Brunner (2010) and the more recent Baron (2019).

The paper is organized as follows. In Sect. 2, we give a
detailed explanation of our unsupervised learning approach, in
Sect. 3 we described our dataset, in Sect. 4 we present our results,
and in Sect. 5 we draw conclusions.

2. Self-organizing maps

2.1. General information

A SOM is a type of artificial neural network (ANN), but despite
this classification, SOMs work quite differently from typical
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Fig. 1. SOM schematics. Panel a: SOM architecture. The bottom cir-
cles represent input neurons while the upper smaller circles represent
the output neurons which build up the flat 2D map. The input neurons
receive the values of the object parameters and are connected to all the
output neurons as indicated through arrows. The dashed squares cen-
tered on the output neurons are the pixels used to visualize the map. For
the sake of clarity, only one input neuron shows arrows going all the
way to each output neuron. Also weights w of only one output neuron
are explicitly shown. Panel b: SOM in m-dimensional parameter space.
The position of the output neurons on the flat 2D map grid is visualized
with lines connecting them. The same map is shown below, immersed
in the input parameter space, where each axis represents one parameter.
The coordinates of one neuron w and one object x are explicitly shown
on the axes.

ANNs such as feed-forward neural networks and related architec-
tures3. Also, unlike most ANNs, SOMs are designed for unsuper-
vised learning tasks, performing dimensionality reduction and
clustering for data visualization.

Self-organizing maps have already found wide application in
astronomy, especially when dealing with large multidimensional
data sets. They have been applied: to light curves of variable
stars (Brett et al. 2004; Armstrong et al. 2016); as an aid in the
context of photometric redshift estimation (Geach 2012; Masters
et al. 2015); to cluster gamma-ray bursts (Rajaniemi & Mähönen
2002); for morphological classification of galaxies (Naim et al.
1997); to find star clusters or otherwise coherent structures in
Gaia data (Yuan et al. 2018, 2020; Pang et al. 2020); to find
anomalous data in SDSS spectra (Fustes et al. 2013; Meusinger
& Balafkan 2014); to find variable active galactic nuclei (Faisst
et al. 2019), and so on.

The SOM architecture is simple, consisting of an input layer
and an output layer (Fig. 1; panel a). The input layer consists of m
neurons, where m is the number of input parameters (one neuron
per parameter). Each neuron in the input layer is connected to
all the neurons in the output layer. The output layer is typically
a 1D, 2D, or 3D4 network of neurons connected to each other in
the form of a grid.

The output layer is the place where visualization, dimension-
ality reduction, clustering, and so on is observed and presents
the actual map. Typically, a flat 2D map is used and the shape
is usually rectangular (four edges)5. The output of these neurons

3 For example, convolutional neural networks, etc.
4 For visualization purposes, the output layer has a maximum of three
dimensions. However, as a dimension reduction algorithm, the SOM
output layer can have any number of ≤m dimensions.
5 It can also be cylindrical (two edges), or closed, as in a sphere, an
ellipsoid, or a torus surface.
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indicates the number of objects placed on them. It is visualized
as a map consisting of pixels where each pixel corresponds to a
neuron. The shape of a pixel is typically square or hexagonal.

Each neuron in the output layer (the flat 2D map) has a
unique set of m weights associated to it: w = [w1, w2, ...wm]
(Fig. 1; panel a). The number of weights m is the same
as the number of input parameters describing each object
x = [x1, x2, ...xm]. When a certain object with parameters x is
presented to the input layer, that object is placed on the neuron
whose weights w are most similar to the input parameters x. The
most commonly used metric for this purpose is the Euclidean
distance:

d = ||w − x||=
√

(w1 − x1)2 + (w2 − x2)2 + ... (wm − xm)2. (1)

The object is placed on the neuron with the smallest d. This neu-
ron is commonly referred to as the “best matching unit” (BMU).
When all n objects in the sample are presented to the SOM, they
are distributed across the map depending on the weights of each
neuron.

Another way to think about assigning objects to neurons is
to imagine an Euclidean m-dimensional parameter space (Fig. 1;
panel b). The objects parameters x are then coordinates in this
space and all objects populate this space. The neuron map coor-
dinates in this space are their weights w. The map grid, that is,
positions of neighboring and other neurons on the flat 2D map,
can be seen as the lines connecting them. This map is a curved
discrete 2D surface embedded in the m-dimensional parameter
space. Each object is assigned to its closest neuron according to
the Euclidean distance metric d.

Assigning objects to neurons in the map represents a dimen-
sionality reduction. Each object with m parameters associated to
it has only two discrete parameters on the 2D map (the map grid
coordinates of its BMU).

SOMs are designed to detect patterns, clusters, and so on of
objects based on their parameters and to preserve the topology of
their m-dimensional distribution when placing them on the map.
Objects that are similar to each other (nearby in parameter space)
should be close to each other on the map. If there are distinct
groups of objects, it should show up on the map as 2D groups.
If the map weights are random, the objects will be randomly dis-
tributed on the map, and so the map needs to be trained, that is,
its weights adjusted according to the parameters of the objects.
In this sense, the SOM algorithm is similar to other ANN algo-
rithms which also need to be trained. However, objects used for
training the SOM are not labeled. The objects do not necessar-
ily need to be divided into training and testing (and validation)
samples, and there is no loss or cost function that needs to be
minimized until it converges to a global minimum. It is possible
to define a certain cost function for a SOM and monitor its reduc-
tion as training progresses, but the minimization of that function
is not behind the training algorithm.

The way the SOM algorithm works is by introducing objects,
finding their BMU, adjusting the weights of the BMU to more
closely match the parameter values of the object, then doing
the same to the weights of the surrounding neurons, but to a
lesser degree the further they are on the flat 2D map grid. The
last part is essential for the self-organizing property of the map
and enables similar objects to be placed on nearby pixels on the
trained map. It also means that the positions of neurons on the
flat 2D map grid with respect to each other is important when
training the map. Another important factor is that with each
iteration (presentation of object(s) to the algorithm) the weight
adjustment and the radius around the BMU are reduced. This

allows the map to settle to the final position after a sufficient
number of iterations. Finally, the weight adjustment depends lin-
early on the difference between weights and respective object
parameter values, ensuring that the update of weights towards
parameter values is larger when the difference between them is
larger. The dependence of weight adjustments on the (flat 2D
map) distance from the BMU, l, is described by a “neighboring
function”, h. Typically h is a 2D symmetric Gaussian function
centered on the BMU:

h = exp
− l2

2σ2
i

 . (2)

The σi factor controls the width (standard deviation) of the
neighboring function h which reduces with each iteration i, typ-
ically in a exponential manner. The formula (in vector form) for
updating the weight w of a neuron at a distance l from the BMU
is:

w(i + 1) =w(i) + α(i)× h(l, σ(i))× [x − w(i)]. (3)

At each iteration i, the object x is different6 until all n objects
from the sample are passed. This completes one epoch of train-
ing. The total number of iterations imax is then imax = n× nep
where nep is the number of epochs. The term α(i) is chosen such
that, at i = 0, it starts from a certain maximal value and decreases
to a certain minimal value at i = imax which is usually signifi-
cantly smaller than the starting value. The term σ(i) typically
starts from a value similar to the size of the map at i = 0 and
decreases to encompass just one neuron (the BMU) at i = imax.

Some conclusions can be drawn from the above algorithm,
which is referred to as the “online algorithm”. As mentioned
before, objects are not labeled and there is no cost function
minimization behind this algorithm. The number of iterations is
predetermined and does not depend on the cost function converg-
ing to a minimum. The way α(i) and σ(i) are defined ensures the
convergence of the map. However, it is important that the num-
ber of epochs is large enough for the map to converge smoothly
to its optimal stage. Even starting from the same initial weight
values, the final map will be different if the order of introduc-
ing objects in the sample is changed. In this case the final map
should still show the same groups and patterns, but these will be
located in different places on the map. Each iteration can only
be performed after the previous one is completed. Therefore, the
algorithm is one large loop and the process cannot be parallelized
and remains relatively slow.

A similar form of algorithm also exists, called the “batch
algorithm”, which processes all objects in the sample at the same
time for each epoch. The formula that regulates how weights are
updated is:

w(i) =

∑ j = n
j = 1 h(l j, σ(i))× x j∑ j = n

j = 1 h(l j, σ(i))
. (4)

In this case, each iteration i represents one epoch, meaning that
the total number of iterations is the number of epochs imax = nep.
The summation is over all n objects in the sample. The factor
σ(i) changes only between epochs and there is no term α(i) as in
the online algorithm. Within the summation, the term l j depends
on the object x j and its BMU.

6 Therefore, the distance from the BMU on the flat 2D map l also
depends indirectly on the iteration i because a new object x mainly
corresponds to a different BMU.
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Again, some conclusions can be drawn. As in the online
algorithm, there are no labeled objects and no cost function min-
imization; the map converges to the final position on its own, and
simply needs enough epochs to converge to an optimal state. If
the initial weight values are the same, the final map will be
the same regardless of the order of the objects in the summa-
tion. The summation part can be parallelized and the only serial
loop is over the epochs. This can make the batch algorithm faster
and saves time, which can make a significant difference if there
are many objects n in the sample.

Equation (4) can be made more algorithmically concise by
grouping objects with the same BMU together and summing
over each pixel:

w(i) =

∑k = npix

k = 1 nbmu
k × h(lk, σ(i))× xk∑k = npix

k = 1 nbmu
k × h(lk, σ(i))

. (5)

Here the npix is the number of pixels, nbmu
k is the number of

objects whose BMU is pixel k. The term lk remains the same
for all objects with the same BMU. The term xk is an average
vector value of all objects with the same BMU. This can further
speed up the algorithm.

2.2. The algorithm

In this work, we used SOMPY7 (Moosavi et al. 2014) for the
SOM implementation. It is written in Python8, uses batch train-
ing (Eqs. (4) and (5)), and is relatively fast. The algorithm
characteristics and options are as follows, along with the settings
chosen for this paper. It uses a flat 2D rectangular map with
either square or hexagonal pixels: we chose square pixels for sim-
plicity. We fixed the number of output pixels to the default value
of 5× √n (n is the number of objects). This is a common rule
of thumb regarding the map size. The map proportions were set
to the default value, which was obtained from the proportional
length of the two largest PCA9 vectors for the data set, which
is another common rule of thumb for the map. The neighbor-
hood function h can either be Gaussian (Eq. (2)) or “bubble”10.
Gaussian function was chosen because it is typically used as
a neighborhood function. The algorithm splits training in two
parts: “rough” and “fine”, each with its own number of iterations.
This is related to the value of the average width σi (Eq. (2)). Dur-
ing rough training, it starts from a value somewhat smaller than
the map length and ends up with a value several times smaller.
During fine training, it starts from the previous value and ends
at a value close to ' 1, which is the distance between a BMU
and its neighboring pixels11. In both cases, σi decreases linearly
with each batch iteration i. By dividing the training phase into
two parts with given starting and ending values for σi, it approx-
imates exponential decay. Weight initialization can be random
or defined by PCA. The second case initializes weights in such
a way that the map forms a grid on a plane defined by the two
largest PCA components in parameter space, and is centered on
the data. This method was chosen because it gives a good start-
ing position for the map even if the data are not intrinsically
two-dimensional and linear. There are various options for nor-
malizing the data, but a custom normalization was used, which

7 https://github.com/sevamoo/SOMPY
8 https://www.python.org
9 Principal component analysis.
10 A radial 2D function with a constant value that drops to zero at a
given radius.
11 Up, down, left, and right, not the four diagonal.

is explained in the following section. The number of training
epochs for both rough and fine training were chosen such that
the final map does not change significantly and that the aver-
age “quantization error” does not change by more than 1% when
doubling the number of epochs. The quantization error is the dif-
ference between parameter values of an object and the weights of
its BMU defined as d2 (Eq. (1)). The average quantization error
is the average d2 over all n objects.

3. Data selection

Among the several results released by the EXTraS collabora-
tion12, we explored the catalog reporting the short-term aperi-
odic variability analysis. For each detection, several short-term
(within the time-span of one orbital period <∼160 ks) light curves
are extracted and statistical parameters computed, where a detec-
tion is defined as an observation of a unique source within a
unique XMM-Newton observation period13 with a unique cam-
era14 and within a unique exposure time during the observation
period15. There are four types of light-curve binning, six tem-
poral models fitted to the light curves, and four energy bands.
All of these combinations coupled with various other param-
eters extracted from light curves resulted in several hundred
parameters for each detection.

The short-term variability EXTraS catalog comprises
872 075 detections, each described through 754 parameters16.
Parameters were chosen such that they: were derived from light
curves with one set of time-bin definitions; only contain variabil-
ity (and not spectral) information; and do not have many “null”
values. We excluded the count rate or any proxy for the count
rate, and other parameters17.

Starting from all of the 754 parameters, the selection criteria
reduced their number in the following way. We only accepted
parameters that were derived from light curves with uniform
time bins of 500 s (down to 147 parameters). We selected light
curves encompassing the full energy range, not any of the three
subranges (down to 84 parameters). All the parameters related
to the “exponential decay”, “flare”, and “eclipse” models were
excluded because they contain many null values (down to 53
parameters). The parameter “relative excess variance” and its
error were excluded for the same reason (down to 51 param-
eters). The parameter “average count rate” and its proxies18

were excluded (down to 47). Finally, excluding other parame-
ters related to identification and so on leaves m = 31 parameters.
The final selection of these parameters and their description is
presented in Table A.1.

The 872 075 detections in the catalog were filtered through
flags and quality checks, requiring at least 20 time bins, non-
negative count rate, and non-null values for all the 31 parameters.
By combining all these constraints, we are left with n = 128 925
detections.

The astrophysical type is unknown for a large number of
XMM-Newton sources. Our n = 128 925 detections correspond

12 http://www.extras-fp7.eu/index.php/archive
13 Period during which the telescope spends pointing in one direction.
14 There are three cameras in total: pn, MOS1, MOS2.
15 There can be several exposure times for a single camera during one
XMM-Newton observation period.
16 See the help pages of the EXTraS short-term variability archive for a
complete list and description of the parameters.
17 Information related to identification, duration of observation, errors,
redundant instrumental and statistical information, etc.
18 Median count rate and the first coefficients in the “constant”, “linear”,
and “quadratic” models.
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Fig. 2. BMU map. This BMU map corresponds to all n = 128 925 detec-
tions. The color bar measures the number of detections placed on each
pixel. This value is also indicated as a number on top of each pixel. The
coordinates of the pixels within the grid start from the lower-left corner
and are indicated on all sides of the map.

to about 43 000 unique sources, of which approximately 6000
reside in the Galactic plane |b| ≤ 2◦ (∼11 000 within |b| ≤ 10◦).
Given that most stars are within the Galactic plane while AGNs
are above it, this can give an approximate idea of the composition
of our sources. For a more quantitative description, a recent clas-
sification of XMM-Newton sources using a supervised method
(Tranin et al. 2022) found that about 80% of the sources are
AGNs, ∼20% are stars, and few per cent are X-ray binaries and
cataclysmic variables. These proportions should be similar with
our sources.

The normalization of the m = 31 parameters and their mutual
correlation is nontrivial and is explained in detail in Appendix A.
With the data set of n = 128 925 detections (samples) and adopt-
ing the configuration options explained in Sect. 2.2, the SOM
algorithm settings in this case are: a map size of 45× 40; 80
training epochs for both rough and fine tune training; σi (Eq. (2))
decreasing linearly from 6 to 1.5 during rough training and
from 1.5 to 1 during fine training. With the batch implementa-
tion of the algorithm it took only about 5–10 minutes to train
the algorithm on n = 128 925 detections (samples) with m = 31
parameters (features) over 160 epochs (iterations) on an average
CPU (one CPU at 2.6–3.5 GHz with four cores).

4. Results

4.1. SOM applied to the EXTraS data

As explained in detail in Sect. 2, SOM performs dimensional-
ity reduction starting from n objects described by m parameters
resulting in a 2D map (BMU map) populated by n objects. At
the same time, it performs clustering, such that objects which
are similar end up close to each other on the BMU map forming
a group.

As reported in Sect. 3, we applied SOM on n = 128 925
XMM-Newton detections described by m = 31 variability param-
eters. The resulting BMU map is shown in Fig. 2. The numbering
of pixels starting from the bottom left was introduced for guid-
ance. The center of the map is mainly uniform while the
lower-left part, which has a triangular shape, is highly fractured
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Fig. 3. U-matrix map. The color bar indicates the average distance of
each pixel-neuron to its neighboring pixels-neurons in the normalized
parameter space. Further details are in the text.

and seems to form a separate part. This suggests that the majority
of detections in the broad map center form a single group in the
normalized m = 31 dimensional parameter space. The lower-left
part of the map suggests that detections placed here form many
small groups.

In Fig. 3, the U-matrix plot is shown, which allows us to iden-
tify the clustering structure of our data by displaying the distance
of each neuron from its four nearest neighbors in the normalized
parameter space. Groups of similar (nearby) neurons represent-
ing points in our normalized parameter space, whose dimension
is m = 31, can thus be visualized as regions of nearby neurons
in the plane. These appear as contiguous dark blue structures in
Fig. 3. Lighter colors, from sky blue to red, correspond instead
to regions of lower density that divide groups (e.g., groups in the
lower-left triangle; their division is seen as lines on the U-matrix
map) or lie at the edges (e.g., groups on the U-matrix map at the
up and right edges). The second case represents groups of out-
liers, that is, points that for whatever reason are different from the
typical object in our data set. Clearly, objects that are systemat-
ically different may represent astrophysically interesting sources
worthy of further study.

Figure 4 reveals how each of the m = 31 parameters map out
onto this plane. Technically, these are the weights of the SOM
neurons being shown over a grid of 1800 (40× 45) neurons. Even
though there are 45× 40 = 1800 neurons in total and each of
them has 31 weights for each parameter (corresponding to the
relevant m coordinates in parameter space), Fig. 4 shows that
they can be easily visualized as a 45× 40 map for each parameter
(i.e., each coordinate in the parameter space).

These maps can be visually compared to Fig. 3 to reveal the
characteristics associated to each data subgroup; for example it
can be readily checked that the upper-right corner of the map
(corresponding mostly to outliers according to Fig. 3) has dis-
tinct variability properties. The combination of Figs. 3 and 4
thus acts as a look-up table guiding direct visual inspection of
the sources.

4.2. Analysis of variable sources

In order to examine potentially interesting detections more
closely, we focused on variable sources. Variability was defined

A66, page 5 of 17



A&A 659, A66 (2022)

Fig. 4. SOM weights. SOM weights for each parameter are presented as maps of the same dimension as the main BMU map. The color bar
represents the value of the weight for each pixel. The numbering of the parameters is the same as in Table A.1.
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Fig. 5. BMU map. Same map as in Fig. 2 but showing only the
most variable nvar = 2654 pn detections. White pixels correspond to zero
detections. Red numbers correspond to numbering of “blobs” (more in
the text) and their size is illustrative of the number of detections in each
one.

such that the fit of the 500 s time bin light curve with a constant
model is unacceptable (>5σ). Also, we only took the most sensi-
tive pn camera light curves into account so as to ensure a sample
with all the unique detections (unique source within unique time
frame). The number of detections fulfilling these requirements is
nvar = 2654. Their placement on the main BMU map (which was
trained on all n = 128 925 detections) is shown in Fig. 5.

It is apparent that variable sources form distinct groups,
“blobs”, separated from each other. Most groups take the same

form as the core where the majority of detections are found, with
the number of detections decreasing to zero as the distance from
the core increases. Also, some groups show some substructure.
In Fig. 3, pixels with the highest value mostly correspond to pix-
els containing groups of variable detections. The high value in
the U-matrix map means that these neurons are far away from
the neighboring neurons in the parameter space.

Figure 6 shows that 1800 SOM neurons follow the distribu-
tion of all the n = 128 925 detections rather well19 for each of the
m = 31 parameters. The distribution of the variable nvar = 2654
detections is more “stretched” towards the edges than that of all
detections20. For most parameters at the very edges (near zero
and one), the two distributions practically overlap. This means
that variable detections tend to lie towards the edges of the
parameter space. This can be interpreted as variable detections
belonging to several quasi-outlier groups; this interpretation is
confirmed by looking at the U-matrix map (Fig. 3).

Based on a visual inspection of the BMU map of variable
sources (Fig. 5), we can define some clear blobs as: Blob 1 is in
the lower-right corner with coordinates X >∼ 35, Y >∼ 10, Y <∼ 20.
The number of detections in this group is about 600. Blob 2 is
in the upper-right corner with coordinates X >∼ 35, Y >∼ 20. The
number of detections in this group is about 1200. This group
shows a substructure in its lower part (blob 2b), with a separation
at coordinates X >∼ 40, Y < 35, containing about 250 detections.
Blob 3 is in the upper-left corner with coordinates X >∼ 5, X <∼ 20,
Y >∼ 33. The number of detections in this group is about 250.
Blob 4 is in the upper center with coordinates X >∼ 25, X <∼ 35,
Y >∼ 35 and the second one below at X >∼ 25, X <∼ 30, Y >∼ 25,
Y <∼ 35. This latter contains about 50 detections. Blob 5 is made
out of the central group at X >∼ 15, X <∼ 32, Y >∼ 12, Y <∼ 32, and
contains about 550 detections.

19 The y-axis is in logarithmic scale.
20 This might be intuitively expected for the most variable detections.
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Fig. 6. Distributions of values for each of the m = 31 parameters. Comparison between the distribution of the whole dataset (black) and that of
the SOM neurons (blue) is shown. We additionally visualize the distribution of variable sources (pink). The numbering of the parameters follows
Table A.1.

The nvar = 2654 detections have, on average, an order of
magnitude higher signal to noise ratio (S/N)21 than n = 128 925
detections. This might be expected. Detections that are too
faint do not cross the threshold of variability definition even if,
intrinsically, they might be variable.

Training the SOM on just nvar = 2654 detections produces a
uniform map without clearly separated blobs. It can be inter-
preted that one of the SOM results is finding and grouping
interesting detections, and these detections mostly have a high
S/N in order to be possible to distinguish their interesting fea-
tures. In order for SOM or any other machine-learning algorithm
to potentially “see” intrinsic features in faint sources (even if,
for example, an astronomer with all the “ordinary” statistical
tools would not be able to), instrumental and background effects
would have to be input into the algorithm. Such an analysis is
outside the scope of this paper.

4.3. Classification of different groups

4.3.1. Quick look at all the blobs

In order to roughly examine each blob, we randomly chose a
quarter of the nvar = 2654 detections and visually inspected their
light curve to search for characteristic patterns. We divided the
light curves into classes on the basis of their main shape: flares,
bumps, multiple flares, multiple bumps, dips-eclipses, linear, and
random.

We classify any intense increase in flux followed by a fading
to the quiescent level as flares and bumps, but, more specifically,
flares follow a fast rise, exponential decay (FRED) time profile,
while bumps have a more symmetrical shape (the same goes for

21 Defined as the parameter PN_8_DET_ML (maximum likelihood) in
the 3XMM-DR4 Catalog.

multiple flares and multiple bumps). Although flares and bumps
may originate from similar mechanisms (e.g., Pye et al. 2015
show that coronal flares from stars may have comparable rise and
decay times in a large fraction of cases), we decided to keep these
two phenomenological classes of light curves separate. Dips and
eclipses are in a single class featuring any curve with one or more
sudden and significant decrease in flux followed by a recovery to
the upper level; the few cases of apparent dips and eclipses par-
tially covered by the observation were treated case by case. The
Random class includes light curves that do not show a distinct
type of variability. We built a map that shows the most numerous
class in each pixel (Fig. 7).

It is apparent that certain classes of light curves are predom-
inantly concentrated in certain areas. For example, single flares
are highly concentrated in the core of blob 1 (lower-right). Blob
2 (upper-right), the largest group, is composed of a variety of
classes but dominated by multiple features; its substructure (the
bottom part) is instead dominated by dips and eclipses. Blob
3 (upper-left) is mainly composed of dips and eclipses. Blob 4
(upper-center) is mainly composed of linear curves. The random
curves are concentrated in blob 5 (central).

The SOM algorithm successfully extracted and grouped vari-
able sources with the same variability behavior. Among the
different blobs, the most intriguing from an astrophysical point
of view are the ones dominated by flares, dips, and eclipses. For
those groups, we extended our visual analysis.

4.3.2. Single flares

From the analysis in Sect. 4.3.1, we find that almost all of the
flares are distributed over blob 1 and blob 2 with FRED-like
flares being mostly present in the former. In blob 1, flares seem
to be concentrated in the core, while in blob 2 their distribution
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Fig. 7. Classes of visually inspected variable detections. A quarter of
nvar = 2654 was inspected and classes are presented as colored disks for
each pixel. The most populated class at each pixel is shown. Flares are in
dark blue, bumps in light blue, multiple flares in dark orange, multiple
bumps in light orange, eclipses and dips in purple, linear in green, and
random in gray. The size (area) of the disk corresponds to the number of
detections belonging to the most populated class in a given BMU pixel.

is more complex and many other types of sources contribute to
this blob.

Because of the large concentration of FRED-like flares, we
examined blob 1 in detail. Due to the relatively large number of
elements in blob 1, we visually examined only half of the approx-
imately 650 detections, with focus on phenomena that are likely
to be related to an astrophysical flare.

We defined three main classes of light curves: (i) Single flare
– the largest fraction are “textbook” flares with a FRED time
profile fully within the observation period. Some are only partly
within an observation period (e.g., with partial decay) and/or
have a different time profile (e.g., “bumps” with similar rise and
decay time). (ii) Uncertain – including all light curves showing
some feature that could be related to an astrophysical flare (e.g.,
an exponential decay; a fast rise close to the end of the obser-
vation, etc.) but a different explanation could not be excluded.
(iii) Nonflares – including all light curves that did not have any
relevant feature reminiscent of a flare. Examples of single flares,
uncertain flares, and nonflares are shown in Fig. 8.

Figure 9 shows the distributions of all classes. Single flares,
uncertain flares, and nonflares are shown in the right, middle,
and left panels, respectively.

As can be seen, the concentration of clear flares is highest in
the core of the blob, and gets diluted towards the blob edges. To
crudely quantify this structure, the blob was divided into three
parts: core, corona, and tail.

The concentration of single flares and other detections can
be described as follows: The core is defined as pixels with coor-
dinates X ≈ [15, 18], Y = [44, 45]. The core contains about 200
detections of which 100 were visually inspected. Of these, 85
are single flares of which only five are bumps, 59 are FRED-
like flares, and the rest are FRED-like flares not fully covered
by observations. There are also 8 uncertain flares. The corona is
defined as pixels with coordinates X ≈ [13, 20], Y ≥ 42 exclud-
ing the core pixels. The corona contains about 300 detections of
which 150 were visually inspected. Of these, 59 (39%) are sin-
gle flares of which ten are bumps, 23 are FRED-like flares, and

uncertain
flare

nonflare

single
flare

single
flare*

Fig. 8. Examples of flares. The light curves are binned with 500 s
time bins in one short-term exposure window; the vertical axis shows
background-subtracted count rate. Upper-left: Example of a bright
flare: this detection is marked in the 3XMM-DR4 catalog as obs.id.
0604820301, src. 1. It is located at the BMU pixel X = 45, Y = 16.
Upper-right: Example of a flare not fully covered by observations. This
detection is marked in the 3XMM-DR4 catalog as: obs.id. 0134531601,
src. 2. It is located at the BMU pixel X = 45, Y = 15. Bottom-left: Exam-
ple of an uncertain flare. It shows exponential decay only, which could
be the decaying part of the flare. This detection is marked in the 3XMM-
DR4 catalog as: obs.id. 0302970201, src. 2. It is located at the BMU
pixel X = 45, Y = 14. Bottom-right: Example of a nonflare. It shows a
flickering behavior. This detection is marked in the 3XMM-DR4 cata-
log as: obs.id. 0302340101, src. 1. It is located at the BMU pixel X = 39,
Y = 19.

nonflares
uncertain
flares

single
flares

Fig. 9. Distribution of visually inspected detections in blob 1. Single
flares, uncertain flares, and nonflares are in the right, center, and left
panels, respectively. All three panels have the same upper limit in the
color bar for the purpose of direct comparison.

the rest are FRED-like flares that were not fully observed. There
are also 27 (18%) uncertain flares. The tail is defined as pixels
with coordinates X ≈ [13, 20], Y ≤ 41. The tail contains about
130 detections, of which 65 were visually inspected. Of these,
six (9%) are single flares (two bumps and four faint FRED-like)
and ten (15%) are uncertain flares.

It is interesting to compare results of SOM with the results of
the fit statistics from the flare model22 from EXTraS. We selected
566 detections (out of nvar = 2 654) with a good flare model fit

22 The flare model in EXTraS catalog is defined as a constant plus fast
rise and exponential decay (FRED).
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single flares

nonflaresuncertain flares

Fig. 10. Visually inspected detections which have a good flare fit statis-
tics. Anticlockwise from the upper-right, the panels show all nvar = 2654
variable detections, single flares (251 detections), uncertain flares (42),
and nonflares (273).

statistic23: these were visually inspected and classified into single
flares, uncertain flares, and nonflares. Single flares make up 251
detections, uncertain flares 42, and non-flares 273: roughly half
of the 566 detections selected based on a good flare model fit are
not actually flares (e.g., the light curve has some random pattern
that the automatic analysis managed to fit with the model). Thus,
using an approach based on a model fitting, half of the flares are
not genuine flares; with SOM, on the other hand, 93% of the
elements in the core of blob 1 are flares (or uncertain flares).

In Fig. 10, we show the three classes in the BMU map. About
90% of the well-fitted, visually inspected flares fall into blob 1
and blob 2 (in a ratio of ∼2:1), in agreement with the findings
of SOM (Figs. 7, 9). While flares are concentrated in the core in
blob 1, they form a corona around the core in blob 2.

On the other hand, only about 60% of real single flares from
the total visual inspection are well-fitted by the EXTraS flare
model, either because the real flare is not a perfect FRED, the
flare is superimposed on some other minor variations, or the fit
fails.

We conclude that SOM was able to extract 97% of the light
curves with a “real” single flare and group them into two dif-
ferent groups (blob 1 and blob 2 with a ratio of ∼2:1). Within
blob 1, flares compose up to 93% of the core and up to 57% of
the corona; within blob 2, flares are concentrated in the corona.
For comparison, through a classical model fitting analysis we are
able to extract 60% of the real single flares, and only 52% of the
well-fitted light curves contain a real single flare.

Most of the visually inspected flares are likely emitted by
coronally active stars; this is either confirmed by the associa-
tion of the flaring sources with stars in the Simbad database,
or suggested by the soft spectrum of the X-ray sources and by
their positional coincidence with cataloged optical/near-infrared
objects. Peculiar phenomena of nonstellar origin can also be
found in the sample: for instance, in the core of blob 1, we find
the puzzling case of XMMU J134736.6+173403. This source is

23 (a) the null hypothesis of the flare model is <5σ and (b) an f -test
confirms the statistical improvement by using the flare model instead of
a constant at >5σ.

Fig. 11. Example of a dip (left) and an eclipse (right). The light
curves are binned with 500 s time bins in one short-term exposure win-
dow. The vertical axis shows the background-subtracted count rate. The
detection with the dip is marked in the 3XMM-DR4 catalog as obs.id.
0200470101, src. 1. It is located at the BMU pixel X = 14, Y = 40. The
detection with the eclipse is marked in the 3XMM-DR4 catalog as
obs.id. 0110660101, src. 1. It is located at the BMU pixel X = 45, Y = 32.

associated with a low-mass AGN and displays a sudden factor
6.5 decrease in flux occurring in about 1 hour24. As discussed
by Carpano et al. (2008) and Carpano & Jin (2018), this unusual
drop in flux defies any easy explanation.

4.3.3. Dips and eclipses

From a quick visual inspection of blobs (Sect. 4.3.1), we find two
distinct structures in the BMU map in which dips and eclipses
are dominant: blob 3 and blob 2b (Fig. 5). These contain 38%
and 22%, respectively, of the dips and eclipses found through the
quick visual inspection; most of the remaining dips and eclipses
are in the rest of blob 2 (23%). The upper-left blob core is com-
posed of pixels (14,40) and (15,40) and contains 129 light curves;
it is surrounded by a corona of 87 light curves and a tail of 20
curves. The blob 2b core is composed of pixels (45,31), (45,32),
and (45,33) just below, but separated from, the main structure of
blob 2; it contains 127 light curves.

Here, we examined blob 3 and blob 2b in detail. We visually
inspected all the light curves in these regions in detail, focus-
ing on phenomena that are likely to be related to a dip or an
eclipse. We divided the sources into three classes: random, dip,
and eclipse. Random light curves do not show any apparent fall–
rise behavior (even if they can show any other behavior described
in Sect. 4.3.1). We classified the remaining light curves as “dip”
or “eclipse” based on the literature for associated sources. If
there was no association with a dipping or eclipsing source, clas-
sification was based on the shape of the fall and rise: dips are
short (less than 5 bins) with a clear decrease and increase (typi-
cally a “V” shape), while eclipses are longer and/or characterized
by a constant, low flux level (typically a “U” shape). An example
of a dip and an eclipse in shown in Fig. 11.

We find that, in the core of blob 3, 90% of the light curves
are dips or eclipses, while in the corona this percentage is 45%,
and in the tail these represent 20%. Most of them (97% in the
core, 80% in the corona, and 83% in the tail) are dips. While
some of the dips are instrumental errors occurring at the begin-
ning or the end of the observation, we find many well-known
dipping sources, for example: 2XMM J125048.6+410743 (Lin
et al. 2013) and 3XMM J004232.1+411314 (Marelli et al. 2017).

24 The overall shape of the light curve, featuring a “high state” lasting
about 5 h, the sudden flux drop, and a “low state” lasting more than 10 h
can be seen as a bump starting before the beginning of the observation.
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In the core of blob 2b. 60% of the light curves are dips
or eclipses, of which 60% are eclipses and the remaining dips
are usually longer than those in blob 3 and/or their statistics
are poorer. Among them, we find many well-known eclipsing
sources, for example: V* V1727 Cyg (Bozzo et al. 2007) and V*
XY Ari (Norton & Mukai 2007). We investigated the existence
of a corona in the lower-left part of blob2, but only 8 of 105 light
curves show a clear eclipse or dip.

The SOM algorithm was therefore able to extract 83% of the
light curves that show one or more dip or eclipse and to group
them into blob 3 and blob 2 (quick visual analysis in Sect. 4.3.1).
From the detailed visual analysis, we find that, within blob 3,
dips vastly dominate over eclipses and dips and eclipses com-
pose 90% of the blob core and 45% of its corona. Blob 2b is
dominated by dips and eclipses of which 60% are single or mul-
tiple eclipses while most of the dips are wider than the ones in
blob 3. In the core of this blob, 60% of the light curves show one
or more dips or eclipses.

In order to confirm and compare the results based on the
visual inspection, we cannot rely on the eclipse model from
EXTraS as we did for flares (Sect. 4.3.2). The eclipse model
is indeed quite simple, with a perfect U shape, and thus it can-
not describe more complex light curves (e.g., with a rise and
decay time), dips, or periodic features; moreover, the eclipse
model usually fits most of the random increases or decreases
of a low-statistics light curve well. A rough comparison comes
from the sample used for the quick visual analysis in Sect. 4.3.1:
the number of well-fitted eclipses25 is more than twice the num-
ber expected from the visual inspection, while only half of the
dips and eclipses from visual inspection are well fitted by the
eclipse model. Instead, we randomly selected a number of X-ray
eclipsing-like sources observed by XMM-Newton from the litera-
ture. Our random selection comprises different types of objects,
with one or more observations, and with one or more features
in the same exposure. We selected 12 sources for a total of 22
detections (see Table B.1). Of the 22 detections, 16(+1) fall in
the core (corona) of blob 2b. Four detections fall in the remain-
ing part of blob 2, but always at X = 45. One detection falls in
blob 3. It is also interesting to note that different exposures of
the same source usually fall in the same or the adjacent pixel.

4.4. Interesting sources

Dips and eclipses are quite rare and are interesting from an
astrophysical point of view because they usually indicate binary
systems and/or imply the presence of an accretion disk or blobs
of dust. In this case, the SOM is particularly useful for the dis-
covery of single, interesting systems. Therefore, we searched our
sample for unpublished features and obtained eight sources. In
the following, we report a brief description of them, including
their XMM-Newton names, source numbers, and coordinates (all
of which come from the 3XMM-DR4 catalog).

3XMM J063736.4+053932. (obs.id. 0655560101, src. 1,
BMU pixel 14,39) is located at RA(J2000) 06:37:36.48,
Dec(J2000) +05:39:32.59. The EXTraS pn light curve shows a
total eclipse in the last 2 ks (over a 26 ks exposure) not covered
by the MOS cameras. The positional coincidence with the 8.5 V
magnitude star HD 47179 suggests this source is a stellar binary
system.

3XMM J081928.9+704219. (obs.id. 0200470101, src. 1,
BMU pixel 14,40) is located at RA(J2000) 08:19:29.00

25 We use the same definition as in Sect. 4.3.2.

Dec(J2000) +70:42:19.17. The EXTraS pn light curve clearly
shows a dip that halves the X-ray count rate (5 ks over
a 83 ks exposure). It falls during a very high-background
period but the dip shape does not seem to be correlated
with the background. This source is associated with the well-
studied ultraluminous X-ray source Holmberg II X-1. Goad
et al. (2006) analyzed this detection, but the time of the
dip was discarded because of the high background. Although
EXTraS tools are well suited to deal with high background
(De Luca et al. 2021), a dedicated analysis is required to confirm
this feature.

3XMM J133000.9+471343. (obs.id. 0303420201, src. 2,
BMU pixel 14,40) is located at RA(J2000) 13:30:00.96
Dec(J2000) +47:13:43.65. The EXTraS pn light curve shows
a peculiar flickering pattern, possibly quasi-periodic, with a
timescale of ∼20 min. Light curves from MOS cameras confirm
this peculiar variability. Interestingly, the source is M51 ULX-7,
a pulsating (∼2.8 s) ultraluminous X-ray source with an orbital
period of ∼2 days and a possible super-orbital modulation of
∼38.9 days (Rodríguez Castillo et al. 2020; Vasilopoulos et al.
2021).

3XMM J031822.1-663603. (obs.id. 0405090101, src. 2,
BMU pixel 14,40) is located at RA(J2000) 03:18:22.17
Dec(J2000) -66:36:03.4. The EXTraS pn light curve shows a
random variability with an eclipse-like sudden drop (∼40% of
the average count rate) during the last 3 ks of the observation.
This drop is confirmed by both MOS cameras. This source is
associated with the pulsating (∼1.5 s) ultraluminous X-ray source
NGC1313 X-2 (Sathyaprakash et al. 2019; Robba et al. 2021).

3XMM J080945.3-472110. (obs.id. 0112670501, src. 4,
BMU pixel 45,32) is located at RA(J2000) 08:09:45.35
Dec(J2000) –47:21:10.16. The EXTraS pn light curve starts in
a constant, low state that lasts for 3ks (over a 28 ks exposure)
and then suddenly rises by a factor of ∼10 in count rate. It
can be interpreted as either an eclipse or a FRED flare with a
very long characteristic decay time (∼30 ks). Data from MOS
cameras are not available. We note that the only other XMM-
Newton observation (55 ks exposure) of this source shows a
count rate compatible with the low state. This source is position-
ally consistent with the young stellar object candidate 2MASS
J08094536-4721101.

3XMM J063045.4-603113. (obs.id. 0679381201, src. 1,
BMU pixel 45,32) is located at RA(J2000) 06:30:45.42
Dec(J2000) –60:31:13.15. The EXTraS light curve shows an
eclipse or a series of dips in the last 3ks of the observation
(over a 13ks exposure), with a drop of ∼75% of the count rate.
This behavior is confirmed by both MOS cameras. The source
is associated with XMMSL1 J063045.9-603110, a peculiar tran-
sient source (Read et al. 2011) proposed to be a tidal disruption
event (Mainetti et al. 2016), but later spectroscopically classified
as a nova (Oliveira et al. 2017).

3XMM J182422.8-301833. (obs.id. 0551340201, src. 52,
BMU pixel 45,32) is located at RA(J2000) 18:24:22.82
Dec(J2000) –30:18:33.2. The EXTraS pn light curve clearly
shows a periodic, possibly sinusoidal (or, a series of dips) pat-
tern. Indeed, the search for periodic sources performed within
EXTraS reveals a significant coherent signal at 2919 s (a com-
plete analysis will be presented in the EXTraS pulsators catalog
(Israel et al., in prep.). The X-ray source has a few possible opti-
cal counterparts and is also positionally consistent with a WISE
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Fig. 12. SOM map projected on a plane formed by the two largest
PCA vectors. Dots represent SOM neurons while lines are con-
nections between neighboring neurons. The evolution of the SOM
map projection during training is available as an online movie
‘fig_s5_som_pca12_movie’. One can see how the map goes from its
starting position as a rectangle, changes during rough training (1–
80 epoch), and converges to its final position during fine training
(81–160 epoch).

source. It could be a low-mass X-ray binary, but a dedicated
analysis is needed to confirm this hypothesis.

3XMM J053427.3-052420. (obs.id. 0403200101, src. 5,
BMU pixel 45,33) is located at RA(J2000) 05:34:27.37
Dec(J2000) –05:24:20.92. The EXTraS pn light curve starts in a
constant, low state that lasts for 20 ks (over a 90 ks exposure) and
then suddenly rises by a factor of ∼2 in count rate. This should be
interpreted as an eclipse – a FRED flare would have a very long
characteristic decay time (∼90 ks). Data from MOS cameras con-
firm the variability pattern. Other XMM-Newton observations
see the source – which is usually variable – in different states.
This source is positionally consistent with the 12.4 V magnitude
variable star of Orion type V* V1961 Ori.

4.5. Caveats and robustness checks

In general, a SOM is not guaranteed to correctly represent all
the relevant structure of a data set. A simple check of whether
the training process led to an acceptable result is to consider the
distribution of each variable from the initial high-dimensional
space: is it the same on the SOM neurons as in the origi-
nal data? As the aim of training a SOM is for the neurons
to behave like representative data points or prototypes, this is
clearly a minimum requirement. If the neurons have a very dif-
ferent distribution with respect to the original data then training
did not work as expected, perhaps having to few iterations. In
Fig. 6 we show all 31 normalized parameters, distinguishing all
the 128 925 detections, the 2654 variable detections, and the
1800 SOM neurons. It is clear that our SOM neurons generally
follow the distribution of the original data on each parameter.

Another test with a similar goal is to compare the results
of our SOM to those of other, simpler dimensionality-reduction
approaches. The simplest is PCA, which is a linear procedure
building a set of orthogonal variance-maximizing linear com-
binations of the (standardized) original coordinates. Retaining

only the first two PCA coordinates – which explain the most
variance in the data set – allows visualization on a plane. How-
ever, the linear nature of PCA makes it hard for it to correctly
represent nonlinear structure. In Fig. 12, our SOM map is pro-
jected from the original 31-dimensional parameter space on to
a plane formed by the first two PCA coordinates. Our map can
clearly be seen to generally cover this PCA plane, even though
it is twisted in a nontrivial way. This suggests that the original
parameters are related in complex nonlinear ways, justifying the
need for a SOM, or for nonlinear dimensionality reduction in
general, as opposed to PCA. A possible cause for concern is that
the SOM may have a complex shape (Fig. 12) because it is trying
to compensate for the difference between the intrinsic dimension
of the data set and the map intrinsic dimension of D = 2. Increas-
ing the dimensionality of our SOM by arranging its neurons on
a lattice in three-dimensional space would address this issue but
make visualization more cumbersome. We therefore chose not to
explore this option in the current paper, even though it may be
worth investigating in a subsequent one.

5. Conclusions

The XMM-Newton telescope greatly advanced our knowledge of
the X-ray sky, with the EXTraS project detecting and character-
izing the time variability of over 300 000 sources. The resulting
data set poses the typical challenges of big data, serving as
a clear illustration that X-ray astronomy is transitioning into
this regime. In this context, traditional approaches (e.g., human
visual inspection) do not allow us to take full advantage of the
opportunities offered by the data.

In this paper, we applied a machine learning approach with
the goal of automatically organizing data to maximize the effec-
tiveness of direct human inspection. To this end, we selected a
subset of parameters —from the originally large number pro-
vided by EXTraS – that characterize the variability of each
source, and applied dimensionality reduction to the resulting
data set. This was achieved using the SOM algorithm, which
represents the data on a plane, attempting to respect the topol-
ogy of the original high-dimensional space. By construction,
the SOM builds a grid of representative points that summarize
the original data, and lays them out grouped together based on
the similarity of their characteristics. It thus clusters the data
while reducing its dimension to a plane for visualization pur-
poses. This is something that would not be achieved by a linear
approach such as PCA, which would miss most of the intrin-
sically nonlinear structure of our data set that SOM is able to
capture, as shown in Fig. 12.

Despite being a time-tested algorithm which has already
been used in astronomy, this is the first time26 SOM is applied
in this context (large X-ray data set). As a result, we streamlined
a process of source recognition that would otherwise have been
driven by serendipitous discovery, finding flares, dips, eclipses,
and other source types, all arranged into contiguous clumps in
the SOM plane. Used in this way, SOM allows an astronomer
to concentrate on inspecting regions of data space that appear
scientifically promising.

We highlighted the problem of straightforward temporal
model fitting to light curves and its use to characterize them,
especially when data are noisy, and showed that the SOM
algorithm can overcome this problem to an extent by utilizing
parameters derived from the light curves.

With the introduction of this new tool, we were able to
explore the EXTraS data set, focusing on variable sources,
26 As far as we can tell.
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quickly selecting a number of objects that have interesting
properties that warrant further investigation, including different
kinds of binary systems (from binary stars to ULXs) as well
as more peculiar sources. While some of these objects were
already investigated and described in the literature, for exam-
ple the most luminous dipper known 3XMM J004232.2+411314
(Marelli et al. 2017), the peculiar transient 3XMM J063045.4-
603113 (Mainetti et al. 2016), and the poorly understood, low-
mass AGN XMMU J134736.6+173403 (Carpano et al. 2008), we
also extracted some new interesting sources (Sect. 4.4). It should
be noted that this data set, based on observations collected until
2012, was widely analyzed by the astronomical community for
years before this work.

Summarizing data becomes more and more valuable as data
sets grow. Our approach is therefore promising, especially in the
light of the upcoming new EXTraS data, not to mention future
space missions that may yield much richer and sensitive data
than XMM-Newton, such as the ESA ATHENA observatory. Fur-
thermore, our results pave the way for upcoming work focused on
supervised learning, where the goal is to look for specific objects
(e.g., “FRED” flare-like events or eclipses) armed with a good
understanding of the parameter space. This will allow us, for
instance, to visualize the predicted classification of a supervised
learner on the SOM plane, which is an effective interpretability
technique (see e.g., Molnar 2019).
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Appendix A: Data selection, normalization, and
correlation

Appendix A.1: Data normalization

The distribution of the values of each one of the 31 parame-
ters we selected is presented in Fig. A.3. Most of the parame-
ters are distributed with very narrow cores centered on zero and
long tails either in both positive and negative directions or in
the positive direction only. For some parameters, such as kur-
tosis and skewness, their distribution is highly asymmetric. In
such cases histograms were binned in a symmetric logarithmic
scale centered on zero and a linear scale around zero in order to
have a clearer idea of their distribution. The parameter groups
CDF_TFRAC_* and CDF_RFRAC_* span between zero and
one, and their distribution does not have such a narrow core com-
pared to the tail. They were plotted with linear time bins. All the
parameters have exactly the same number of values. This is nec-
essary for the SOM algorithm to work, that is, each detection in
the parameter space has all its 31 coordinates defined.

All three p-values (histograms 1, 2, and 4 in Fig. A.3) were
recalculated with higher precision and converted into one-sided
sigma values in such a way that higher sigma corresponds to a
poorer fit of the model. In this way, sigma is a proxy for vari-
ability against the three models. Another reason to transform p-
values is that the vast majority of them are concentrated towards
zero and one, and are hardly distinguishable in a linear scale;
however they correspond to very different levels of goodness of
fit to their models. Even with this higher precision recalculation,
many values are capped at ∼37 σ and so they fall in the final
bin.

Parameters in the group CDF_RFRAC_* show spikes on
top of a smooth distribution. The reason for this is that they
are defined as percentage of time the source spends in a certain
state, and as there is always a finite number of time bins, this
introduces a form of discretization.

The SOM algorithm typically relies on Euclidean distance
in parameter space to quantify the dissimilarity between data
points. To avoid over- or under-weighting parameters based on
their units of measure, their values have to be normalized on a
similar scale in order to give each of them similar influence in
guiding the SOM training process.

Simply normalizing to a fixed range by linearly rescaling has
several drawbacks in the presence of long tails and/or outliers.
This prevents us from simply assigning the minimum and the
maximum of each variable for instance to [0, 1], as most values
would end up concentrated around zero. Similar concerns also
prevent us from normalizing by setting the sample standard de-
viation to unity.

We quantify the importance of parameter distribution core,
tail and outliers by taking the ratio of the standard deviation to
median absolute deviation, rnrw (third column in Table A.1). The
median absolute deviation is robust to long tails and outliers,
while the standard deviation is not, and so large values of rnrw
imply the presence of long tails and/or outliers. About half of
parameters have rnrw � 1 with skewness and kurtosis having
rnrw ∼ 107 and rnrw ∼ 1010. The other half have rnrw > 1, rnrw >' 1
or rnrw <' 1.

To solve this issue we relied on a power transform of the
affected variables. A power-law exponent pnrw was defined as
pnrw = 1

log (10× rnrw) . The idea is that pnrw decreases slowly from 1
with increasing rnrw and when rnrw = 1, pnrw = 1 (pnrw was set

to 1 also when rnrw <' 1). Therefore for all parameters pnrw ≤ 1
(and positive).

For each set of parameter values, the distance between two
successive values ∆x was transformed as (∆x)pnrw . This has the
effect of increasing the distance between values which are too
close and decreasing the distance between values which are too
distant. Also, the effect of increasing or decreasing distance is
larger (lower pnrw) if the parameter has higher rnrw. Crudely
speaking, this process stretches the cores and squeezes the tails
with an intensity depending on the initial distribution. This pre-
serves the ordering (ranking) of values. Finally, all transformed
parameters were rescaled linearly to the range [0, 1].

The normalized distribution of each parameter is shown in
Fig. A.4. All histograms are binned linearly between zero and
one. The normalized values of the parameters are filling up the
same range of [0, 1], and are much more evenly distributed than
the original values, while maintaining the general shape of the
original distribution. Parameters with rnrw <' 1 (pnrw = 1) have
an identical distribution before and after normalization; parame-
ters with rnrw > 1 (pnrw <' 1) have a similar distribution in the two
cases; the distribution of parameters with rnrw � 1 (pnrw < 1) is
the most affected by normalization (in the sense of core stret-
ching and tail squeezing). The extreme values (i.e., potential out-
liers) are still at the edges of their distribution, but are not too far
from the majority of values.

Appendix A.2: Data correlation

As can be seen from histograms (Figs. A.3, A.4) several param-
eters appear to share a similar distribution. We quantified their
pairwise correlations by calculating the "Pearson r" correla-
tion coefficient, which measures the linear correlation between
parameters.

The correlation matrix for our 31 normalized parameters is
shown in Fig. A.1. As the distribution of parameter values is
featured, "Kendall rank τ" and "Spearman rank ρ" correlation
coefficients27 were checked. They are similar to Pearson r
coefficients.

As can be seen from Fig. A.1 there are many param-
eters with a large |r| > 0.5 association between each
other. As expected some parameters form groups with high
(anti)correlation such as the three UB_CDF_TFRAC_ABO*S
parameters, the two UB_LC500_QU_PAR*, both standard devi-
ations (UB_LC500_STDEV and UB_LC500_MEDABSDEV),
the five UB_CDF_RASYM_MID* and others.

The Pearson r correlation coefficient cannot accurately
describe complicated nonlinear dependencies. Some of the more
obvious examples are shown in Fig. A.2. In the upper panel
is a scatter plot of linear coefficient for linear and quadratic
model (UB_LC500_LI_PAR2 and UB_LC500_QU_PAR2).
Their correlation coefficient is almost zero, but there is a clear
X-shaped dependence between these two parameters (the cen-
ter corresponds to zero values of the original parameters). Two
diagonal correlations have very similar absolute values but
opposite signs, and cancel each other out producing a global
coefficient close to zero. In the lower panel is a scatter plot
between skewness and kurtosis. Their correlation coefficient is

27 Rank correlation coefficients compare two distributions based on the
ordering of their values (from smallest to largest), not on the values
themselves. As long as ordering is the same, the distribution of values
is not important.
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Fig. A.1. Pearson r correlation matrix of all m = 31 normalized para-
meter values. Positive (purple) values correspond to positive correla-
tion while negative (brown) values to negative correlation. Correlation
coefficients with absolute value less than 0.5 are not explicitly written.

Fig. A.2. Two scatter plots illustrating nonlinear dependencies between
parameters. As there are n = 128 925 detections, the scatter plot is pre-
sented as a density plot. The values covered by the color bar, in loga-
rithmic scale, present the number of detections in a given discrete area
of the plot. Further explanation of the parameter correlations is given in
the text.

≈ 0.35, but there is a clear dependence, similarly to the previous
case, but with several groups instead of a symmetric "X."

It is common to exclude redundant parameters in the ma-
chine learning process for several reasons, such as: the algorithm

is more stable and faster with fewer parameters, and how each
parameter affects the learning process is easier to interpret.

The redundant parameters are typically those with high cor-
relation to a given parameter. In this case, the correlation be-
tween parameters is highly complicated and it is not straightfor-
ward to exclude them based on a simple criterion. In some cases,
high correlation is the result of very high positive correlation
and a small negative correlation. If only one parameter were to
be chosen, information would be lost from the negatively corre-
lated part. The SOM algorithm used in this work is relatively fast
with this data set and there is no particular need to increase its
speed efficiency by excluding parameters.

Redundancy to a given parameter increases the dimensional-
ity of the parameter space but does not contribute significantly
to the information that the given parameter carries. As SOM is
a dimensionality-reduction algorithm, it takes care of this natu-
rally. The issue is that if there are more parameters in a group
of correlated parameters, then the influence of the information
from that group on the SOM learning process is increased. This
is because the SOM "sees" the data in parameter space based on
Euclidean distance. Therefore, this effect is approximately pro-
portional to the square root of the number of redundant param-
eters, which is why it is not drastically important. Based on all
of the above, we decided to train the SOM with all the m = 31
normalized parameters.
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Table A.1. Selected parameters.

Parameter designation Parameter description Narrowness
UB_LC500_CO_PVALa Tail probability for a constant model. 3.77
UB_LC500_LI_PVALa Tail probability for a linear model. 3.71
UB_LC500_LI_PAR2 Best-fit value of parameter 2 (the linear coefficient) for a linear

model.
85.5

UB_LC500_QU_PVALa Tail probability for a quadratic model. 3.70
UB_LC500_QU_PAR2 Best-fit value of parameter 2 (the linear coefficient) for a quadratic

model.
58.9

UB_LC500_QU_PAR3 Best-fit value of parameter 3 (the quadratic coefficient) for a
quadratic model.

118

UB_LC500_STDEV Weighted standard deviation on the distribution of the rate. 24.7
UB_LC500_SKEW Weighted skewness on the distribution of the rate. 1.98× 107

UB_LC500_KURT Weighted reduced kurtosis on the distribution of the rate. 3.68× 1010

UB_LC500_RELVAR Relative variance (variance/average) on the distribution of the rate. 1.16× 103

UB_LC500_AMPLIT Amplitude of rate excursion ((max(rate)-min(rate))/2). 17.7
UB_LC500_MEDABSDEV Median absolute deviation of the distribution of the rate. 24.6
UB_LC500_MEDMAXOFF Maximum relative offset from the median (max(|rate-

median|)/median) of the distribution of the rate.
37.2

UB_CDF_TFRAC_BEL1S Fraction of time spent more than 1 sigma below the average rate. 0.89
UB_CDF_TFRAC_ABO1S Fraction of time spent more than 1 sigma above the average rate. 0.88
UB_CDF_TFRAC_BEL3S Fraction of time spent more than 3 sigma below the average rate. 1.01
UB_CDF_TFRAC_ABO3S Fraction of time spent more than 3 sigma above the average rate. 0.93
UB_CDF_TFRAC_BEL5S Fraction of time spent more than 5 sigma below the average rate. 0.97
UB_CDF_TFRAC_ABO5S Fraction of time spent more than 5 sigma above the average rate. 0.90
UB_CDF_TFRAC_MID20 Fraction of time spent within 10 percent of the median rate. 1.62
UB_CDF_RRANGE_90 Width of the range of rates in which the source spends 90 percent

of its time.
18.6

UB_CDF_RFRAC_MID20 Fraction of UB_CDF_RRANGE_90 in which the source spends
20 percent of its time.

1.27

UB_CDF_RFRAC_MID35 ... 35 percent of its time. 1.23
UB_CDF_RFRAC_MID50 ... 50 percent of its time. 1.04
UB_CDF_RFRAC_MID65 ... 65 percent of its time. 1.08
UB_CDF_RFRAC_MID80 ... 80 percent of its time. 1.06
UB_CDF_RASYM_MID20 Asymmetry of the rate distribution in which the source spends 20

percent of its time.
46.0

UB_CDF_RASYM_MID35 ... 35 percent of its time. 41.6
UB_CDF_RASYM_MID50 ... 50 percent of its time. 70.4
UB_CDF_RASYM_MID65 ... 65 percent of its time. 73.7
UB_CDF_RASYM_MID80 ... 80 percent of its time. 72.5

Notes. Parameters used in training. All parameters were derived from light curves with 500 s uniform time bins. First column is a designation of
the parameter in the WP2 catalog. Second column is the description of the parameter. Third column is the ratio of standard deviation to median
absolute deviation.
(a)Tail probabilities (p-values) were recalculated with higher precision and transformed into one-sided sigma values such that higher sigma
corresponds to a poorer model fit.
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Fig. A.3. Histograms of the m = 31 parameter distributions. Each parameter is numbered corresponding to the order in Table A.1. The number of
detections is the same for each parameter and is shown in the legend in every histogram. Histogram binning adaptively switches between linear
(around zero) and logarithmic (in the distribution tails) in most cases to best present the distribution of each parameter. Number labels were omitted
from ticks near zero for clarity. The vertical axes are in logarithmic scale.

Fig. A.4. Histograms of m = 31 normalized parameter distributions. Each parameter is numbered corresponding to the order in Table A.1 and
Fig. A.3. The number of detections is the same for each parameter and is shown in the legend in every histogram. All histograms are binned in
linear scale ranging from zero to one. The vertical axes are in logarithmic scale, as in Fig. A.3.
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Appendix B: Eclipsing sources from literature

Table B.1 contains eclipsing-like sources from the literature
mentioned in Sect. 4.3.3.

Table B.1. Eclipsing-like sources from the literature.

Name Reference Obs. id Src. num.a Pixel
RX J0047174-251811 1 0110900101 7 45,28
EP Dra 2 0109464501 1 45,37
V* UY vol 3 0560180701 1 45,32

0605560401 1 45,32
0651690101 1 45,32
0651690101 1 15,40

4U 1323-62 4 0109100201 1 45,40
V2301 Oph 5 0109465301 1 45,38
4U 2129+47 6 0502460101 1 45,31

0502460201 1 45,31
0502460301 1 45,31
0502460401 1 45,31

2XMMp J131223.4+173659 7 0200000101 1 45,36
XTE J1710-281 8 0206990401 1 45,33
NGC 4736 ULX1 9 0094360601 1b 45,32

0094360601 2b 45,31
CAL 87 10 0153250101 1 45,33
AX J1745.6-2901 11 0402430301 5 45,33

0402430401 5 45,32
0402430701 5 45,32
0505670101 4 45,32

ULX CG X-1 12 0111240101 1 45,33

Notes. List of eclipsing-like sources randomly selected from the literature observed by XMM-Newton. We report the name, reference, observation
and source number, and pixel coordinates in the BMU map (Fig. 5). Several detections may belong to the same source.
(a)Source number refers to 3XMM-DR4 notation. (b)Here the same source is detected as two different point-like sources in 3XMM-DR4.
References. (1) Pietsch et al. (2003); (2) Ramsay et al. (2004); (3) Bonnet-Bidaud & Haberl (2004); (4) Boirin et al. (2005); (5) Ramsay & Cropper
(2007); (6) Bozzo et al. (2007); (7) Vogel et al. (2008); (8) Younes et al. (2009); (9) Lin et al. (2013); (10) Ribeiro et al. (2014); (11) Jin et al. (2018);
(12) Qiu et al. (2019).
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