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ABSTRACT
We perform relativistic magneto-hydrodynamic simulations of jets from super-massive
blackholes over a few tens of kpc for a range of jet parameters viz. jet kinetic power,
magnetisation, density and pressure contrast with ambient medium. We find that
two dominant MHD instabilities affect the dynamics of the jet. Low power slower
jets with stronger magnetisation are susceptible to kink modes which cause the jets
to bend. Jets with lower magnetisation are susceptible to Kelvin-Helmholtz driven
mixing that de-collimates the jet spine. This induces turbulence inside the jet cocoon
resulting in magnetic fields with shorter scale lengths. Higher power faster jets are less
susceptible to such instabilities due to slower growth rates. However, hotter jets with
higher pressure are more prone to internal turbulence even at higher powers. MHD
instabilities result in deceleration of the jet advance speed. However, if the jets can
get out of galaxy’s core without appreciable deceleration, it has higher advance speed
as the jets expand into a medium with a decreasing density profile. We find that the
dynamics of stable jets match well with simplified analytic models of expansion of
FRII jets. Jets with prominent MHD instabilities show a nearly self-similar evolution
of the morphology as the energy is more evenly distributed between the jet head and
the cocoon. Faster stable jets that have not decelerated, do not show a self-similar
evolution.

Key words: galaxies: jets – galaxies: ISM – hydrodynamics – galaxies: evolution –
galaxies: high-redshift – methods: numerical

1 INTRODUCTION

Relativistic jets are one of the major drivers of galaxy evo-
lution (Fabian 2012). Jets deposit energy over a large range
of spatial scales, from the galactic core of a few kpc Wagner
& Bicknell (2011); Mukherjee et al. (2016, 2017); Morganti
et al. (2013); Morganti (2020) to the circum-galactic me-
dia, some extending to Mpc in length Dabhade et al. (2017,
2019). Understanding the evolution and dynamics of such
jets is thus crucial in unraveling how galaxies evolve over
cosmic time.

Since the discovery of radio emission from jet driven
lobes (Jennison & Das Gupta 1953), there has been sig-
nificant observational and theoretical investigations to un-
derstand the nature of these extragalactic objects (see e.g.
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Begelman et al. 1984; Worrall 2009; Blandford et al. 2019,
for reviews). While it is now common understanding that
non-thermal processes such as synchrotron and inverse-
compton contribute to the multi-wavelength emission from
the jets (Worrall 2009; Worrall & Birkinshaw 2006), there
still remain several open questions on how the evolution and
dynamics of the jet affect the above emission processes.

Several early works have attempted to describe the jet
dynamics and subsequently explain the observed emission
through semi-analytic modeling of the jet expansion such as
Begelman & Cioffi (1989), Falle (1991), Kaiser & Alexander
(1997), Komissarov & Falle (1998), Turner & Shabala (2015)
and Hardcastle (2018) to name a few. With the development
of numerical schemes to simulate relativistic flows, several
papers have investigated the dynamics of relativistic jets as
they expand into the ambient medium (Mart́ı et al. 1997;
Komissarov & Falle 1998; Komissarov 1999; Scheck et al.
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2002; Perucho & Mart́ı 2007; Rossi et al. 2008; Mignone et al.
2010; Perucho et al. 2014; Rossi et al. 2017; Perucho et al.
2019). In these series of papers we intend to give a broad
interpretation of the dynamics and emission properties of
relativistic, magnetised jets, considering in detail the effects
of instabilities and the role played by the magnetic field on
jet propagation (paper I). This first paper, that focuses on
the dynamics, provides a basis and a reference for interpret-
ing the radiative properties, that will be investigated in the
following papers.

MHD instabilities can play a significant role in deter-
mining the dynamics and evolution of the jet. The two
major instabilities that can affect the jet are the current
driven modes (Nakamura et al. 2007; Mignone et al. 2010,
2013; Mizuno et al. 2014; Bromberg & Tchekhovskoy 2016;
Tchekhovskoy & Bromberg 2016) and Kelvin-Helmholtz
modes (Bodo et al. 1989; Birkinshaw 1991; Bodo et al. 1996;
Perucho et al. 2004, 2010; Bodo et al. 2013, 2019). The
growth of such instabilities and their efficiency in disrupting
the jet column depends on several factors such as jet veloc-
ity, magnetisation and jet opening angle or collimation.

Jets with higher velocities, stronger magnetisation and
colder plasma have slower growth of Kelvin-Helmholtz
modes (Rosen et al. 1999; Perucho et al. 2004; Bodo
et al. 2013). Strongly magnetised, collimated jets are how-
ever susceptible to the current driven modes (Bodo et al.
2013; Bromberg & Tchekhovskoy 2016; Tchekhovskoy &
Bromberg 2016). Thus the relative efficiency of the differ-
ent modes depend on internal parameters of the jet. Many
of the above works, especially those involving semi-analytic
linear analysis Bodo et al. (1989); Perucho et al. (2004);
Bodo et al. (2013, 2019) rely on idealistic approximations to
keep the problem tractable. In a realistic scenario of a jet
traversing through an ambient density whose radial profile
is defined by the gravitational potential of the host galaxy,
several of the above modes can occur simultaneously.

Simulations of relativistic jets expanding into an ambi-
ent medium have been carried out in several earlier papers
(such as Mart́ı et al. 1997; Komissarov & Falle 1998; Scheck
et al. 2002; Perucho & Mart́ı 2007; Rossi et al. 2008; Mignone
et al. 2010; Perucho et al. 2014; English et al. 2016; Peru-
cho et al. 2019). However, very few of the above explore in
a systematic way the impact of different jet parameters on
the development of various MHD instabilities and their ef-
fect on the jet dynamics. In the present paper we perform
a suite of relativistic magneto-hydrodynamic simulations to
explore the dynamics and evolution of the jet and its co-
coon over a few tens of kpc for a varying range of initial jet
parameters such as the jet’s power, velocity, magnetisation
and contrast of the pressure (or temperature) and density
with the ambient medium.

We investigate how the jet parameters impact the
growth of different instabilities and their effect on the dy-
namics and morphology of the jet by comparing with an
analytic extension of the jet evolution model proposed in
Begelman & Cioffi (1989). We also present the distribution
and evolution of the magnetic field in the cocoon and its de-
pendence on the onset of different MHD instabilities, which
is important in predicting synchrotron emission from the jet
lobes (Hardcastle 2013; Hardcastle & Krause 2014; English
et al. 2016). Some of the simulations have been performed
with the new lagrangian particle module in the PLUTO

code, as described in Vaidya et al. (2018) that computes the
spectral and spatial evolution of relativistic electrons in the
jet. This enables one to make accurate predictions of syn-
chrotron emission expected from such systems. In this paper
we restrict ourselves to the discussions of dynamics of the
jet the evolution based on the fluid parameters alone. In
subsequent publications of this series, we will discuss the
nature of the observable emission and its connection to the
jet dynamics and MHD instabilities.

We structure the paper as described below. In Sec. 2
we describe the initialisation of the simulation parameters
and the details of the numerical implementation. In Sec. 3
we describe the results of the simulations and the impact of
different parameters on the jet dynamics. In the sub-sections
therein we describe the onset of different MHD instabilities
for different jet parameters and the relative comparison of
the different simulations with an analytic model of jet evolu-
tion. Finally in Sec. 4 and Sec. 5 we discuss the implications
of the results and summarise our findings.

2 SIMULATION SETUP

2.1 The problem

We investigate the propagation of relativistic magnetised
jets in a stratified ambient medium. The relevant equa-
tions to be solved are the relativistic magnetohydrodynamic
(RMHD) equations (see e.g. Mignone et al. 2007; Rossi
et al. 2017). We assume a single-species relativistic perfect
fluid (the Synge gas) described by the approximated Taub-
Matthews equation of state (Mignone et al. 2005; Mignone
& McKinney 2007). The ambient medium, better described
in subsection 2.2, is maintained in hydrostatic equilibrium
by an external gravitational potential. No magnetic field is
present in the initial configuration at t = 0 and a toroidal
magnetic field is injected along with the jets. The equations
are solved in a 3D Cartesian geometry with the z axis point-
ing along the jet direction.

2.2 Ambient atmosphere

We assume an external static gravitational field to keep the
ambient halo gas in pressure equilibrium. We take a Hern-
quist potential (Hernquist 1990) to represent the contribu-
tion of the stellar (baryonic) component of the galaxy:

φB = − GMB

r + aH
(1)

Here G is the gravitational constant, MB = 2 × 1011M�
is the stellar mass of the galaxy, typical of large ellipticals
which host powerful radio jets (Best et al. 2005; Sabater
et al. 2019) and aH = 2 kpc is the scale radius, which cor-
responds to a half-mass radius r1/2 =

(
1 +
√

2
)
aH = 4.8

kpc and the half-light radius of Re = 1.8153aH ' 3.63
kpc (Hernquist 1990), typical of giant ellipticals (Kormendy
et al. 2009). The contribution of the dark matter component
to the gravitational potential is modelled by a NFW profile
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Figure 1. Top: Density profile of the ambient halo as a function

of radius set to be in equilibrium with the external gravitational

field. Fits to the density profile using simple analytical expressions
(eq. A3 and eq. ??) have been presented for two different regimes,

1−10 kpc in red and 15−60 kpc in blue. Bottom: Temperature

profile assumed for the halo gas, using eq. 3.

(Navarro et al. 1996):

φDM =
−GM200

[ln(1 + c̃) + c̃/(1 + c̃)]

(
1

r + d

)
ln

(
1 +

r

rs

)
(2)

where M200 = 200ρcr
4π

3
c̃3r3s ; rs = r200/c̃

Here r200 is the radius where the mean density of the dark-
matter halo is 200 times the critical density of the universe,
c̃ is the concentration parameter and ρcr = 3H2/(8πG) =
8.50610−30g cm−3 is the critical density of the universe at
z = 0 with the Hubble constant H = 67km s−1Mpc−1

(Planck Collaboration 2016). The NFW profile is modified
with an arbitrarily chosen small core radius of d = 10−3 kpc
to avoid the singularity at r = 0.
For our simulations we assumed c̃ = 10, d = 10−3 kpc
and r200 = 1 Mpc which gives a virial mass of M200 =
1×1014M� (r200/1Mpc)3. The above are comparable to val-
ues inferred from observations of galaxy clusters (Croston
et al. 2008). Thus the galaxy parameters used represent a
typical giant elliptical at the centre of a cluster.

The ambient atmosphere in several early type galax-
ies (Paggi et al. 2017) and centres of clusters (Leccardi &
Molendi 2008) are usually found to have radially increasing
gas temperatures. For our simulations we model the ambi-
ent halo to have a radially varying temperature profile as

(as shown in Fig. 1):

Ta(r) = Tc +

[
1− 1

cosh(r/rc)

]
(TH − Tc) (3)

where Tc = 107 K is the temperature at r = 0 and TH
is the temperature at radii beyond the scale radius rc. For
our simulations we assume TH = 2Tc and rc = 10 kpc.
The density and pressure are then evaluated by considering
the atmosphere to be in hydrostatic equilibrium with the
external gravitational force, by solving:

dpa(r)

dr
= −ρa(r)

dφ(r)

dr
; pa(r) =

ρh(r)

µma
kBTh(r)

pa(r) = (n0kBTc) exp

[
−
∫ r

0

(
µma

kBTa(r)

)
dφ(r)

dr
dr

]
(4)

where pa and ρa = µmanh are the pressure and density of
the ambient halo gas, φ = φB + φDM is the total gravita-
tional potential, µ = 0.6 is the mean molecular weight for a
fully ionised gas (Sutherland & Dopita 2017) with ma be-
ing the atomic weight, n0 is the number density at r = 0
and the temperature, Ta(r), is given by eq. 3. Equation 4 is
solved numerically to obtain a tabulated list of density and
pressure as a function of radius, which is then interpolated
on to the pluto domain at the initialisation step.

2.3 Jet parameters

The jet properties are defined by four non dimensional pa-
rameters:

• The density contrast

ηj =
nj(rinj)

nh(rinj)
(5)

which gives the ratio of the number density of the jet plasma
(nj) to the number density of the ambient halo at the radius
of injection (rinj).
• The bulk Lorentz factor of the jet (γb), from which the

magnitude of the jet speed is computed. The jet is primarily
directed along the z axis. The different components of the
velocity vectors are then calculated by assuming the jet to be
launched with an opening half-angle of 5◦, as in Mukherjee
et al. (2018).
• The jet magnetisation parameter defined as the ratio of

the Poynting flux (Sj) to the jet enthalpy flux (Fj):

σB =
|Sj · ẑ|
|Fj · ẑ|

=
| (Bj × (vj ×Bj)) · ẑ|

4π (γ2ρjhj − γρjc2) (|vj · ẑ|)
(6)

where Bj is the magnetic field vector of the jet, vj is the jet
velocity, and ρjhj is the relativistic enthalpy of the jet per
unit volume. The contribution of the rest mass energy to the
enthalpy flux is removed while computing the jet enthalpy
flux Fj . The fluxes are considered along the jet z axis, i.e. the
direction of launch of the jets. The relativistic enthalpy is
computed for a Taub-Matthews equation of state (Mignone
et al. 2005) as:

ρjhj =
5

2
pj +

√
9

4
p2j + (ρjc2)2 (7)

Eq. 6 can be used to derive the strength of the magnetic
field of the jet. For a toroidal magnetic field in a jet directed
along the z axis, we derive the peak field strength as B0 =√

(4πFjσB) /vj .
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• The pressure contrast

ζp =
pj(rinj)

ph(rinj)
(8)

which sets the ratio of the pressure of the jet (pj) with re-
spect to the pressure of the ambient halo at the injection
radius. For all of our simulations we assume the jet to be in
pressure equilibrium with the atmosphere at t = 0, except
for simulation G (see Table 1) where the jet is over-pressured
at launch with ζp = 5.

The jet power Pj is found by integrating the total en-
thalpy flux (wihtout the rest mass energy) over the injec-
tion surface, including the contribution of the magnetic field.
For a flow with a total enthalpy wt = ρjhj + B2/(γ24π) +
(v ·B)2 /(4π), the total enthalpy flux per unit area along
the z axis, excluding the rest mass energy, is (Mignone et al.
2009)

FTz =
(
wtγ

2 − γρjc2
)
vz

− γ
(

v ·B√
4π

)(
Bz

γ
√

4π
+ γ

(
v ·B√

4π

)
vz

)
=
(
γ2ρjhj − γρjc2

)
vz +

B2

4π
vz − (v ·B)

Bz
4π

(9)

In order to get the jet power in physical units we need to fix
the value of the jet radius Rj and the number density of the
ambient halo at the radius of injection nh(rinj). We assume
Rj = 100 pc in all cases except cases G, H and J, where Rj =
200 pc (see Table 1). The number density of the ambient gas
is nh(rinj) = 0.1 cm−3 in all cases except for simulation I,
where nh(rinj) = 1 cm−3. The list of simulations performed
with the different choice of parameters and other inferred
quantities is summarised in Table 1.

2.4 Numerical implementation

We perform the simulations with the pluto code (Mignone
et al. 2007), utilising the relativistic magnetohydrodynamic
module (RMHD). We employ the piece-wise parabolic recon-
struction scheme (ppm: Colella & Woodward 1984), with a
second-order Runge-Kutta method for time integration and
the HLLD Riemann solver Mignone et al. (2009). The mag-
netic field components, defined on the face-centres of a stag-
gered mesh, are updated using the constrained transport
(CT) method (Balsara & Spicer 1999; Gardiner & Stone
2005). The electromotive force (E) is defined on the zone
edges of a computational cell, and reconstructed with the
upwind constrained transport technique (uct hll scheme
of pluto: Londrillo & del Zanna 2004) by solving a 2-D
Riemann problem.

For better numerical stability, in some simulations we
employed a more diffusive Riemann solver (hll) and lim-
iter (min-mod) for cells identified as strongly shocked in the
central region where the jet is injected (Z < ±1 kpc). A com-
putational cell was identified to be shocked if δp/pmin > 4,
where δp is the sum of the difference in pressure between
neighbouring cells in each direction and pmin is the mini-
mum pressure of all surrounding cell. An outflow boundary
condition was applied on all sides of the computational box
with the jet injected from a volume inside the computational
box.

In the jet injection zone the fluxes of the Riemann

solvers are set to zero and hence the fluid variables (ρ, p,
v) remain unchanged. The vertical extent of the injection
zone is set at z = ±Rj , while the horizontal extent is chosen
to have a few computational cells larger than the jet ra-
dius. The injection zone is centred at (0, 0, 0) with the edges
symmetrically placed along each axis. For most of the simu-
lations, the computational box has a short extension of ∼ 1
kpc along the negative z axis. This avoids the use of a re-
flecting boundary condition, as has been traditionally used
in typical jet simulations Mignone et al. (2010); Massaglia
et al. (2016); Perucho et al. (2019), which may result in spu-
rious features at the lower boundary. For simulation E (see
Table 1), the injection zone was centred at the middle of the
total computational domain, and the evolution of both jet
lobes were followed in full. The extent of the computational
domain and the grid resolution are detailed in Table 1. The
grid resolution is chosen in a way such that the number of
points on the jet radius is always larger than 6.

The density and pressure of the jet in the injection
zone are tapered radially with a smoothing function: Q =
Q0/

(
cosh

[
(R/Rj)

6]), R being the cylindrical radius, to
avoid sharp discontinuities at R = Rj . The velocity com-
ponents were strictly truncated at R = Rj so that there is
no energy flux beyond Rj . This ensures that the injected
jet energy flux is not greater than the intended value calcu-
lated by integrating eq. 9 over the injection surface bounded
by R = Rj . Besides the bulk velocity defined by γb, we
additionally imposed small perturbations on the transverse
components to induce pinching, helical and fluting mode in-
stabilities as in Rossi et al. (2008)

(vx, vy) =
Ã

24

2∑
m=0

8∑
l=1

cos(mφ+ ωlt+ bl)(cosφ, sinφ) (10)

where φ = tan−1(y/x), ωl = cs(1/2, 1, 2, 3) for l ∈ (1, 4)
and ωl = cs(0.03, 0.06, 0.12, 0.25) for l ∈ (5, 8). Here cs is
the relativistic sound speed in the jet, which for a Taub-
Matthews equation of state is defined as (Mignone et al.
2005)

c2s =

(
pj

3ρjhj

)(
5ρjhj − 8pj
ρjhj − pj

)
(11)

where ρjhj is computed from eq. 7. The perturbation am-
plitude is defined to be

Ã =
1√
2γb

√
(1 + ε)2 − 1

(1 + ε)
(12)

which gives the Lorentz factor of the perturbed velocity field
to be γ = γb(1 + ε). We choose ε = 0.005 for our simulations
to induce very mild perturbations in the jet flow.

The magnetic field components were assigned from a
vector potential defined by

Az = −
∫ ∞
0

B0f

(
R

Rj

)
dR (13)

where f

(
R

Rj

)
=

R

Rj
(
cosh

[
(R/Rj)

6]) for R 6 Rj

= 0 for R > Rj (14)

Eq. 13 is numerically integrated to radii much larger than
the jet radius to obtain a tabulated list of vector potential as
a function of cylindrical radius, which is then interpolated
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Table 1. List of simulations and parameters

Sim. Physical domain Grid point ηj γb σB rj Pj B0 Mj Θj
label (kpc× kpc× kpc) kpc (ergs−1) (m G)

A 4.5× 4.5× 10 288× 288× 640 4× 10−5 3 0.01 0.1 1.57× 1044 0.054 11.5 0.039

B 4.5× 4.5× 10 288× 288× 640 4× 10−5 3 0.1 0.1 1.65× 1044 0.171 11.5 0.039

C 4.5× 4.5× 10 288× 288× 640 4× 10−5 3 0.2 0.1 1.73× 1044 0.241 11.5 0.039

D 4.5× 4.5× 10 288× 288× 640 1× 10−4 5 0.01 0.1 1.11× 1045 0.152 30.9 0.015

Ea 6× 6× 18 384× 384× 1152 1× 10−4 5 0.05 0.1 1.15× 1045 0.304 30.9 0.015
F 4.5× 4.5× 10 288× 288× 640 1× 10−4 5 0.1 0.1 1.17× 1045 0.48 30.9 0.015

Gb 4.5× 4.5× 10 288× 288× 640 1× 10−4 6 0.2 0.2 8.29× 1045 0.907 17.49 0.077
H 4.5× 4.5× 10 288× 288× 640 1× 10−4 10 0.2 0.2 1.64× 1046 1.363 62.77 0.015

Ic 4.5× 4.5× 10 288× 288× 640 1× 10−4 5 0.1 0.1 1.17× 1046 1.36 30.9 0.015

J 6× 6× 40 384× 384× 2560 1× 10−4 10 0.1 0.2 1.51× 1046 0.964 62.77 0.015

a Simulation E is a two sided jet with the injection zone located at the centre of the domain.
b Over-pressured jet ζp = 5. For the rest ζp = 1.
c nh(rinj) = 1 cm−3. For other simulation nh(rinj) = 0.1 cm−3.

Parameters:
ηj : Ratio of jet density to ambient density.

γb: Jet Lorentz factor.

σB : Jet magnetisation parameter, the ratio of jet Poynting flux to enthalpy flux.
rj : Jet radius

Pj : Jet power computed from eq. 9.

B0: Maximum strength of toroidal magnetic field in milli-Gauss

Mj : Jet Mach number (Rossi et al. 2008): Mj = γbvj/ (γscs), where γs = 1√
1−(cs/c)

2
and cs is the sound speed in eq. 11.

Θj : The temperature parameter for the jet equation of state: Θj = pj/(ρjc
2)

on to the pluto domain. This gives a toroidal magnetic
field of peak strength B0, as defined by the magnetisation
parameter, with a profile defined by eq. 14. The staggered
magnetic field components were not updated inside the jet
injection zone except at the faces of the outer surfaces of
the injection domain. Similarly, the components of the EMF
were also not updated within the injection zone, except for
the edges of the injection domain. The sign of the toroidal
component of the magnetic field and z component of the
velocity were reversed for injection of jet along the negative
z axis.

3 RESULTS

We have performed a series of simulations to investigate the
difference in the dynamics of the jet for different powers,
magnetisation, jet pressure contrast with respect to the am-
bient gas and density of the ambient medium. The main
focus of these studies has been to understand the impact of
these parameters on the evolution of the jet’s morphology,
the deceleration of the jet, impact of instabilities such as
kink and Kelvin-Helmholtz modes. In this section we sum-
marise the results of the different simulations and compare
analytical models that predict the evolution of the jet kine-
matics.

3.1 Dynamics of jet

In Fig. 2 we present the density and pressure at two different
times for simulation G (see Table 1), which represents a typ-
ical powerful FRII jet (as per the classification of Fanaroff
& Riley 1974). The density slices show an internal cavity

bounded by a contact discontinuity and forward shock (typ-
ical of over-pressured outflows as shown in Komissarov &
Falle 1998; Kaiser & Alexander 1997). The jet moves at bulk
relativistic velocities near the axis, represented by the con-
tour of γ = 2 in white. The jet terminates at a hot-spot with
enhanced pressure due to the strong shock with the ambi-
ent gas. The internal cavity (∼ 10−4 cm−3) is composed of
low density plasma in the backflow of the jet from the for-
ward shock at the jet-head and mixing of thermal gas due to
Kelvin-Helmholtz instabilities at the contact discontinuity.

Within the axis of the jet there are several sites of en-
hanced pressure, arising out of recollimation shocks (Nor-
man et al. 1982; Komissarov & Falle 1998; Nawaz et al.
2014; Nalewajko & Sikora 2009; Fuentes et al. 2018; Bodo &
Tavecchio 2018). In the bottom panels we show the Y and Z
components of the magnetic field. It is evident from Fig. 2
that the jet axis is not collimated along the Z axis, show-
ing both small scale distortions as well as bending near the
jet head spread over ∼ 1 kpc. Such distortions arise from
both small scale instabilities resulting shearing of the jet
axis driven by high order Kelvin-Helmholtz modes, as well
as kink type m = 1 mode instabilities (Bodo et al. 2019;
Bromberg et al. 2019; Mizuno et al. 2014; Bodo et al. 2013;
Mignone et al. 2010). It is to be noted that although we
inject a purely toroidal magnetic field, the jet develops a
vertical component as it propagates. This results in a he-
lical topology of the resultant magnetic field along the jet
axis, although dominated by the toroidal component. We
shall elaborate more on the effect of instabilities on the jet
dynamics in later sections.
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Figure 2. The top left panel shows slices in the X−Z plane of the logarithm of the number density at two different times for Simulation
G (see Table 1 for list of simulations). The white lines represent contours of Lorentz γ = 2 representing the bulk relativistic flow. The

logarithm of pressure slices are on the top right panel. The bottom panels show the toroidal (left) and vertical component of the magnetic

field in milli-Gauss.

3.2 Effect of magnetisation on jet stability

Two different kinds of fluid instabilities affect the dynamics
of the jets in our simulations. Weakly magnetised jets have
a faster onset of Kelvin-Helmholtz (KH) instabilities which
deform the jet cross section with short wavelengths modes
and promote mixing between the jet and the surrounding
medium. With a stronger toroidal magnetic field, the mag-
netic tension opposes to the jet deformation and stabilises
the KH modes (Mignone et al. 2010). However, stronger
magnetisation can also instigate the onset of current driven
instabilities, of which the most relevant is the m = 1 mode,
which will result in large scale deformations and bending of
the jet from its initial axis (Bodo et al. 2013). The relative

growth rates of the different modes depend on the magnetic
pitch parameter, the jet velocity and magnetisation (Bodo
et al. 2013). In the following sections we discuss the effect of
magnetisation on the evolution of the jets in different power
regimes.

3.2.1 Low power jets: Kink modes

Simulations A,B,C have similar jet power (∼ 1044 erg s−1)
and injection speed (γ ∼ 3) while differing in jet magnetisa-
tion with σB = 0.01, 0.1, 0.2 respectively. Figure 3 shows the
3D volume rendering of the jet speed and density for simula-
tions A and B. The Z component of the velocity (normalised
to c) is presented in a blue-red palette with the red-orange
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Figure 3. 3D volume rendering of the velocity in orange-blue palette with the density of the jet and cocoon in the red-green palette for

simulations A (left) and B (right). The magnetic field vectors are plotted in magenta with their length scaled to their magnitude.

depicting positive velocities and velocities directed along the
negative Z axis in blue. The spine of the jet in simulation
B (right panel in Fig. 3) shows clear bends and twists in-
dicative of kink mode instabilities. At the top, the jet head
bends sharply, almost perpendicular to its original axis, be-
fore bending backwards to eventually form the backflow. The
morphology of the jet head is thus very different from that
of usual jets where the relativistic flow terminates in a shock
at a mach disc symmetric around the jet axis before flowing
backwards in the cocoon (Kaiser & Alexander 1997; Mart́ı
et al. 1997; Komissarov & Falle 1998; Rosen et al. 1999).

The cocoon of the jet can be discerned from the volume
rendering of the density presented in green. The morphology
of the cocoon is highly asymmetric, with local bubble shaped
protrusions. These correspond to the locally expanding bow
shock where the jet was temporarily directed before bend-
ing to a different direction. Over the course of its growth,
the swings of the jet-head results in a broader spread of
the jet energy over a much larger solid angle. This results
in the formation of the cocoon with an over-all cylindri-
cal shape, as opposed to narrow conical shape expected for
stable jets. The instabilities decelerate the jet, reducing its
advance speed as discussed later in Sec. 3.4.

Simulation A with lower magnetisation (Table 1) on the
other hand do not show the onset of the kink modes on sim-
ilar time scales. The jet forms a conical cocoon with stable
spine along the launch axis. The central spine broadens and
shows evidence of shear, as expected for low magnetic fields
(discussed more in the next section). The magnetic field vec-
tors in magneta lie in circles around jet axis, implying a he-
lical topology tracing the jet spine. In the cocoon, especially
near the base of the jet, the vectors lie along larger scale
toroidal contours resulting from the backflow. This is also
in sharp contrast to simulation B where the magnetic field

vectors show more randomness in their orientation. The ran-
domness of the field topology arises from the stronger inter-
action of the jet with the ambient gas due to the kink modes,
which also enhances turbulent motions in the cocoon.

3.2.2 Moderate power jets: small scale Kelvin-Helmholtz
modes

Simulations D,E,F have moderate jet powers of ∼
1045 erg s−1, Lorentz gamma of γ ∼ 5 but differing jet
magnetisation with σB = 0.01, 0.05, 0.1. These jets do not
show strong growth of kink modes within the simulation run
times, as was seen for lower power jets. Simulation E shows
mild bending away from the axis (as shown in Fig. 5), but
much less pronounced as compared to simulation B. Sim-
ulation D however, shows signs of mixing related to the
development of Kelvin-Helmholtz (KH) instabilities at the
jet-cocoon interface. These instabilities develop over small
scales and are absent in simulation F with higher magneti-
sation. The higher strength of the toroidal magnetic field
prevents deformation of the inner jet spine through the in-
creased magnetic tension and suppresses the disruptive KH
modes (Mignone et al. 2010; Bodo et al. 2013).

In Fig. 4 we show the magnitude of the magnetic field
normalised to its mean value, for simulations D and F, and
their corresponding density slices. Firstly we notice that sim-
ulation D has a much wider cocoon, with an asymmetrical
head. The development of KH modes results in a stronger
deceleration of the jet head, as it is evident from a compari-
son of the times at which the two jets reach a similar length
(t = 391.18 kyr for case D compared to t = 234.71 kyr for
case F). The cocoon in case D had therefore a longer time
to expand in the lateral direction. Both the magnetic field
and density plots show more structures varying over smaller
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Figure 4. Top: Plots of magnetic field and density for simulations D (σB = 0.01) and F (σB = 0.1) to show difference in morphology

due to high m modes arising from Kelvin-Helmholtz instabilities

Figure 5. 3D volume rendering of the jet and cocoon, as in Fig. 3,

for simulation E.

scales for simulation D than those in simulation F. Simula-
tion F shows a distinct spine along its axis with enhanced
magnetic field, accentuated by islands from recollimation
shocks. Simulation D lacks such a clear morphology, with
the magnetic field near the jet spine being more turbulent.
The field in the cocoon of simulation D shows intermittent
structures over small scales, whereas simulation F has fields
ordered over longer scales.

KH instabilities result in the growth of unstable modes
at different spatial scales with the shorter wavelengths hav-
ing faster growth rates. This is demonstrated in Fig. 6 where
we plot the length scales parallel to the magnetic field de-
fined as (Bodo et al. 2011; Schekochihin et al. 2004):

l‖ =

[
|B|4

|(B · ∇)B|2

]1/2
(15)

The two left panels of Fig. 6 show the distribution of
log(l‖/(1 kpc)) in the X-Z plane for simulations D and F.
The cocoon and jet-axis of simulation D is seen to be domi-
nated by small length scales of∼ 10−100 pc or∼ ∆x−10∆x,
∆x being the grid resolution, which for our simulations is
∼ 15 pc. For simulation F the jet-axis and jet-head have
smaller length scales, whereas the cocoon has ordered fields
with typical length scales >

∼ 1 kpc. Since simulation F does
not suffer from KH modes, the backflow has well ordered
magnetic fields. The smaller length scales inside the jet-axis
likely arise from recollimation shocks at different intervals
from the injection region.

In the right panel of Fig. 6 is the volume weighted prob-
ability distribution function (PDF) of the length scales com-
puted from eq. 15. The PDF excludes the jet axis which is
defined as regions with jet tracer > 0.9 and regions with
z < 1 kpc to remove artifacts that may arise from the lower-
boundary. It can be seen that simulation D has a higher
value of the PDF for length scales <

∼ 100 pc. The PDF of
simulation F is higher for length scales 100 pc < l‖ < 1 kpc.
The fractional volume occupied by length scales in the range
∆x−10∆x is ∼ 0.42 for simulation D and ∼ 0.24 for simula-
tion F, whereas for l‖ in the range 10∆x−100∆x simulation
D has ∼ 0.56 by volume and simulation F has contributions
from ∼ 0.74 of the volume. Thus regions with small scale
fields dominate the unstable simulation D by over 2 times
in terms of relative fraction of the total volume of the cocoon
as compared to the stable simulation F.
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Figure 6. Left: 2-D slices in the X − Z plane showing the length scale parallel to the magnetic field (eq. 15) for simulation D and

F. The quanity plotted is log(l‖/(1 kpc)). Simulation D with smaller magnetisation is dominated by smaller scale lengths. Right: The

distribution (PDF) of length scales in the cocoon after excluding regions with jet tracer > 0.9 and z < 1 kpc.

3.2.3 High power jets

Simulations G,H,I,J have higher jet powers ∼ 1046 erg s−1,
with higher Lorentz gamma γ ∈ (5 − 10). These simu-
lations do not show strong growth of unstable modes as
found earlier. Jets in simulations H and J were launched
with higher velocity (γ = 10) and comparable magnetisa-
tion (σB = 0.1, 0.2 respectively) to that of simulation F.
Similar to F, the jets evolve without any appreciable onset
of instability. Simulation J was followed up to ∼ 40 kpc and
was found to be stable with a collimated spine. The differ-
ence in magnetisation between simulations H and J did not
have any significant qualitative difference.

Simulation G, which has a hotter jet with an initial
pressure 5 times that of H (see Table 1) shows some added
structures and shear of the jet axis, and bending of the jet
head, than in simulation H. This is similar to the results of
Rosen et al. (1999), where hotter jets were found to have
more structures. However, these are not as disruptive as in
the low power jets. Simulation I was carried out in an ambi-
ent medium with a central density of n0 = 1 cm−3, 10 times
the value of other simulations. However, within the domain
of our simulation we did not see any appreciable deceleration
compared to simulations G and H.

3.3 The Generalised Begelman-Cioffi (GBC)
model

There are several approximate analytical models that de-
scribe the evolution of the jet as a function of time or radius
(Begelman & Cioffi 1989; Falle 1991; Kaiser & Alexander
1997; Turner & Shabala 2015; Perucho et al. 2011). One
of the commonly used models was derived by Begelman &
Cioffi (1989) where the time evolution of the jet length and
mean cocoon pressure of a jet propagating into a homoge-
neous environment of constant density was derived. The so-

[!h]

Vh

Vc

l

rc

Figure 7. A schematic figure of a jet with an ellipsoidal cocoon

whose evolution for the Generalised Begelman-Cioffi model dis-
cussed in Appendix A and Sec. ??. The jet head, at a distance l,

advances along the jet axis with speed vh. The cocoon expands

laterally in the transverse direction with speed vc. The length
of the cocoon along the semi-minor axis is considered to be the

cocoon length rc.

lutions do not necessarily assume a self-similar evolution of
the jet, which is often considered as a fundamental assump-
tion for several analytical models (e.g. Falle 1991; Kaiser
& Alexander 1997; Turner & Shabala 2015). Later works
(Scheck et al. 2002; Perucho & Mart́ı 2007) extended the
model to account for a jet that steadily decelerates while
expanding into an external medium whose density decreases
a power-law. In this section we present a more generalized
formulation of the Begelman Cioffi model (hereafter GBC)
and compare it with the jet dynamics from the simulations
by evaluating advance speed of the jet head.

By equating the (relativistic) momentum flux of the jet
and the ambient medium, the advance speed of the jet (vh)
at the bow shock, can be expressed in terms of the pre-
shock speed and density contrast with the ambient medium
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as (Mart́ı et al. 1997):

vMh =
γj
√
ηR

1 + γj
√
ηR
vj (16)

where ηR =
ρjhj
ρaha

where ηR is the ratio of the relativistic enthalpy of the jet
with respect to the ambient medium. Assuming an ideal
equation of state with adiabatic index Γ for simplicity, the
enthalpy of the ambient gas is

ρaha = ρac
2

[
1 +

1

Γ− 1

(csa
c

)2]
' ρac2 (17)

where csa is the sound speed of the ambient medium, which
for Ta ∼ 107 is csa ' 372 km s−1 � c. Thus

ηR =

(
ρj
ρa

)[
1 +

Γpj
(Γ− 1)ρjc2

]
= ηjf(r̃)−1

[
1 +

Γpj
(Γ− 1)ρjc2

]
(18)

where ηj is the density contrast of the jet with respect to the
ambient medium at r = 0 (as in Table 1) and f(r̃) is radial
dependence of the ambient density profile. Typically, the
density contrast of the jet with the ambient medium is small
for light jets. For our simulations, ηjf(r̃)−1 <

∼ 2.8× 10−3 for
r < 10 kpc. Thus the jet-head velocity can be approximated
as

vMh ∼ γj
√
ηRvj

= γjvjη
1/2
j f(r̃)−1/2

[
1 +

Γpj
(Γ− 1)ρjc2

]1/2
(19)

From eq. 19 it is evident that for a jet propagating into
a medium with a decreasing density profile, the jet head
velocity may increase with time for a constant pre-shock jet
velocity. However, at large radii, the jet density may become
comparable to the ambient density, in which case the above
approximation of ηjf(r̃)−1 � 1 is no longer valid, and the
jet will propagate with a constant speed as vMh ' vj .

The time evolution of the jet head can be found by
integrating eq. 19. However, additional factors such as MHD
instabilities or broadening of the hotspot area can lower the
jet speed with time. We thus consider the actual jet head
velocity to be modified by a deceleration factor g(t̃), t̃ = t/τ
with τ a scale deceleration time, which accounts for a secular
reduction in the advance speed of the jet with time.

Thus the jet will evolve as

vh =
dl

dt
=

vMh(
1 + t

τ

)n , (20)

such that vh ' vMh for t � τ (no deceleration) and vh '
vMh t

1−n for t� τ . For the above assumptions, eq. 19 can be
integrated under various limits to find the time evolution of
the jet head (eq. A9–eq. A12 in Appendix A).

The energy from the jet is spread over the entire cocoon,
which tends to have nearly homogeneous pressure (as seen
in Fig. 2), except for the jet head which has values higher
by more than an order of magnitude than the mean cocoon
pressure. Assuming kinetic energy of the motions inside the
cocoon from backflows and turbulence to be sub-dominant
as compared to the thermal energy, the mean pressure (pc) of

an ellipsoidal cocoon (see Fig. 7) can be expressed in terms
of the total energy injected by the jet up to a given time as

pc = (Γ− 1)
Pjt

(4/3)πa3r̃2c l̃
(21)

where the cocoon radius (rc) and jet length (l) have been
normalised to the density scale length a. The rate of ex-
pansion of the cocoon radius (vc = drc/dt) can be then
obtained by equating the ram pressure experienced by the
ambient medium to the cocoon pressure pc = ρa(r̃c)v

2
c (as

in eq. A14). The mean pressure of the cocoon can then be
derived for different limits of l/a and t/τ as presented in
eq. A17 – eq. A23.

3.4 Comparison with GBC model

3.4.1 Jet length and morphology

From the simulations we compute the maximum length of
the jet as a function of time. In the top panel of fig. 8 we
present the evolution of the jet height for some representa-
tive simulations. The jet length beyond 2 kpc was fit with
a function power-law in time. From the fit parameters we
derive the deceleration index n and the deceleration time
scale τ in eq. 20.

In the middle panel of Fig. 8 we present the axis ratio
defined as the ratio of jet length (l) to effective lateral radius
rc computed from

rc =

(
3Vc
4πlj

)1/2

. (22)

Here Vc is the volume of the cocoon, computed from the
simulations by summing the volume with jet tracer > 10−7.
The radius rc represents the lateral radius of an ellipsoid
with the volume of the cocoon, which is a close approxima-
tion to the shape of the cocoon. From the time evolution of
the axis ratio we find that for jets of power >

∼ 1046 erg s−1

the axis ratio steadily increases with time due to the faster
expansion along the jet axis as compared with the lateral
extent.

For simulations showing instabilities however (simula-
tions A, B and D), the rate of increase of the axis ratio
slows down with time. For simulations A and B, the axis
ratio is nearly becomes steady with time, indicating an ap-
proximate self-similar evolution of the cocoon. This is also
supported by the deceleration index being close to ∼ 0.67,
for which the GBC predicts a self-similar expansion of the
jet (for α = 1.166), as explained at the end of Appendix A.
The jets showing onset of instabilities have a slower advance
speed and the bending of jet-head results in a more uniform
spread of the energy in the cocoon. This results in an ap-
proximate self-similar expansion of the cocoon (Komissarov
& Falle 1998; Scheck et al. 2002; Perucho et al. 2019).

In the last panel of Fig. 8 we present the deceleration
index n derived from the fit coefficients. Low power jets and
lower magnetisation, which are more susceptible to instabil-
ities (simulations A–D), have a mean deceleration index of
n ∼ 0.6. Faster jets which are not affected by instabilities
have a lower deceleration index n ∼ 0.4. The deceleration
time scales were found to be approximately close to the time
when the jet breaks out of the central core of ∼ 2 kpc, which
varies for different simulations depending on the jet advance
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Figure 8. Top: Evolution of jet height with time for some rep-

resentative simulations. The red dashed line overplotted shows
the power-law fit function (see Sec. 3.4). For the simulation J,

the blue line denotes the fit function with α = 0.829 for the jet

evolution beyond 15 kpc (as in eq. A4). See Table 1 for detailed
description of parameters for different runs. The jet power for

Pj = 1045 erg s−1 is abbreviated as P45 and so forth. Middle:

Plot of the axis ratio (l/rc) with time for some simulations. The
axial length of the cocoon is computed from eq. 22. Bottom: The

deceleration coefficient evaluated from eq. A12 using the results

of the fit function in the top panel. For simulation J fits to heights
<∼ 10 kpc and >∼ 15 kpc have been presented separately as JL and

JU.

speed. Thus all jets show some deceleration from the onset,
the degree of which depends on the jet stability, as inferred
from the index.

The mean pressure in the cocoon evolves as a power-law
in time at late times, with a slightly shallower slope at the
very early times when the jet is just establishing a cocoon on
injection. The pressure for some simulations are presented in
the top panel of Fig. 9. The pressure was fit with a power-law
function with time whose coefficient has then been compared
to the value predicted by the GBC model (eq. A23), using

Pressure vs time
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Figure 9. Top: Evolution of mean pressure in the cocoon with
time for some simulations. Bottom: Comparison of the index of

a power-law fit to the time evolution of the pressure with that

predicted from GBC model (eq. A23). For simulation J fits to
heights <∼ 10 kpc and >∼ 15 kpc have been presented separately as

JL and JU.

the n derived from the fits to the jet length. For most of
the simulations the index for the pressure was lower than
predictions from GBC model by about ∼ 10−20%. Thus this
demonstrates that the GBC model is overall approximates
well the expansion of the jet cocoon, although within ∼ 20%
margins.

Simulations A–C, with increasing σB , show a progres-
sively poorer match with the theoretical values. This results
from the stronger onset of instabilities (kink) with stronger
magnetisation of the jet. Similarly, simulation D shows a
poorer comparison than F, as D has more enhanced Kelvin-
Helmholtz instabilities. Simulations with more stable jets
(E–I) show nearly identical value of the exponent, implying
that the pressure evolution is not much affected by the de-
celeration index of the jet. Simulation J shows a very good
match for heights lower than ∼ 10 kpc. At higher heights
(>∼ 15 kpc) the lateral extent of the jet reaches the bound-
ary of the domain with an outflow boundary condition. A
comparison with the GBC model by evaluating the mean
pressure will thus be misleading, and hence not presented
here.

3.4.2 Jet advance speed

In Fig. 10 we present the velocity of advance of the jet head
which is obtained by taking the derivative of a 6th order
polynomial used to fit the evolution of the jet length with
time (as in Fig. 8). In blue is shown the maximum advance
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Jet-head velocity vs Jet length
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Figure 10. Top: Speed of advance of the jet head (see Sec. ref-
sec.GBCcompare) as a function of jet height. In blue is plotted the

maximum velocity expected from a non-decelerating jet following

eq. 16 (as derived in Mart́ı et al. 1997).

speed attainable for a non-decelerating jet following eq. 16.
To compute the speed from eq. 16 we assumed the jet pa-
rameters (velocity, pressure and density) to be the injected
values. Firstly, the jet speeds (both theoretical and numeri-
cally computed), show an increase with distance. The appar-
ent acceleration results from the jet expanding into a lower
density medium that decreases as a power-law with distance
beyond the core radius (as shown in eq. A2).

For simulations A, B and C with jet powers ∼
1044 erg s−1 the jet advance speed mildly decreases with
distance, being much lower than the maximum attainable
value. This arises from the onset of kink like instabilities as
discussed earlier in sec. 3.2.1 which result in strong deceler-
ation of the jet. The jet head wobbles, spreading its energy
over a much larger area and hence reducing the advance
speed substantially.

Simulations D and E show similar trend, which is dis-
tinctly different from that of simulation F. Although all
three cases have nearly similar jet power of ∼ 1045 erg s−1,
simulations D and E with lower magnetisation (σB =

0.01, 0.05 respectively) have unstable jets which show
stronger mixing at the jet boundary and flaring of the jet
axis as discussed earlier in Sec. 3.2.2. This causes the jets
to decelerate which result in a flattening of the jet advance
speed with distance. Simulation F on the other hand shows
an increase in jet speed with a profile following more closely
to the maximum theoretical line, although still lower.

Simulations G–J show similar qualitative trends for the
evolution of the jet speed, with a gradual increase with dis-
tance. At larger scales the ambient density may become
comparable to the jet density, such that the earlier approx-
imation of ηjf(r̃)−1 � 1 used in eq. 19 (and later in Ap-
pendix A) is no longer valid. The jet head velocity will then
become vh ∼ vj , independent of the radial distance, as is
seen in the last panel of Fig. 10, showing a flattening of
the theoretical curve for simulation J. The actual jet head
speed computed numerically asymptotes more quickly to a
constant value of ∼ 0.35c than the theoretical curve. This
is likely due to a combination of added deceleration due
to small scale instabilities resulting in lowering of the jet
speed, besides the effect of entering into a low density am-
bient medium which results in constant jet advance speed.

4 DISCUSSION

In this paper we discuss the dynamics and evolution of rela-
tivistic jets with different initial starting parameters evolv-
ing into a hydrostatic atmosphere. The primary results of
this work are two folds: a) demonstration of the onset of dif-
ferent MHD instabilities for different jet parameters that sig-
nificantly affect the dynamics and growth of the jet, b) com-
parison of the dynamics of the jets with generalised exten-
sion of the analytical model (GBC) for FR-II jets proposed
by Begelman & Cioffi (1989). The nature of the growth and
development of the instabilities affect the dynamics and evo-
lution of the fluid variables inside the jet and its cocoon,
leading to deviations from the GBC model. In this section
we summarise the main results and discuss the implications
of the jet stability on the jet dynamics and its comparison
with analytical models.

4.1 Growth of unstable modes

The type of instabilities in our simulations can be broadly
grouped into two categories based on jet magnetisation and
power:

(i) Large scale modes at higher magnetisation: Low power
jets (∼ 1044 erg s−1) in simulaitons B and C with stronger
magnetisation were found to be susceptible to kink modes
that result in substantial bending of the jet head. The
growth rate was lower for simulation A with an order of
magnitude lower magnetisation, which did not show sub-
stantial bending of the jet axis during the run time of the
simulation. However such strongly disruptive kink modes
were not seen in more powerful jets (sim. D–J) during the
run time of the simulations. Simulation E shows some bend-
ing of the jet over much longer length scales (∼ 1 kpc) but
not as disruptive as in the low power jets.

The above results are in broad agreement with the results
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Figure 11. Cross-section of the jet tracer at a height of ∼ 4 kpc for different simulations. The blue and black contour represent jet

tracer levels of 0.8 and 0.1 respectively. The top panels depict simulations where the jets are unstable to Kelvin-Helmholtz modes due to
either lower magnetisation (sim. A and D) or higher pressure (sim. G), resulting in wider cross-section of the jet. Lower panels are jets

where KH modes have lower growth rates with more compact jet core. Jets with stronger magnetisation have more collimated jet spine.

from linear stability analysis of the growth of m = 1 modes
in relativistic MHD jets (Bodo et al. 2013). Growth rate of
current driven instabilities (CDI) is higher for higher mag-
netisation. In relativistic jets however, for the same central
value of the magnetic pitch parameter, the growth rate of
CDI is lower (Im(ω) ∝ γ−4, Bodo et al. 2013). Hence the ab-
sence of strong disruptive kink modes in faster, powerful jets
can be due to weaker growth rates of the CDI, which may
manifest only for larger size of the jet. However, at larger
distances, as the jets propagate into a rarefied medium, re-
sulting in an increase of the jet advance speed, they may
still remain fairly stable as demonstrated in Tchekhovskoy
& Bromberg (2016).

(ii) Small scale modes at lower magnetisation or higher
internal pressure: In simulations with lower magnetisation,
velocity shear driven Kelvin-Helmholtz (KH) modes lead to
a higher level of turbulence both close to the jet axis and
in the cocoon. Such KH modes are disruptive and result in
substantial deceleration of the jet with a decollimation of
the jet axis.

In Fig. 11 we present the cross-section of the jet tracer in
the X−Y plane at a height of ∼ 4 kpc for six different cases.
In the top row we have cases with low magnetization, while
the bottom row shows cases with high magnetization; going
from left to right, the simulations have an increase of the jet
power and Lorentz factor. The figure displays clearly the role
of magnetic field and instabilities in determining the mixing
properties for the different cases. The inner blue contour is
for a value of the tracer equal to 0.8, therefore it represents

the interface between the jet and the cocoon. We can see
that, in the top row, the contours are more deformed than
in the bottom row, in particular cases A (top left panel) and
D (top middle panel) show very corrugated contours. This
is indicative of the development of high m KH modes that
favours mixing between jet and cocoon.

Case G (top right panel) has a higher Lorentz factor and
is more stable than the lower γ cases. However, as discussed
earlier in Sec. 3.2.3, being hotter simulation G is more un-
stable than the other high γ cases (e.g. simulation H in the
lower panel). Correspondingly the contour is much less de-
formed than in cases A and D, but it shows a triangular
deformation when compared to H, indicating higher order
modes. The cases in the bottom row have a higher magneti-
zation and the magnetic tension associated with the toroidal
component of the magnetic field opposes the jet deformation
and stabilizes high m KH modes and, correspondigly, the
contours are less deformed.

The outer black contours, for a tracer value of 0.1, are
indicative of the mixing occurring at the contact disconti-
nuity of the cocoon. All the cases show quite corrugated
contours demonstrating the action of instabilities. However
we can make a distinction between the cases that show more
symmetric shapes (cases A, D and F) and cases with asym-
metric shapes (e.g. B) correlated with the development of
kink modes and jet bending, that translate in a very asym-
metric backflow. The presence of an asymmetric backflow
is more susceptible to the development of turbulence from
small scale instabilities and mixing. This is shown clearly
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in the figures where the protrusions observed in the tracer
distributions have a reddish colour indicative of a more vig-
orous mixing.

Similar results have been presented in Mignone et al.
(2010) where the jet core for a relativistic hydrodynamic
jet was found to be more diffuse and decollimated as com-
pared to a jet with a magnetic field. The added magnetic
field shields the inner core of the jet by suppressing the
KH modes. Linear stability analysis (Bodo et al. 2013) sug-
gest that for similar magnetic pitch, KH modes have slower
growth rate at higher magnetisation. Simulation G with
higher internal pressure but similar magnetisation however
appears to have the onset of KH modes as compared to
simulation H. This is similar to the results of Rosen et al.
(1999) where warmer jets were found to have more internal
structures as hotter jets with increased sound speed have a
shorter crossing time for perturbations.

4.2 Impact of instabilities on jet dynamics

The MHD instabilities described above significantly affect
the dynamics and evolution of the jet as well its morphology.
We list below the major implications:

(i) Jet deceleration: The low power jets are strongly decel-
erated with mean advance speeds nearly an order of mag-
nitude lower than the maximum possible values predicted
by analytical estimates (see Fig. 10). Although the nature
of instabilities is different for the different simulations (kink
modes for Sim. B and C, Kelvin-Helmholtz for Sim. A), all
show strong deceleration with a high value of the decelera-
tion index n (eq. 20) as seen in Fig. 8. Simulation D with
σB = 0.01 also shows a flattening of the advance speed and
a higher deceleration index than simulations E and F with
higher magnetisation.

(ii) Self-similar expansion for unstable jets: Simulations
which suffer strong deceleration (A–D) due to instabilities,
evolve more close to a self-similar expansion. As described at
the end of Appendix A for a density profile with α = 1.166
(eq. A3), a jet will evolve self-similarly for n ' 0.67, close
to the deceleration index for simulations A–D. The axis-
ratio plots of simulations B, C and D show a flattening to a
constant value beyond a certain time. A constant axis-ratio
is indicative of a self-similar expansion of the jet-cocoon. The
self-similar expansion likely results from the energy from the
jet being more efficiently spread to a larger volume within
cocoon. For more stable jets, the ram pressure at the jet
head results in a stronger pressure at the mach disc which
in turn leads to a larger advance speed than expansion rate
for a self-similar jet. Hence the axis ratio of simulations E
onwards show a steady increase with time resulting in more
conical cocoon profiles.

There has been considerable debate in the literature over
the nature of expansion of the jet-cocoon. Self-similar ex-
pansion is a convenient assumption for deriving analytical
results (Falle 1991; Kaiser & Alexander 1997). Although
Komissarov & Falle (1998, hereafter KF98) argue that for
a jet with a half-opening angle of θi, self-similar evolution
is expected for length scales larger than the characteristic

length of

lc =

(
2Pj

θiπρac3

)1/2 [ γ2
j

(γj − 1)(γ2
j − 1

)

]1/2
(23)

' 85 pc×
(

Pj
1045 erg s−1

)1/2(
θi
5◦

)−1/2 ( na
0.1 cm−3

)−1/2

×
[

γ2
5

(γ5 − 1)(γ2
5 − 1

)

]1/2
; with γ5 = 5, (24)

numerical simulations have not found this to be true for all
cases. KF98 find that for some simulations, a self-similar
phase is established only at late times (similar to Scheck
et al. 2002; Perucho & Mart́ı 2007; Perucho et al. 2019). The
intermediate phase in KF98 was characterised by a nearly
constant advance speed (in an uniform external medium)
and increasing axis ratio, similar to predictions of Begelman
& Cioffi (1989), which is true for a collimated jet with θi =
0, implying lc = ∞ � lj . The above findings support the
results of our simulations where the self-similar phase ensues
after the onset of fluid instabilities that start to decelerate
the jet, which otherwise remains well collimated and is not
self-similar.

4.3 Magnetic field of the jet and cocoon

The nature of the magnetic field distribution and its topol-
ogy inside the cocoon depends on the jet dynamics. Tur-
bulence in the jet cocoons for simulations with instabilities
result in small scale magnetic fields varying over scales of
∆x− 10∆x, ∆x being the resolution of the simulation. This
is demonstrated in Fig. 4 and Fig. 6 in Sec. 3.2.2 where sim-
ulation D shows turbulent magnetic field over smaller length
scales, whereas simulation F has ordered magnetic field over
longer scales. Besides the intermittence in the scale of the
magnetic fields, the jets with a turbulent cocoon have a more
statistically homogenous distribution of magnetic field at
different heights, as shown in Fig. 12 where the probability
distribution function (PDF) of the strength of the magnetic
field is presented at different heights.

For a powerful FRII like jet, it is expected that the field
near the jet head will have higher values due to the strong
bow shock. As the magnetic field is carried downstream by
the backflow and they fill up the adiabatically expanding
cocoon, their values would decrease. The PDFs of simula-
tions F and G demonstrate the above, with lower magnetic
fields near the bottom and higher field strengths near the
jet head. However in unstable jets, the shocks at the jet
head are weaker due to the deceleration of the jet from the
induced instabilities. This also results in more homogenous
distribution of magnetic field inside the cocoon, although
intermittent. Hence the turbulent jets in simulations A and
D have nearly similar PDF at different heights, with a slight
increase to higher magnetic fields at larger heights for sim-
ulation D.

For a magnetic field whose individual components have
a random Gaussian distribution with zero mean, the field
strength is distributed as a Maxwell-Boltzmann (MB) func-
tion (Tribble 1991; Murgia et al. 2004; Hardcastle 2013):

P (B) =

√
54

π

B2 exp
(
−(3/2)(B/B0)2

)
B3

0

. (25)
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Figure 12. PDF of magnetic fields for different heights along the jet. Turbulent and unstable jets show near uniform distribution of

magnetic fields at all heights, approximately described by a Maxwell-Boltzmann function (eq. 25) presented in black dotted lines. Non-
turbulent jets show an extended tail at heights near the hotspot. The PDF are performed at times when the jet reaches the end of the

simulation domain in the Z axis.

Here B0 is the field strength for the mean magnetic field
energy density (Hardcastle 2013):∫ ∞

0

B2P (B)dB = B2
0 . (26)

In Fig. 12 representative Maxwell-Boltzmann (hereafter
MB) plots have been presented in dotted-black lines, which
were obtained from approximate fits to the total magnetic
field distribution inside the cocoon. The lines are not ex-
act fits, but are seen to well represent the PDFs of sim. A
and D for B >

∼ 10 µG, and similarly the PDFs of the mag-
netic fields at lower heights for simulations F and G beyond
the peak. This shows that the turbulent fields in the cocoon
of the jets were well approximated by a distribution with
Gaussian random components of the magnetic fields. The
PDFs at heights closer to the jet head for simulations F and
G however show strong departure from the MB distribution
with an extended power-law tail for simulation F and com-
plex features for simulation G. These arise from the strong
interaction of the jet fluid at the bow-shock where the field
strengths are likely enhanced due to compression from the
shocks.

The magnetic field in the cocoon and the jet also evolve
with time as the jet and its cocoon expand. In Fig. 13
we present the evolution of the mean magnetic field in
the cocoon and jet separately. The regions with jet tracer:
10−7 < Tracer < 0.9 are identified as cocoon and those
with Tracer > 0.9 are identified as jet material. The mean
magnetic field in the cocoon decreases as a power-law with
time due to the adiabatic expansion of the jet driven bub-
ble. However, the rate of decrease depends on the nature of

the simulation and onset of MHD instabilities. Simulations
A and D with a lower magnetisation have a mean decay of
∝ t−0.6, whereas simulations B, the end phase of simulation
F (for t>∼ 100 kyr and Z >

∼ 5 kpc) and simulation J (for t>∼ 100
kyr and Z >

∼ 10 kpc) show a power-law decline of ∝ t−1.

The less steep decline in the field strength for the sim-
ulations with weaker magnetic fields could be due to onset
of MHD instabilities, as discussed earlier in Sec. 3.2.2. Such
instabilities can result in a slower expansion of the jet which
will result in a slower decline of mean field strength due to
adiabatic expansion. Secondly, turbulence generated by the
Kelvin-Helmholtz driven modes result in small scale fluctua-
tion of the magnetic field, as shown in Fig. 6. This can result
in moderate enhancement of the magnetic field which may
counteract the decrease of field strength due to stretching
of the field lines. However, our current spatial resolution be-
ing limited, we cannot fully ascertain if such mode of field
enhancement is dominant.

The field strength in the jet also follows a power-law
evolution with time, which except for simulations F and A,
have an index <

∼−0.6. Simulation A follows a steeper decline
at the later stages as ∝ t−1. The relatively steady power-
law decline of the jet magnetic field with similar indices for
different simulations imply that the jet core remains rela-
tively steady. The rate of decline is slowest for simulation
F (∝ t−0.36) which does not show any signature of MHD
instabilities. Simulation A has a sharper decline in the jet
magnetic field as Kelvin-Helmholtz driven mixing of the jet
lead to strong deceleration and decollimation of the jet (see
Sec. 3.2.1).
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Figure 13. Top: Time evolution of the mean magnetic field in

the cocoon for selected simulations with different initial param-
eters listed in the legends. The subscript to P is the logarithm

of the jet power, the value of jet magnetisation σB and pressure-

ratio are presented as sub-scripts as well. The beginning of each
curve is marked with the initial for the simulation from the list

in Table 1. The lines are coloured according to the colortable on

the right which denotes the height of the jet at that time. See
Sec. 4.3 for details. Bottom: The mean magnetic field in the jet

for the same simulations and similar legends as in the top panel.

4.4 Implications for synchrotron emission

The above results have several different implications for the
nature non-thermal emission from jets which we list below.

(i) Morphology of emission: Powerful jets stable to fluid
instabilities show the typical feature of a FRII jet with a
strong pressure hotspot (see Fig. 2) where the jet terminates,
besides islands of enhanced pressure along the jet axis aris-
ing from recollimation shocks. The pressure at the hotspots
is nearly two orders of magnitude higher than the mean pres-
sure in the cocoon. These high pressure regions arising from
shocks are expected to accelerate the electrons enhancing
the synchrotron emission at the hotspot. Stable jets with
higher magnetisation have conical shaped cocoons with nar-
rower widths as the forward shock at the jet-head expands
much faster due to very little deceleration. Jets with insta-
bilities on the other hand show more wider cocoons with
cylindrical shapes due to the deceleration of the jet.

The simulations showing strong development of kink
modes (simulations B and C) do not have prominent ter-
minal hot-spot. Since the jet head swivels randomly in dif-
ferent direction due to the kink modes, the pressure at the
jet head is spread evenly over a wider area. This results in
a much wider cylindrical shaped cocoon with asymmetric

features near the jet head due to changing orientation of
the jet head. This may result in a wider diffuse emission at
the top as the integrated emission will probe the whole vol-
ume where the shocked electrons are distributed. Emission
at higher energies may however preferentially give weight to
regions of strong shocks at the current location of the jet
where the electrons are freshly accelerated. This may lead
to a complex morphology of the emitting region at higher
energies, which may differ from the emission dominated by
low energy electrons.

(ii) Shock structures and emission profile: Jets prone to
instabilities have complex pressure profile at the jet head due
to the motions of the jet head, which will result in multiple
oblique shocks. This is in contrast to the standard model
of an FRII jet with a single strong shock at the mach disc
(Begelman & Cioffi 1989; Kaiser & Alexander 1997; Falle
1991), which is often employed to calculate emission param-
eters and source ages (Pacholczyk 1970; Jaffe & Perola 1973;
Murgia et al. 1999; Harwood et al. 2013, 2015, 2017). The
complex shock structure with varying shock strengths will
result in a wide variation of the energy distribution of the
relativistic electrons being accelerated at these sites. Besides
the stronger shocks at the hot spot, internal weak shocks de-
velop inside the cocoon which may further accelerate the
electrons as they flow across such shocks. Such multiple
shock crossing will result in a variation of the resultant in-
dex of the power-law energy distribution, which is usually
assumed to have a single value at low energies (Kardashev
1962; Harwood et al. 2013, 2015).

(iii) Cocoon magnetic field and electron ageing: Models
that estimate the time evolution of the synchrotron spectra
assume a predefined distribution of the magnetic field (Har-
wood et al. 2013, 2015, 2017). The simplest models such as
by Jaffe & Perola (1973, hereafter JP) assume a constant
magnetic field. More recent sophisticated approaches have
accounted for the turbulent nature of the magnetic field in
the cocoon (Tribble 1991; Harwood et al. 2013; Hardcastle
2013). In our simulations the magnetic field in the cocoon
is well described by a Maxwell-Boltzmann distribution for
the turbulent less powerful jets (as shown in Sec. 4.3), simi-
lar to the assumptions by Tribble (1991). For more powerful
jets (Pj >∼ 1046 erg s−1) however, the probability distribution
function at heights near the jet-head have an extended tail
beyond the mean Maxwell-Boltzmann profile. The nature
of the field distribution significantly impacts the evolution
of the spectra of electrons when they traverse through dif-
ferent magnetic fields, as demonstrated in Harwood et al.
(2013). Such multiple shock crossings will subsequently af-
fects the estimates of radiative ages of the synchrotron emit-
ting sources. Besides the spatial distribution, our results
show that the magnetic field in the cocoon show a steady
decline with time as a power-law, as discussed earlier in
Sec. 4.3. Such a secular decline of the magnetic field is also
not considered in the analytical models of electron ageing,
and will affect the break frequency of the synchrotron spec-
trum.

We will discuss these in more quantitative detail in sub-
sequent publications (Mukherjee et al. Paper II in prep)
where we will discuss the results of some of the simulations
presented here that have been performed with the new la-
grangian particle module of pluto (Vaidya et al. 2018).
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We will explore in detail the spectral evolution of the non-
thermal electrons and the emission characteristics of syn-
chrotron radiation at different wavelengths.

5 SUMMARY AND CONCLUSION

In conclusion, we can summarise our main results as:

(i) MHD instabilities such as large-scale kink modes and
small scale Kelvin-Helmholtz (KH) modes decelerate the jet,
affecting its dynamics and morphology.

(ii) Small scale KH modes cuase turbulence in the jet co-
coon, which in turn result in smaller length scales of the
magnetic field. Such modes disrupt the jet axis due to mix-
ing with the cocoon plasma.

(iii) Small scale modes can also arise in jets with higher
pressure (temperature) due to smaller sound crossing times
of perturbations, as predicted earlier by Rosen et al. (1999).

(iv) Large scale kink modes can result in global bending
of the jet axis and significant deformation in the morphology
of the jet and its cocoon.

(v) Unstable jets show a greater resemblance to self-
similar expansion of the jet and its cocoon.

(vi) Powerful faster jets are less susceptible to instabili-
ties (within the simulation run-times of this work). Such jets
show a more closer match with the generalised Begelman-
Cioffi (Begelman & Cioffi 1989) relations (within 10% −
−20%). Jets with instabilities show a poorer match with
analytical predictions.

(vii) Jets less prone to instabilities show an increase in
advance speed as they emerge into a radially falling ambi-
ent density field, asymptoting to a fraction of the maximum
speed predicted by analytical relations. Unstable jets decel-
erate, resulting in either a constant advance speed at a value
much slower than the maximum possible speeds, or show a
decrease with distance and time.

(viii) The magnetic field distribution in the cocoon of un-
stable jets are well approximated by turbulent field distribu-
tion given by a Maxwell-Boltzmann (MB) function. For pow-
erful stable jets, heights closer to the jet head show strong
deviation from a standard MB form. Over-all the major vol-
ume of the cocoon shows a turbulent distribution of field
strength, favouring the Tribble model (Tribble 1991; Hard-
castle 2013) for magnetic field distribution.

(ix) The mean magnetic field in the cocoon decays with
time as the jet evolves, with unstable jets having a slower
decay rate.

APPENDIX A: GENERALISED
BEGELLMAN-CIOFFI (GBC) RELATIONS

For a jet expanding into an ambient medium with a density
profile

na = n0f(r̃) =
n0

(1 + r̃)α
with r̃ =

r

a
, (A1)

a being a scale length, the velocity of the jet head is given by
eq. 20. For our simulations, the density profile obtained by
numerically solving eq. 4 was found to be described well by
an approximate analytical expression in two different spatial

regimes, as:

na = n0f(r̃) ; r̃ = r/a (A2)

f(r̃) =
1

(1 + r̃)1.166
r < 10 kpc (A3)

f(r̃) = r̃−0.829 r > 15 kpc (A4)

with n0 = 0.103 cm−3 and a = 0.63 kpc.
In the equations that follow, length scales have been

normalised with the length scale a of the density profile (e.g.
l̃ = l/a) and time with the deceleration time scale τ as
t̃ = t/τ . Thus the evolution of the jet length is given by:

dl̃

dt̃
= vMh g(t̃)

(τ
a

)
= f(l̃)−1/2 L̃0(

1 + t̃
)n (A5)

where L̃0 = γjvj
(τ
a

)
η
1/2
0

[
1 +

Γpj
(Γ− 1)ρjc2

]1/2
Here L̃0 = is a scale length normalised to the scale length
of the density profilea, with typical value

L̃0 = 0.23
(γj

5

)( η0
10−4

)(vj
c

)( τ

10Kyr

)(
a

1 kpc

)−1

×
(

1 + Γpj/((Γ− 1)ρjc
2)

2.236

)1/2

(A6)

Assuming a density profile as in eq. A2, eq. A5 can be
integrated for the two limiting cases as

l̃ =
L̃0

(1− n)

(
1 + t̃

)n − L̃0

(1− n)
for l̃� 1 (A7)

l̃
(2−α)

2 =
(2− α)L̃0

2(1− n)

(
1 + t̃

)1−n − (2− α)L̃0

2(1− n)
for l̃� 1

(A8)

The above equations can be further simplified for the two
limiting cases of t� τ and t� τ to get

• l̃� 1 and t̃� 1:

l̃ = L̃0t̃ (A9)

• l̃� 1 and t̃� 1:

l̃ =
L̃0

(1− n)
t̃(1−n) (A10)

• l̃� 1 and t̃� 1:

l̃ =

[
(2− α)L̃0

2

] 2
2−α

t̃
2

2−α (A11)

• l̃� 1 and t̃� 1:

l̃ =

[
(2− α)L̃0

2(1− n)

] 2
2−α

t̃
2(1−n)
2−α (A12)

Eq. A9 and eq. A10 refer to the jet evolution within the
core of the density profile, whereas eq. A11 and eq. A12 are
for larger scales where the density profile is approximately
a power-law with radius. From eq. A12 we see that for a
decelerating jet the, the jet evolves slower by a factor of
(1− n) as compared to a non-decelerating jet. Eq. A12 also
implies that the deceleration coefficient n should be less than
unity (n < 1) to have non-imaginary values of l̃.

Equating the cocoon pressure in eq. 21 to the ram pres-
sure of the ambient medium and assuming that the cocoon
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is over-pressured compared to the ambient gas, the rate of
expansion of the cocoon radius can be obtained as:

pc = (Γ− 1)
Pjt

(4/3)πa3r̃2c l̃
= ρa(r̃c)v

2
c (A13)

r̃cf(r̃c)
1/2 dr̃c

dt̃
= G

(
t̃

l̃

)1/2

; G =

[
3(Γ− 1)Pjτ

3

4πa5ρ0

]1/2
(A14)

Here G is a dimensionless constant whose typical value
would be

G = 1.34× 10−2

(
Pj

1045 erg s−1

)1/2(
τ

10 Kyr

)3/2

×
(

a

1 kpc

)−5/2 ( n0

0.1 cm−3

)−1/2

, (A15)

where we have assumed Γ = 5/3 (ideal EOS) and µ = 0.6
for the mean molecular weight. Eq. A14 can be integrated
in the various limits as done in eq. A9–A12, to find the time
evolution of the cocoon radius and pressure:

• r̃c � 1 and t̃� 1:

r̃c =

(
2G

L̃0
1/2

)1/2

t̃1/2 (A16)

pc =
3Pj(Γ− 1)τ

8πa3G
√
L̃0

t̃−1 (A17)

• r̃c � 1 and t̃� 1:

r̃c =

(
4G(1− n)

L̃0
1/2

(n+ 2)

)1/2

t̃(n+2)/4 (A18)

pc =

[
3Pj(Γ− 1)(n+ 2)τ

16πa3G
√
L̃0

]
t̃−(2−n)/2 (A19)

• r̃c � 1 and t̃� 1:

r̃c =

[
G

L̃0
1/(2−α)

(2− α)(4− α)

(4− 3α)

(
2

2− α

)1/(2−α)
]2/(4−α)

× t̃(4−3α)/((2−α)(4−α)) (A20)

pc =
3Pjτ(Γ− 1)

4πa3

[ √
2(4− 3α)

G
√
L̃0(2− α)3/2(4− α)

]4/(4−α)
× t̃−(4+α)/(4−α) (A21)

• r̃c � 1 and t̃� 1:

r̃c = G2/(4−α)
[

2(1− n)

(2− α)L̃0

]2/((2−α)(4−α))
×
[

(2− α)(4− α)

(4 + 2n− 3α)

]2/(4−α)
t̃(4+2n−3α)/((2−α)(4−α))

(A22)

pc =
3Pjτ(Γ− 1)

4πa3

[
(4 + 2n− 3α)

√
2(1− n)

G
√
L̃0(2− α)3/2(4− α)

]4/(4−α)
× t̃−(4+α−2n)/(4−α) (A23)

The exponent of time in eq. A12 and eq. A23 is identical
to that derived earlier in Perucho & Mart́ı (2007). Note

that for n = (4+α)
2(5−α) , the exponent of time for jet length

in eq. A12 is l̃ ∝ t3/(5−α) and cocoon pressure in eq. A23

is pc ∝ t−(4+α)(5−α). This is identical to the solutions for
a self-similar evolution of the jet cocoon derived earlier in
(Kaiser & Alexander 1997; Falle 1991).
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Fuentes A., Gómez J. L., Mart́ı J. M., Perucho M., 2018, ApJ,

860, 121
Gardiner T. A., Stone J. M., 2005, Journal of Computational

Physics, 205, 509

Hardcastle M. J., 2013, MNRAS, 433, 3364
Hardcastle M. J., 2018, MNRAS, 475, 2768

Hardcastle M. J., Krause M. G. H., 2014, MNRAS, 443, 1482

Harwood J. J., Hardcastle M. J., Croston J. H., Goodger J. L.,
2013, MNRAS, 435, 3353

Harwood J. J., Hardcastle M. J., Croston J. H., 2015, MNRAS,

454, 3403
Harwood J. J., et al., 2017, MNRAS, 469, 639

Hernquist L., 1990, ApJ, 356, 359
Jaffe W. J., Perola G. C., 1973, A&A, 26, 423

Jennison R. C., Das Gupta M. K., 1953, Nature, 172, 996

Kaiser C. R., Alexander P., 1997, MNRAS, 286, 215
Kardashev N. S., 1962, Soviet Ast., 6, 317

Komissarov S. S., 1999, MNRAS, 308, 1069

Komissarov S. S., Falle S. A. E. G., 1998, MNRAS, 297, 1087
Kormendy J., Fisher D. B., Cornell M. E., Bender R., 2009, ApJs,

182, 216

Leccardi A., Molendi S., 2008, A&A, 486, 359
Londrillo P., del Zanna L., 2004, Journal of Computational

Physics, 195, 17

Mart́ı J. M., Müller E., Font J. A., Ibáñez J. M. Z., Marquina A.,
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