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ABSTRACT
We analyze the angular power spectrum (APS) of the unresolved gamma-ray background (UGRB)

emission and combine it with the measured properties of the resolved gamma-ray sources of the Fermi-
LAT 4FGL catalog. Our goals are to dissect the composition of the gamma-ray sky and to establish the
relevance of different classes of source populations of active galactic nuclei in determining the observed
size of the UGRB anisotropy, especially at low energies. We find that, under physical assumptions for
the spectral energy dispersion, two populations are required to fit APS data, namely flat spectrum
radio quasars (FSRQs) at low energies and BL Lacs (BLLs) at higher energies. The inferred luminosity
functions agree well with the extrapolation of the FSRQ and BLL ones obtained from the 4FLG catalog.
We use these luminosity functions to calculate the UGRB intensity from blazars, finding a contribution
of 20% at 1GeV and 30% above 10 GeV. Finally, bounds on an additional gamma-ray emission due to
annihilating dark matter are derived.

1. INTRODUCTION

The extragalactic gamma-ray sky has been surveyed
by the Fermi Large Area Telescope (LAT) since the sum-
mer of 2008 (Atwood et al. 2009). The outstanding capa-
bility of this instrument has been groundbreaking in sev-
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eral aspects of high energy astrophysics. One important
result is the detection and cataloging of extragalactic
gamma-ray sources. The 8-year Fermi-LAT source cat-
alog, called the 4FGL catalog (Abdollahi et al. 2020)1,
counts more than 3300 extragalactic sources, which is
more than 60% of the entire catalog. Almost the total-
ity of the extragalactic sources are blazars, a sub-class of
active galactic nuclei (AGNs) with a jet pointing towards
us: 35% are BL Lacs (BLL), about 22% are flat spec-
trum radio quasar (FSRQs) and about 41% are blazars
of unknown type (BCU).

1 This catalog is now also called 4FGL-DR1.
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On top of the numerous detected extragalactic
sources, even more numerous sub-threshold sources pop-
ulate the unresolved gamma-ray background (UGRB).2

The UGRB emission represents about 20% of the total
gamma-ray emission and offers a unique observable of
the extragalactic gamma-ray sky below the Fermi-LAT
source detection threshold.
The UGRB is by definition a mission-time dependent

component: the more the Fermi-LAT surveys the sky,
the more sensitive it becomes to less bright sources, leav-
ing only the faintest objects unresolved. Guaranteed
contributors to the UGRB emission are sub-detection-
threshold blazars (Cuoco et al. 2012; Di Mauro et al.
2018), misaligned AGNs (mAGNs) (Di Mauro et al.
2013), and star-forming galaxies (SFG) (Roth et al.
2021; Tamborra et al. 2014). Additionally, we cannot ex-
clude contributions from more exotic components, such
as dark matter (DM) (Ando 2009; Bringmann et al.
2014; Ajello et al. 2015; Fornasa et al. 2016; Zechlin et al.
2018)
The UGRB emission has been studied through three

main observables: its energy spectrum (Abdo et al. 2011;
Ackermann et al. 2015), its 1-point probability distri-
bution function (1pPDF) through the photon counts
statistics (Zechlin et al. 2016b,a; Lisanti et al. 2016;
Di Mauro et al. 2018), and its angular power spectrum
(APS) (Ackermann et al. 2012; Fornasa et al. 2016; Ack-
ermann et al. 2018). The latter two observables inves-
tigate fluctuations over the UGRB isotropic emission to
infer the properties of the underlying sources at the sub-
threshold level. In this unresolved regime, mAGNs and
SFGs, fainter than blazars but extremely more numer-
ous, are expected to dominate the UGRB energy spec-
trum (Di Mauro et al. 2013; Roth et al. 2021). At the
same time, at the current level of sensitivity, the blazars
produce a higher level of spatial anisotropy than mAGNs
and SFGs, and hence the former are expected to domi-
nate the APS of the UGRB (Di Mauro et al. 2014; Cuoco
et al. 2012). SFGs and mAGNs could eventually emerge
once the majority of the blazars have been resolved.
Moreover, an improvement of the sensitivity is necessary
in order to reveal the large-scale structure (LSS) of the
Universe traced by gamma-ray sources (see e.g. Ando
(2009)) that is encoded in a multipole-dependent APS.
It is, therefore, crucial to update the UGRB anisotropy

2 The UGRB is also called isotropic gamma-ray background
(IGRB) in literature. While for intensity studies it can be con-
sidered as isotropic, to a deeper level it is definitely not. Since
in this paper we study its anisotropies, it is more appropriate to
call it unresolved instead.

measurement in parallel to the detection of more sources
in the LAT catalogs.
The latest UGRB anisotropy measurement has been

performed by the Fermi-LAT Collaboration in 2018
(Ackermann et al. 2018). In that work, 8 years of
Pass-8 (R3) data were analyzed, and it was consistently
adopted the source catalog based on the same amount
of observation time (FL8Y, a preliminary version of the
4FGL). The APS of the UGRB was measured in 12 en-
ergy bins between 500 MeV and 1 TeV. Additionally, the
cross-correlation signal between the different energy bins
(generically denoted by i and j) was derived. In all cases,
the APS (above ` = 50) was compatible with a constant
value, CijP , with no hint of LSS signature in the multipole
range considered. This result confirms that the UGRB
intensity fluctuation field, at the current level of sensi-
tivity of the detector to point sources is still dominated
by a population of relatively bright and not very numer-
ous sources, so that the isotropically distributed fluctu-
ations from Poisson noise dominate over the correlation
due to clustering. Additionally, the anisotropy energy
spectrum revealed a preference for a double power-law
trend (with a high energy exponential cutoff) over a sin-
gle power law (with a high energy exponential cutoff),
placing a spectral break around 5 GeV.
Previous interpretation works, based on antecedent

measurements of the UGRB anisotropy energy spec-
trum, were devoted to determining the components that
contribute to the measured signal. In particular, (Ando
et al. 2017) studied the results of (Fornasa et al. 2016)
and inferred the presence of a second steeper component,
in addition to the blazar-only model, emerging below 2
GeV. However, the very soft spectral index implied by
this analysis challenges the interpretation in terms of
a known source population. Recently, (Manconi et al.
2020) combined the 1pPDF, using methods as in (Zech-
lin et al. 2016a), and the latest measurement of the
anisotropy energy spectrum of the UGRB by (Acker-
mann et al. 2018) to test blazars models (yet not distin-
guishing between BLLs and FSRQs) as well as the source
count distribution of blazars extracted from the 4FGL
catalog. They found that the assumption of the UGRB
fluctuation field being entirely dominated by blazars is in
agreement with both observables, which appear to show
remarkable complementarity. Past works focused also
on the DM interpretation of the UGRB anisotropy, as
(Fornasa et al. 2016), where numerical simulations were
used to model the DM distribution and its uncertainty
in order to constrain the contribution from weakly inter-
acting massive particles (WIMPs) in Galactic and extra-
galactic structures. The derived bounds are in the same
ball-park as for other UGRB probes, but still signifi-
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cantly above the so-called thermal WIMP scenario. For
a comprehensive overview about UGRB-related mea-
surements and interpretation works prior (Fornasa et al.
2016), we address the reader to the review of (Fornasa
& Sánchez-Conde 2015).
In this work, we will focus on the latest measurement

of the UGRB anisotropy energy spectrum (Ackermann
et al. 2018). We investigate the contributions of different
blazar types, distinguishing between BLLs and FSRQs.
We find that BLLs and FSRQs can account for the total-
ity of the UGRB anisotropy and also well reproduce the
spectral features observed by (Ackermann et al. 2018).
The analysis allows us to constrain many of the most rel-
evant parameters of the blazar models in the unresolved
regime. In a second step, we include the contribution
to the UGRB arising from an annihilating DM parti-
cle and perform a global analysis to derive constraints
on the particle DM parameters. We account for both
Galactic and extragalactic DM contributions, under dif-
ferent assumptions of the DM subhalo contribution and
by including cross-terms in the anisotropy APS, due to
the cross-correlation of the blazars contribution with the
DM halos hosting them.
The paper is structured as follows: Section 2 is de-

voted to blazars and we describe the blazar model
adopted in our study, we introduce the fit procedure
and we show the results. In Section 3, we discuss the
DM constraints for both Galactic and extragalactic DM
components. Finally, we conclude in Section 4. Addi-
tionally, we present a phenomenological approach to the
interpretation of the UGRB anisotropy energy spectrum
in Appendix A, while in Appendix B we relate our re-
sults to the findings of previous measurements.

2. MODELING BLAZAR POPULATIONS

In (Manconi et al. 2020) it has been pointed out that
a single blazar model is sufficient to describe both the
anisotropy level CP and the 4FGL catalog data, at the
price of allowing for a relatively broad distribution of the
spectral index. Such an approach can be seen as an effec-
tive description, where different sub-populations (with
narrower spectral index distributions) are combined in
a single model (Ajello et al. 2015). We reproduce the
finding of (Manconi et al. 2020), although in a more
general way and by using a phenomenological model, in
Appendix A. However, we note that the blazar model in
(Manconi et al. 2020) was only compared to the catalog
data in bins of flux and redshift, but not in bins of en-
ergy (or equivalently in bins of photon spectral index),
while here we intend to use the full catalog information.
In this section, we will therefore consider a physical

description of the two populations of blazars that are

more numerous in the 4FGL catalog, namely BLLs and
FSRQs. We aim to assess their ability to explain the
APS measurement. In other words, we test the possibil-
ity that FSRQs, with properties compatible with their
cataloged sample, are the population that accounts for
the low-energy anisotropy found in (Ackermann et al.
2018), while BLLs are at the origin of the high-energy
anisotropy.

2.1. The gamma-ray luminosity function

We summarize here the parametrizations of the
gamma-ray luminosity function (GLF) and spectral en-
ergy distribution (SED) of BLLs and FSRQs adopted
in our analysis. For more details, see (Ajello et al.
2012) and (Ajello et al. 2014). The GLF Φ(Lγ , z,Γ) =
d3N/dLγdV dΓ, defined as the number of sources per
unit of luminosity Lγ , co-moving volume V at redshift z
and photon spectral index Γ, is typically decomposed in
terms of its expression at z = 0 and a redshift-evolution
function:

Φ(Lγ , z,Γ) = Φ(Lγ , 0,Γ)× e(Lγ , z), (1)

where Lγ is the rest-frame luminosity in the energy
range (0.1 − 100) GeV, i.e. Lγ =

∫ 100 GeV

0.1 GeV
dEr L(Er)

with:

L(Er) =
4πd2

L(z)

(1 + z)
E

dN

dE
, (2)

E being the observed energy, related to the rest-frame
energy Er as Er = (1 + z)E. The co-moving vol-
ume element in a flat homogeneous Universe is given
by d2V/dΩdz = c χ2(z)/H(z), where χ is the co-
moving distance (related to the luminosity distance dL
by χ = dL/(1 + z)), and H is the Hubble parame-
ter. We use ΛCDM cosmology with parameters from
the final full-mission Planck measurements of the CMB
anisotropies (Aghanim et al. 2020).
At redshift z = 0, the parametrization of the GLF is:

Φ(Lγ , 0,Γ) =
A

ln(10)Lγ

[(
Lγ
L0

)γ1

+

(
Lγ
L0

)γ2
]−1

(3)

× exp

[
− (Γ− µ(Lγ))2

2σ2

]
,

where A is a normalization factor, the indices γ1 and γ2

govern the evolution of the GLF with the luminosity Lγ
and the Gaussian term takes into account the distribu-
tion of the photon indices Γ around their mean µ(Lγ),
with a dispersion σ. It turns out that the GLF of BLLs
has a relatively broad distribution in terms of luminos-
ity. For this reason, we allow the mean spectral index
to slightly evolve with luminosity from a value µ∗:

µ(Lγ) = µ∗ + β

[
log

(
Lγ

erg s−1

)
− 46

]
. (4)
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On the other hand, FSRQs have a narrower distribution,
so that the inclusion of this effect would not affect the
fit and we can fix µ(Lγ) = µ∗.
We adopt a luminosity-dependent density evolution

(LDDE):

e(Lγ , z) =

[(
1 + z

1 + zc(Lγ)

)−p1

(5)

+

(
1 + z

1 + zc(Lγ)

)−p2
]−1

with zc(Lγ) = z∗c×(Lγ/1048erg s−1)α, p1(Lγ) = p∗1+τ×
(log(Lγ)−46), and p2(Lγ) = p∗2 +δ×(log(Lγ)−46). We
set δ to 0.64 for both populations (Ajello et al. 2015),
while τ is fixed to 3.16 for FSRQs and to 4.62 for BLLs
(Ajello et al. 2014).
The SED is modeled as a power law:

dN

dE
∼
(
E

E0

)−Γ

. (6)

For definiteness, the spetral index Γ will be taken to
be in the range (1, 3.5) (see also Manconi et al. (2020)).
Given the SED, the photon flux S(Emin, Emax) in a given
energy interval is obtained by:

S(Emin, Emax) =

∫ Emax

Emin

dN

dE
e−τ(E ,z) dE, (7)

where τ(E, z) describes the attenuation by the extra-
galactic background light (EBL) (Finke et al. 2010a).
Unless explicitly stated otherwise, the flux in the fol-
lowing computations of the dN/dS and the associated
figures always refer to the energy bin from 1 GeV to 100
GeV. The free parameters of the model are summarized
in Table 2, together with their best-fit values obtained
as outlined below.
With the physical models of the GLF and SED at

hand, we can compute the differential number of blazars
per integrated flux and solid angle as:

dN

dS
=

∫ 5.0

0.01

dz

∫ 3.5

1

dΓ Φ[Lγ(S, z,Γ), z,Γ]
dV

dz

dLγ
dS

,

(8)
and the size of the gamma-ray intensity fluctuations be-
tween energy bins i and j can be cast in the following
form (assuming the Poisson-noise term is the dominant
contribution):

CijP =

∫ 5.0

0.01

dz
dV

dz

∫ 3.5

1

dΓ

∫ Lmax

Lmin

dLγ Φ(Lγ , z,Γ) (9)

×Si(Lγ , z,Γ)Sj(Lγ , z,Γ) [1− Ω(S(Lγ , z,Γ),Γ)] .

The term Ω(S,Γ) accounts for the Fermi-LAT sensitiv-
ity to detect a source, and it is modeled through a step-
function becoming equal to one at the flux threshold
sensitivity Sthr as described in (Manconi et al. 2020)
(Section III.B.1). It depends on Γ and it includes a nui-
sance parameter kCP

which accounts for the uncertainty
in its description. We checked that a smooth, more re-
alistic sensitivity function only has a negligible effect on
the CP. The bounds in the Lγ integration are Lmin =
7×1043 erg/s and Lmax = 1×1052 erg/s, for BLL, taken
from (Ajello et al. 2014), and Lmin = 1× 1044 erg/s and
Lmax = 1 × 1052 erg/s, for FSRQ, taken from (Ajello
et al. 2012).
The CP’s of BLL and FSRQ are additive, i.e., CP =

CBLL
P + CFSRQ

P . We neglect the (multipole-dependent)
clustering term (discussed below in the case of DM),
since we checked that, in the multipole range of interest,
is a few orders of magnitude smaller than the CP term.

2.2. The source count distribution

The source count distribution, dN/dS, is defined as
the number of sources per flux and solid angle and is a
function of the flux S. In principle, there could also be
a directional dependence, but blazars are observed up
to relatively large distances, such that their distribution
can be taken isotropic. On the other hand, populations
of blazars are known to evolve with time, i.e. they de-
pend on redshift. Furthermore, blazars do not have a
unique SED: for this reason, we adopt a distribution for
the photon spectral index Γ, which in equation (3) is
assumed to be Gaussian.
The source count distribution (see equation (8)) de-

pends on flux, photon spectral index, and redshift. The
latter has been estimated for some of the Fermi-LAT

10 10 10 9 10 8 10 7

S [cm 2s 1]

10 2

10 1

Figure 1. Uncertainty on the determination of the photon
spectral index as function of flux.
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resolved sources, for which the association to a source
from another catalog was possible. We, therefore, build
a three-dimensional grid for the average source count
distribution in the flux bin i, the redshift bin j, and the
photon spectral index bin k:

〈
dN

dS

〉
ijk

=
1

Si,max − Si,min
(10)

×
Si,max∫
Si,min

dS

zj,max∫
zj,min

dz

Γk,max∫
Γk,min

dΓ Φ(Lγ , z,Γ)
dV

dz

dLγ
dS

.

This is, however, the true theoretical prediction of the
dN/dS. In practice, we have to consider uncertainties
of the source parameters as detected by the Fermi-LAT.
This especially matters for those parameters for which
the dN/dS shows a strong dependence. In our case,
the first-order behavior of the dN/dS is a power law
as function of S, a smoothly broken power law as func-
tion of z, and a Gaussian as function of Γ. While the
power-law behavior is very smooth, the impact of reso-
lution can be important in the Gaussian tails of Γ. We
use a data-driven method to obtain the uncertainty on
the determination of the spectral index. In Figure 1 we
show the uncertainty of the spectral index, σΓ, as stated
in the 4FGL catalog against the flux value S. As ex-
pected, the average uncertainty increases at smaller flux
values. To obtain the average uncertainty as function of
S we determine the mean and RMS of σΓ in 10 flux bins
logarithmically spaced between 5× 10−11 cm−2s−1 and
1 × 10−7 cm−2s−1 (blue data points in Figure 1) and
then fit a power law (red line) to those data points:

σΓ(S) = AS−γ . (11)

The best-fit values are A = 2.82 × 10−6 and γ = 0.48.
Assuming that to a first approximation the resolution
behaves as a Gaussian, we can convolute the dN/dS of
equation (10) with a Gaussian with the width σΓ(S).
The inclusion of the experimental resolution is a key
ingredient to obtain a reasonable fit for small fluxes and
extreme Γ bins. However, this would lead to a quadruple
integral for the dN/dS which is computationally not
feasible. So, instead of integrating over the flux bin, we
simply evaluate the dN/dS at the (geometric) mean, Si,
of the flux bin which gives a good approximation because
of the smooth behavior of the dN/dS. So finally for the
comparison with the 4FGL catalog, the dN/dS of our

model is given by:

〈
dN

dS

〉
ijk

=

zj,max∫
zj,min

dz

Γ
(obs)
k,max∫

Γ
(obs)
k,min

dΓ(obs)

∫
dΓ

dV

dz

dLγ
dS

(12)

×
exp

(
− 1

2

(
Γ−Γ(obs)

σΓ(Si)

)2
)

√
2πσΓ(Si)

Φ (Lγ(Si, z), z,Γ) .

2.3. Fit procedure

Our data sets are the resolved sources collected in
the Fermi-LAT 4FGL catalog (Abdollahi et al. 2020),
from which we construct the source count dN/dS, and
the anisotropy of the gamma-ray sky due to unresolved
sources, encoded in the CijP and measured in (Acker-
mann et al. 2018). We perform two sets of fits: one
on the 4FGL catalog alone and one which combines the
4FGL catalog with the CP measurement. The fit strat-
egy follows the procedure introduced in (Manconi et al.
2020).
In this paper, we model the luminosity function of

BLLs and FSRQs separately. We assume that both
blazar populations can be described by the functional
form of equation 3, but with different parameter val-
ues. The log-likelihood of our fit to the 4FGL catalog
data and the CP data is given by the sum of the two
individual χ2s:

−2 logL(θBLL,θFSRQ,θn) = (13)
χ2

4FGL(θBLL,θFSRQ) + χ2
CP

(θBLL,θFSRQ,θn).

Here θBLL and θFSRQ denote the parameters of the BLL
and FSRQ models, while θn marks nuisance parameters
for the CP.

2.3.1. Fit on the 4FGL catalog data

We extract the source count distribution of four differ-
ent source classes from the 4FGL catalog and then test
our model against these distributions. In more detail,
we use the following four source classes:

• BLL: the sum of identified and associated BL Lacs
(sources labeled BLL or bll in the 4FGL catalog),

• FSRQ: the sum of identified and associated FS-
RQs (sources labeled FSRQ or fsrq in the 4FGL
catalog),

• BLZ: the sum of identified and associated blazars
(sources labeled BLL, BCU, FSRQ, bll, bcu, or fsrq
in the 4FGL catalog), and

• ALL: all sources in the catalog.
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We expect our model to respect the following con-
straints:

• The sum of the source count distribution of our
models for BLLs and FSRQs should not overshoot
the observed total source count distribution of all
sources (ALL). In this sense, the source count dis-
tribution ALL provides an upper bound for our
models. This contribution to the χ2 is labeled
χ2

ALL.

• The sum of the source count distribution of our
models for BLLs and FSRQs should be at least
as large as the sum of identified and associated
blazars (BLZ). However, our models are allowed
to lie above the observed source count distribu-
tion because of unassociated sources. In this sense,
BLZ provides a lower bound for our models (la-
beled χ2

BLZ).

• Our BLL model has to explain at least the ob-
served source count distribution BLL and thus also
provides a lower bound (labeled χ2

BLL).

• In analogy to BLL, also the FSRQ model receives
a lower bound from the observed source count dis-
tribution (labeled χ2

FSRQ).

Each of these constraints would give rise to a contri-
bution of the 4FGL χ2. However, a naive sum of the
χ2 from the three lower bounds would lead to a double
counting since BLL and FSRQ sources appear also in
the BLZ class. To avoid this, we consider only the most
constraining lower bound between the BLZ case and the
combination of BLL and FSRQ, i.e.,

χ2
4FGL = χ2

ALL + max
(
χ2

BLZ, χ
2
BLL + χ2

FSRQ

)
. (14)

The upper bound from ALL is implemented as:

χ2
ALL =

∑
i

[
max

(〈
dN
dS

〉
BLZ,i

−
(

dN
dS

)
ALL,i

σALL,i
, 0

)]2

(15)

Here the dN/dS in angle brackets denotes the model
prediction from equation (12) and the dN/dS in round
brackets is the source count distribution extracted from
the 4FGL catalog. The model includes the sum of BLL
and FSRQ, namely 〈dN/dS〉BLZ,i = 〈dN/dS〉BLL,i +
〈dN/dS〉FSRQ,i. For this contribution, we integrate over
all redshifts and all values of the photon spectral index.
The remaining index i denotes the flux bin, as summa-
rized in Table 1. If the flux of the bin is below the
detection threshold Sthr, the bin is excluded from the
sum.

For the lower bounds, related to identified or asso-
ciated blazars, we would like to consider also the red-
shift information, which is not directly provide in the
4FGL catalog. So, we extract the information from the
4LAC catalog (Ajello et al. 2020), which contains spec-
troscopic redshift measurements. However, the redshift
information of the 4LAC catalog is incomplete, i.e. not
all sources have a redshift measurement. Since we con-
sider the identified or associated blazars only as a lower
bound this does not represent a problem but it might
not be the most constraining option. Hence, we con-
sider again two cases. In the first case, we include red-
shift information and compare our model in bins of a
two-dimensional grid in redshift and flux through:

χ2
BLZ,Sz =

∑
i,j

[
min

(〈
dN
dS

〉
BLZ,ij

−
(

dN
dS

)
BLZ,ij

σBLZ,ij
, 0

)]2

(16)

In the second case, we disregard the redshift information
by integrating over the redshift. We define:

χ2
BLZ,S =

∑
i

[
min

(〈
dN
dS

〉
BLZ,i

−
(

dN
dS

)
BLZ,i

σBLZ,i
, 0

)]2

(17)

Depending on the model parameter point, either equa-
tion (16) or equation (17) provides the stronger con-
straint. Similar to the discussion above we cannot use
the sum of both χ2s because of double counting, and
again we choose the most constraining one:

χ2
BLZ = max

(
χ2

BLZ,Sz, χ
2
BLZ,S

)
. (18)

As described in equation (14), we select the lower
bounds by comparing χ2

BLZ with the ones from the anal-
ysis of the individual source classes BLL and FSRQ.
In this latter case, we can use the full information of
the catalogs and compare models with data on a three-
dimensional grid in flux, redshift, and photon spectral
index. Again, since the redshift information is incom-
plete, we define the χ2 as the maximum of the two cases:

χ2
M = max

(
χ2

M,SzΓ, χ
2
M,SΓ

)
, (19)

whereM stands for either BLL or FSRQ. The individual
χ2 in the two cases are defined by

χ2
M,SzΓ =

∑
i,j,k

[
min

(〈
dN
dS

〉
M,ijk

−
(

dN
dS

)
M,ijk

σM,ijk
, 0

)]2

(20)

when redshift information is included, and

χ2
M,SΓ =

∑
i,k

[
min

(〈
dN
dS

〉
M,ik
−
(

dN
dS

)
M,ik

σM,ik
, 0

)]2

(21)
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Table 1. Binning of the 4FGL fit.

Source class variable min max number of bins scaling

ALL S [cm−2s−1] 10−10 10−7 10 log
Γ 1.0 3.5 1 linear

BLZ S [cm−2s−1] 10−10 10−7 10 log
Γ 1.0 3.5 1 linear
z 0.0 4.0 6 log in (1 + z)

BLL S [cm−2s−1] 10−10 10−7 10 log
Γ 1.6 2.4 5 linear
z 0.0 4.0 6 log in (1 + z)

FSRQ S [cm−2s−1] 10−10 10−7 10 log
Γ 2.1 2.9 5 linear
z 0.0 4.0 6 log in (1 + z)

Table 2. Fit results of the GLFs.

4FGL fit 4FGL+CP fit
FSRQ BLL FSRQ BLL

log10

(
A [Mpc−3]

)
−9.35+0.62

−0.37 −9.80+0.40
−1.11 −9.65+0.61

−0.47 −9.01+1.21
−1.11

log10 (L∗ [erg/s]) 48.36+0.31
−0.66 47.85+0.79

−0.52 48.53+0.42
−0.60 47.26+0.75

−1.09

γ1 0.57+0.15
−0.09 1.03+0.12

−0.07 0.72+0.13
−0.09 0.92+0.18

−0.07

γ2 1.93+0.14
−0.43 1.95+0.16

−0.45 1.97+0.21
−0.42 1.88+0.12

−0.38

z∗c 0.93+0.20
−0.27 1.05+0.16

−0.53 0.87+0.14
−0.24 1.06+0.16

−0.56

p∗1 5.86+2.15
−5.02 7.48+3.97

−4.51 8.37+3.78
−3.35 4.01+0.77

−3.54

p∗2 −0.88+0.77
−0.14 −1.97+1.83

−0.43 −0.77+0.67
−0.11 −0.93+0.83

−0.19

α 0.20+0.07
−0.16 0.28+0.14

−0.13 0.11+0.02
−0.11 0.31+0.17

−0.07

µ∗ 2.50+0.03
−0.04 2.03+0.04

−0.04 2.49+0.03
−0.04 2.05+0.03

−0.04

σ 0.19+0.02
−0.04 0.22+0.03

−0.05 0.20+0.02
−0.04 0.19+0.02

−0.03

β 0.06+0.02
−0.05 0.03+0.01

−0.03

kCP 1.09+0.16
−0.12

χ2
ALL 1.7 2.9
χ2
BLZ 3.0 2.7
χ2
BLL 11.4 12.7

χ2
FSRQ 7.4 8.0
χ2
4FGL 20.5 26.3
χ2
CP

81.0
χ2 20.5 107.3

in the case with flux and spectral index bins only.
To avoid a bias from the Galactic plane we exclude

small latitudes with |b| < 30 deg from our analysis.

2.3.2. Fit on the CP data

The fit of the APS is performed on the auto (i = j)
and cross (i 6= j) correlation measurements, where i and

j denote the energy bins. The χ2
CP

is defined as:

χ2
CP

=
∑
i≤j

[(
CijP

)
meas

−
(
CijP

)
th

]2
σ2
Cij

P

. (22)

The subscript meas refers the measured CP obtained
in (Ackermann et al. 2018), while the subscript th de-
notes the theoretical estimation of CP calculated as in
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Figure 2. Source count distribution of the 4FGL sources in bins of flux (S), photon spectral index (Γ), and redshift (z). The
GLF is fitted to 4FGL+CP. The band shows the 1σ Bayesian uncertainty. The open white data point in the upper left panel
is below the flux threshold and thus not included in the fit (see text for further details). In our statistical analysis, the data of
the upper-left panel are taken as upper bounds, while for all the other panels they are lower bounds.

equation (9). Finally, σ2
Cij

P

are the uncertainties of the
measured CP, again taken from (Ackermann et al. 2018).

2.4. Analysis strategy

As anticipated above, in this work, we perform two
fits. The first one utilizes only the 4FGL catalog while
the second one additionally uses the CP measurement.
The basic idea is as follows: from the first fit, we ob-
tain constraints on the GLF and SED models of the two
blazar populations in the flux regime of resolved point
sources. From there we can extrapolate to the unre-
solved flux regime and calculate the CP. As will become
clear in the next Section 2.5, this extrapolation agrees
well with the actual CP measurement. So, we can go one
step further and also perform the second fit that com-
bines the resolved point sources (4FGL) with the CP.
This combined fit provides GLF and SED models which

are consistent with gamma-ray observations also below
the below the flux threshold of the 4FGL catalog. When
we derive DM constraints in Section 3 the combined fit
serves as the baseline.
The large parameter space investigated in this work is

sampled using MultiNest (Feroz et al. 2009). We use a
configuration with 800 live points, an enlargement factor
of efr = 0.7, and a stopping parameter of tol = 0.1.
In the following, we present the results in the Bayesian
statistical framework.

2.5. Results on the GLF and SED of BLLs and FSRQs

As a result of our fits, we obtain the GLFs and SEDs
of FSRQs and BLLs. The 4FGL categorization of the
blazars into the two classes is incomplete which leaves
some degeneracy. We allow the fit to attribute the un-
characterized blazars either to BLLs or FSRQs. This is
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only possible because we fit both source classes at the
same time. We note that this treatment leads to corre-
lations of BLL parameters with FSRQ parameters and
vice versa. These correlations are important to assess
the uncertainty of the full blazar model correctly, as for
example in Section 3 where blazars pose the background
for our DM search.
The results are summarized in Table 2, where we state

the mean values and the 1σ uncertainty derived from the
marginalized posterior for each parameter. Results are
provided for two setups: in the first setup, we only fit
to the resolved point sources of the 4FGL catalog, while
in the second setup we fit both the resolved sources and
the APS data. The obtained parameter values of the
two setups are compatible within their uncertainties.
Figure 2 shows the best-fit and uncertainties of dN/dS

from the combined fit of 4FGL+CP in comparison to the
dN/dS extracted from the 4FGL catalog. The four dif-
ferent panels correspond to the different contributions
to χ2

4FGL. In more detail, the data points in the upper
left panel show the dN/dS of all sources from the 4FGL
catalog (at |b| > 30 deg). The sum of our models for
BLLs and FSRQs is in agreement with those data. Be-
cause of the statistical technique we adopted (see above),
it is expected to stay at the level or below those data
points. The open white data point is below the flux
threshold, so it is excluded from the analysis. The up-
per right panel shows the data points of the dN/dS for
all identified or associated blazars. The different col-
ors show the dN/dS in different redshift bins, while the
black points are summed over all redshifts. Our model
for the dN/dS of BLLs plus FSRQs lies as expected at
the level or above the data points. In both upper pan-
els, the source count distribution is integrated over all
photon spectral indices, from 1.0 to 3.5. Furthermore,
the upper panels only show constraints from the 4FGL
catalog on the sum of the BLL and FSRQ models. The
two lower panels, instead, look at the individual mod-
els for FSRQs and BLLs. Furthermore, they focus on
the dN/dS for specific bins of the photon spectral in-
dex, corresponding to the peak of the distribution for
each class. The lower left panel compares the dN/dS
BLLs in the Γ bin from 1.9 to 2.1. Again the differ-
ent colors correspond to different redshift bins and the
black points contain the sum over all redshifts. Finally,
the lower right panel is as the left panel but for FSRQs
and a Γ bin from 2.4 to 2.6. All in all, we see that our
model matches the constraints from the 4FGL catalog
very well. We show these plots only for the 4FGL+CP

fit but we note that they look very similar for the 4FGL-
only fit.

Figure 3 compares the CP measurement with the best
fit model and uncertainty from the 4FGL+CP setup.
The left panel shows the CP auto-correlation, while the
right panel shows an example of cross-correlation, be-
tween the (8.3, 14.5) GeV energy bin and all other en-
ergy bins. The sum of BLL and FSRQ model provides
a good fit to the data, which confirms the results from
(Di Mauro et al. 2014) although with a more recent and
better CP measurement. The feature at 200 GeV in our
model (and also, less visible, in the data) is related to
a change in the analysis adopted for the measurement
from (Ackermann et al. 2018). While for energies below
200 GeV bright point sources are masked from the 4FGL
catalog, in the last two bins at high energies, bright point
sources were masked using the 3FHL catalog. This leads
to a change of the actual Sthr which explains the feature.
The feature does not appear in the right panel because
for the cross-correlation the masks of the two energy bins
involved in the measurement were joined (and so when
an energy bin below 200 GeV is present, the mask is
mostly provided by point sources of the 4FGL catalog).
Note also from Table 2 that the nuisance parameter kCP

,
introduced to allow for a possible rescaling of the flux
threshold sensitivity from the reference model, is within
uncertainties compatible with the default value of 1.
It is also interesting to look at the setup of 4FGL-only,

and use the extrapolation of the GLF and SED model
to predict the CP. As shown in Figure 4 our prediction
agrees very well with the measurement. We note that
the CP is dominated by FSRQs at low energies, below
∼ 2 GeV, while BLLs dominate at higher energies. The
domination of BLLs at high energies is expected since
they have a harder SED than FSRQs. The fact that
there is a transition from FSRQs to BLLs in the CP at
low energies introduces a softening in the spectral index
at low energies. This softening has previously been in-
terpreted as a possible hint for a new source population
(Ando et al. 2017). The new CP data (Ackermann et al.
2018) and the detailed treatment presented here, allow
us to interpret it in terms of FSRQ. We provide a de-
tailed phenomenological discussion on this issue in the
Appendix A.
Finally, Figure 5 shows a triangle plot with poste-

rior distributions for parameters of the GLF and SED
for the BLL and FSRQ models. The posteriors corre-
spond to the 4FGL+CP setup. The diagonal contains
the marginalized one-dimensional posteriors for each in-
dividual parameter, while the panels in the lower half
show the 1 and 2σ contours for each combination of
two parameters. Since the BLL and FSRQ models have
the same functional form we can combine them into the
same triangle, using different colors. We observe that
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Figure 3. Angular correlation of the 4FGL+CP fit. The shaded bands mark the the 1σ Bayesian uncertainty.

the SED parameters µ∗ and σ are well constrained for
both populations. The average photon spectral index of
BLLs is µ∗ ∼ 2.0 and a width of σ ∼ 0.2. As expected,
FSRQs follow a softer energy spectrum with an average
index with µ∗ ∼ 2.5 but a similar width. Also, the shape
of the GLF at small L is reasonably constrained. The
index γ1 lies between 0.4 and 1.0 for FSRQs and be-
tween 0.5 and 1.2 for BLLs, while the behavior at large
L (see γ2) is less constrained. We note the degeneracy
between A and L∗. This is because, at first order, in
both cases, their main impact in the fit is to change the
normalization of the GLF. The redshift dependence is
only weakly constrained due to degeneracies with other
parameters.
We provide the covariance matrix of our fits in the

ancillary files (arXiv version). This covers, to a first
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Figure 4. The GLF is fitted to 4FGL sources and then
extrapolated to the CP. The band shows the 1σ Bayesian
uncertainty.

approximation, the degeneracies and correlations of the
fit parameters. As a final comment, let us note that,
clearly, the uncertainties on the parameters of BLLs and
FSRQs show some level of mutual correlation in the fit.
It is just for the sake of clearness that we do not show
the entire triangle plot in Figure 5.

2.6. Blazar contribution to the UGRB

We see that the measured gamma-ray angular corre-
lations require the presence of FSRQs and BLLs. Pop-
ulations with a GLF peaked at lower luminosities (like
misaligned AGN and star forming galaxies) cannot ac-
count for the CP data. Thus, FSRQs and BLLs provide
an unavoidable contribution to the UGRB intensity. In
Figure 6, we compare the UGRB measurement of the
Fermi-LAT from Ackermann et al. (2015) with the pre-
diction from our models. The measurement accounted
for contribution of point sources from the 2FGL cat-
alog (Nolan et al. 2012). To be consistent, we apply a
flux threshold corresponding to the 2FGL catalog, taken
from Ackermann et al. (2015), for the predictions in Fig-
ure 6. We conclude that blazars provide a significant
contribution to the UGRB, accounting for about 30%
between 10 and 100 GeV. At energies below 1 GeV the
contribution decreases to about 20%.

3. BOUNDS ON WIMP DARK MATTER

The UGRB observed by the Fermi-LAT could con-
ceal a signal from DM particles. We focus our analy-
sis on annihilating dark matter. Since annihilation oc-
curs universally in all dark matter structures, we need
to consider the gamma-ray emission from both the halo
of our Galaxy and from extragalactic structures. We,
therefore, have two dark matter contributions to the
anisotropy APS, one for the Galactic halo and one from
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Figure 6. Contribution of BLLs and FSRQs to the UGRB
intensity. The flux threshold corresponds to the 2FGL cata-
log, both for the data points and the model prediction. The
band shows the 1σ Bayesian uncertainty.

the extragalactic dark matter distribution (the two con-
tributions are not expected to cross-correlate). More-
over, extragalactic structures host the same astrophysi-
cal sources (BLL and FSRQ) which we have discussed in
the previous sections. This induces a cross-correlation
term in the APS between extragalactic dark matter and
sources emission. All these terms are properly modeled
and taken into account in our analysis, as outlined be-
low. In the following, we will discuss the contribution
of DM only to the anisotropy signal CP, since the con-
tribution of dark matter halos to the source count dis-
tribution is significantly suppressed as compared to the
one arising from astrophysical sources in the resolved
flux regime. A DM contribution to the dN/dS could in
principle emerge on top of astrophysical sources only at
very low fluxes.

3.1. Extragalactic Dark Matter modeling

The APS of the cross-correlation between a source-
field X in the energy bin i and a source-field Y in the
energy bin j reads (Fornengo & Regis 2014)

C
XiYj

` =

∫
dχ

χ2
WX
i (χ)W Y

j (χ)PXiYj

(
k =

`

χ
, χ

)
, (23)

where WX(χ) is the window function of field X,
PXY (k, χ) the 3-dimensional cross power-spectrum of
the fluctuations of the two fields and χ denotes
the comoving distance, related to redshift by dχ =
(c dz)/H(z).

The window function for annihilating DM is given by
(Ando & Komatsu 2006; Fornengo & Regis 2014)

WDM(z, E) =
(ΩDMρc)

2

4π

〈σannv〉
2mDM

2
(1 + z)

3
∆2(z)

× dNann

dE
[E(1 + z)] e−τ [z,E(1+z)] , (24)

where ΩDM and ρc are the present-day cosmological
abundance of DM and the critical density of the Uni-
verse, respectively, mDM is the mass of the DM parti-
cle, ∆2(z) is the clumping factor, and 〈σannv〉 denotes
the velocity-averaged annihilation cross-section of dark
matter particles, assumed here to be the same in all dark
matter halos. dNann/dE indicates the number of pho-
tons produced per annihilation as a function of energy
and sets the gamma-ray energy spectrum and τ(E, z)
denotes the optical depth of gamma-ray photons, which
we model as in (Finke et al. 2010b).
To determine the DM auto-correlation, we compute

the 3D power spectrum with the so-called halo-model
approach (see, e.g., the review in Cooray & Sheth
(2002)). For X = Y = DM, we have

P 1h
DM,DM(k, z) =

∫ Mmax

Mmin

dM
dnh

dM

(
ûκ(k|M, z)

∆2(z)

)2

P 2h
DM,DM(k, z) =

[∫ Mmax

Mmin

dM
dnh

dM
bh
ûκ(k|M, z)

∆2(z)

]2

×P lin(k, z) , (25)

where dnh/dM is the halo mass function, P lin(k, z) is
the linear matter power spectrum, bh(M) is the linear
bias, and ûann(k|M, z) denotes the Fourier transform of
the density profile of the DM halos (see, e.g., see the
Appendix of Cuoco et al. (2015)). We assume the NFW
DM density profile (Navarro et al. 1996). All the ingre-
dients in equations (24) and (25) are modeled as in (Am-
mazzalorso et al. 2020). The minimal and maximal halo
masses are set atMmin = 10−6M� andMmin = 1018M�.
To characterize the halo profile and the subhalo con-

tribution, we need to specify their mass concentration.
The description of the concentration parameter c(M, z)
at small masses and for subhalos is still an open issue
and provides our largest source of uncertainty. In the
following, we consider two models that we name ‘LOW’,
where we take the description of c(M, z) from (Correa
et al. 2015), and ‘HIGH’, where we follow (Neto et al.
2007). They differ for what concerns the extrapolation
of the concentration at low masses and lead to a differ-
ence of about one order of magnitude in the final bounds
on the annihilation cross section, as shown in Section
3.4.
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Clearly, the distribution of extragalactic DM halos
(and in turn of the annihilation signal) has some level
of correlation with the blazar distribution, therefore
inducing a cross-correlation signal between DM and
blazars. The blazar window function can be phrased as:
WBLA(z, E) = χ(z)2 〈fS〉, with the mean flux defined
as:

〈fS〉=
∫ 3.5

1

dΓ

∫ Lmax

Lmin

dLγ ΦS(Lγ , z,Γ)

×S (Lγ , z,Γ) (1− Ω) (26)

The 3D power spectrum of the cross correlation between
annihilating DM and blazars is given by:

P 1h
BLA,DM(k, z) =

∫ 3.5

1

dΓ

∫ Lmax

Lmin

dLγ
Φ(Lγ , z,Γ)

〈fS〉

× S (Lγ , z,Γ) (1− Ω)
ûκ(k|M(Lγ , z)

∆2(z)
(27)

P 2h
BLA,DM(k, z) =

∫ Mmax

Mmin

dM
dn

dM
bh
ûκ(k|M, z)

∆2(z)

×
∫ 3.5

1

dΓ

∫ Lmax

Lmin

dLγ bS
Φ(Lγ , z,Γ)

〈fS〉
S (Lγ , z,Γ) (1− Ω)

× P lin(k, z) , (28)

where bS is the bias of blazars with respect to the matter
density, for which we adopt bS(Lγ , z) = bh[M(Lγ , z)].
The relationM(Lγ , z) between the mass of the host halo
and the luminosity of the hosted blazar is taken from
(Camera et al. 2015).

3.2. Galactic Dark Matter modeling

For the modeling of the signal expected from the
Galactic subhalos, we followed the treatment of Ando
(2009). In general, the prediction of the APS for the
Galactic component is the sum of two contributions,
one arising from the main halo and the other originated
by substructures. The main (smooth) halo contribu-
tion is subdominant for multipoles above a few: since
we are dealing with multipoles larger than 50, it is here
neglected. For the substructure contribution, we con-
sider an anti-biased subhalo distribution, corresponding
to the fiducial model A1 of Ando (2009), with a boost
factor of subhalos set to unity.
The subhalo number density as a function of the dis-

tance f from the center of the Galaxy reads

nsh(r) = f
Mvir,MW

2πr3
−2Mmin

γ

(
3

αE
,

2 c−2

αE

)−1(
2

αE

)3/αE−1

× exp

[
− 2

αE

(
r

r−2

)αE
]
, (29)

where Mvir,MW is the Milky Way virial mass,
αE = 0.68, γ is the lower incomplete gamma function,

r−2 = 0.81 r200,MW, c−2 = rvir/r−2 and the fraction f of
DM enclosed in subhalos is fixed to 0.2. The minimal
subhalo mass is set at Mmin = 10−6M�. We do not in-
clude a truncation for the subhalo distribution at large
radii. The angle-average number density referred to our
position in the Galaxy is

nsh =
1

2

∫ 1

−1

d cos(ψ) nsh (r (cosψ)) , (30)

where r (cos(ψ)) =
√
r2
0 + s2 − 2 r⊕ s cos(ψ), r⊕ = 8.5

kpc is our distance from the center of the Galaxy, s
represents the distance along the line of sight, and ψ is
the angle between the direction n̂ of observation and the
direction to the Galactic center.
Numerical simulations suggest that the mass distribu-

tion of subhalos follows a power-law behavior with the
mass M of the subhalo and can be written as

dnsh

dM
= nsh (r)

α0 − 1

Mmin

(
M

Mmin

)−α0

, (31)

where α0 = 1.9.
The subhalo luminosity L for a subhalo with a mass

M depends on the particle properties of DM, 〈σannv〉
and mDM, as well as on the energy spectrum dNann/dE

associated to the channel under study. It reads

L =
〈σannv〉M2

24πm2
χr

3
s

∫
dE

dNann

dE
. (32)

With the above ingredients, the APS for the Galactic
subhalo contribution can then be expressed as

Cij` =
1

16π2fsky

∫ Mmax

Mmin

dM

∫ smax

smin

ds
Li(M)Lj(M)

s2

× dnsh

dM
ũ2

sh

(
`

s
,M

)
, (33)

where i and j refer to energy bins. The integral along
the line of sight is performed up to smax = rvir,MW = 258
kpc, and starts at smin =

√
L/(4πSthr). In this specific

case, we use a simplified approach: Instead of the full,
i.e., Γ-dependent flux threshold, we use a fixed thresh-
old averaged over Γ. More specifically, the thresholds
(corresponding to the flux from 1 to 100 GeV) are set
to Sthr = 10−10 cm−2 s−1 for the first ten energy bins
(4GFL threshold) and 2×10−10 cm−2 s−1 for two high-
est energy bins (3FHL threshold). The value of smin

is thus chosen such that only unresolved Galactic sub-
halos are considered in the determination of the APS.
We adopted an NFW profile for the internal density
distribution of the subhalos and ũsh denotes its Fourier
transform. The maximal halo mass for subhalos in our
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Galaxy, Mmax = 1010M�.

Summarizing, the APS involving DM is given by
the sum of four terms, three extragalactic (the auto-
correlation from extragalactic DM halos and the cross-
correlation with BLLs and FSRQs) and the Galactic one,
which is not expected to cross-correlate with extragalac-
tic source populations. Since the DM contributions are
not flat in multipole but `-dependent, they are averaged
in the multipole range considered for the determination
of the CP measurement in (Ackermann et al. 2018).

3.3. Statistical framework

We derive bounds on the DM annihilation cross sec-
tion as a function of the DM mass by marginalizing over
the uncertainties in the astrophysical background model.
This means that we are not using the approximation of a
fixed background model obtained from the best-fit of the
blazars-only case, on top of which the DM contribution
is added.
The naive approach to consider the full uncertainty

would be to perform an extended parameter scan which
would include at the same time the blazar parameters
and the DM parameters. However, this is computation-
ally very expensive. We instead use a method called
importance sampling in order to recycle the information
from background-only fits which significantly speeds up
the calculation. The same approach has recently been
used in a different context (Kahlhoefer et al. 2021).
One side-product of the MultiNest scan is a set

of parameter vectors that follows the multidimensional
posterior distribution. This set is provided in the so-
called equal-weights sample. We will apply importance
sampling to obtain the posterior distribution of the full
parameter space (blazars and DM) by using the equal-
weights set of the fit to only blazars.
First, we note that we can approximate the integral

of the product of background, i.e. the blazar, posterior
and an arbitrary function f over the blazar parameters,
θblz, by a sum over the parameter points in the set of
the equal-weights sample:∫

dθblz
L0(θblz) p0(θblz)

Z0
f(θblz) (34)

≈ 1

N

N∑
i=1

f(θblz,i),

where L0 is the likelihood, Z0 is the evidence, and p0

is the prior. The subscript 0 indicates quantities that
refer to the fit without DM. We note that the fac-
tor L0(θblz) p0(θblz)/Z0 is by definition the posterior
distribution. Furthermore, we know that the integral
over the prior p0(θblz) is normalized to 1. If we set

f(θblz) = Z0/L0(θblz) we see that the evidence is given
by

Z0 =
N∑N

i=1 1/L0(θblz,i)
. (35)

We can obtain the marginalized likelihood by integrat-
ing over the background parameters:

L̄(θDM) =

∫
dθblz L(θblz,θDM) p(θblz). (36)

Here θDM = {mDM, 〈σannv〉} denotes the DM parame-
ters, L(θblz,θDM) is the likelihood of the full parameter
space, and p(θblz) is the prior of the blazar parame-
ters. Using equation (34) and assuming the same prior
(p(θblz) = p0(θblz)), we see that the integral of equa-
tion (36) is approximately given by the sums

L̄(θDM) ≈
∑N
i=1

L(θblz,i,θDM)
L0(θblz,i)∑N

i=1
1

L0(θblz,i)

. (37)

In the next step, we can turn this equation into an ex-
pression for a marginalized χ2 by using the definition of
our likelihood (L = exp(−χ2/2))

∆ χ̄2 (θDM) = χ̄2(θDM)− χ̄2
0 (38)

= −2 log

∑N
i=1 exp

(
−χ

2(θblz,i,θDM)−χ2
0(θblz,i)

2

)
N

.

Finally, we obtain the DM limit at the 95% C.L. from
the requirement ∆χ̄2(θDM) ≤ 3.84.
In practice, we evaluate equation (38) on a grid of

mDM with 14 grid points logarithmically spaced between
10 GeV and 4 TeV. We note that the annihilation cross
section 〈σannv〉 only changes the normalization of the CP

contributions but not the shape. The DM×DM contri-
butions scales with 〈σannv〉2 while the DM×BLZ contri-
butions scales linearly with 〈σannv〉. So, we can tabulate
the CP contributions of background and DM at a refer-
ence value of 〈σannv〉 = 3 × 10−26 cm3/s. The equal-
weights set contains O(105) parameter vectors. After
the tabulation, the evaluation of equation (38) takes
about one second. The importance sampling reduces the
computing time by about a factor of ten since the typical
number of evaluations required for a full parameter scan
of blazar and DM parameters requires O(106) evalua-
tions. A further advantage of the importance sampling
is that the tabulation can be parallelized to an arbitrary
degree which is not possible for a Monte Carlo based pa-
rameter sampling with MultiNest.

3.4. Constraints on DM annihilation
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Figure 7. 95% C.L. bounds on the annihilation cross section as a function of the DM mass, for annihilation into b̄b. Colors
in the left panel stand for the value of the marginalized ∆χ2 derived from equation (38). The left panel shows the constraints
in the “LOW” scenario, while the right panel reports the comparison between “LOW” and “HIGH” cases.
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Figure 8. Comparison of the CP from blazars and DM. The DM contributions are shown at 100 GeV (left) and 1 TeV (right),
and computed in the “LOW” scenario, for annihilation into b̄b. In both panels we choose the value of 〈σannv〉 of DM at the limit
derived in Figure 7.

We derive constraints on the annihilation of DM into
a pair of b̄b quarks which serves as an illustrative exam-
ple. The limits for other hadronic channels are expected
at a similar level. The left panel of Figure 7 shows the
marginalized ∆χ2 in the plane of DM mass and annihi-
lation cross section as derived from equation (38). For
DM masses between 15 and 140 GeV a small DM contri-
bution slightly improves the fit of the CP data. However,
it is statistically not significant. The maximal improve-
ment of the ∆χ̄2 is ∼ 3.5 which corresponds to a local
significance of less than 2σ and an even smaller global
significance. Consequently, we can derive DM limits as a
function of the DM mass. In the fiducial setup, namely,

using the “LOW” model for the concentration-mass re-
lation of DM halos, see Section 3, we can place an upper
limit of 〈σannv〉 = 10−25 cm3/s on the annihilation cross
section at the DM mass of 10 GeV. The limit gradually
weakens to 〈σannv〉 = 3 × 10−23 cm3/s at 4 TeV. In a
more, aggressive setting for the concentration parame-
ter, i.e., the “HIGH” model, we obtain a DM limit which
is almost one order of magnitude stronger. The plot in
the left panel of Figure 7 shows the limits for the “LOW”
model, while the comparison between the two cases is
shown in the right panel. In the “HIGH” scenario, we
can exclude a thermal WIMP for mDM < 20 GeV.
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As explained above the measurement of the APS is
dominated by the Poisson noise term. For this reason,
the DM bounds in Figure 7 are weaker than the ones
from other probes of the UGRB (Di Mauro & Donato
2015; Charles et al. 2016), such as the total intensity en-
ergy spectrum and the cross-correlation APS with grav-
itational tracers, which are less affected by the noise be-
ing linear instead of quadratic probes of the UGRB (see,
e.g., Figure 4 in Regis et al. (2015)). There are also other
strategies of indirect DM searches using gamma-rays,
e.g. from the dwarf spheroidal galaxies or the Galac-
tic Center, or using cosmic-ray antiprotons. Those DM
limits are typically stronger by 1-2 orders of magnitude
(see e.g. Leane (2020); Slatyer (2021) and references
therein), however, those analyses are affected by differ-
ent systematic uncertainties.
In Figure 8, we show the contribution of all the dif-

ferent components to the CP for two exemplary DM
masses of 100 GeV (left panel) and 1 TeV (right panel),
in the “LOW” scenario. The DM components are evalu-
ated at the 〈σannv〉 values corresponding to the limit
shown in Figure 7 for that DM mass. As expected,
the blazar components are dominant and DM only pro-
vides a sub-dominant part. The largest DM contribution
stems from the extragalactic DM halos, closely followed
by the contribution of Galactic DM subhalos which is
roughly smaller by a factor of 2, while the contribution
of BLZ×DM is smaller by 1-2 orders of magnitude. The
uncertainty bands in Figure 8 represent the 1σ uncer-
tainty in the blazar background models. In the “HIGH”
scenario, the picture is similar but with the DM contri-
bution strongly dominated by the extragalactic term.
Finally, we stress again that the absence of a DM sig-

nal in the CP is a further confirmation that the sum
of FSRQs and BLLs fully explains the entire UGRB
anisotropy and no additional, weak component is re-
quired to match the data.

4. CONCLUSIONS

In this work, we compared models of the GLF and
SED of blazars to the latest measurement of the energy
spectrum of the UGRB anisotropies (Ackermann et al.
2018) and the properties of the resolved gamma-ray
sources of the Fermi-LAT 4FGL catalog. We considered
two different blazar populations, distinguishing between
BL Lacs (BLLs) and flat spectrum radio quasars (FS-
RQs). We found that BLLs and FSRQs can account for
the totality of the UGRB anisotropy, with BLLs dom-
inating the APS at high energies, while FSRQs being
important at GeV energies. The derived models well re-
produce the size and spectral features observed by (Ack-
ermann et al. 2018), and the properties of source number

counts of the 4FGL catalog. Our analysis significantly
constrains the redshift and luminosity dependence of the
blazar GLF and the spectrum of the SED in the unre-
solved regime. We also calculate the contribution of the
unresolved population of FSRQs and BLLs to the the
UGRB intensity spectrum finding a non-negligible con-
tribution of about 30% between 10 and 100 GeV and
about 20% at 1 GeV.
In the second part of the paper, we included a con-

tribution to the UGRB arising from annihilating DM
and performed a global fit to derive constraints on the
particle DM parameters. We computed both Galac-
tic and extragalactic DM contributions, and included
cross-terms in the APS, due to the cross-correlation of
blazars with the DM halos hosting them. The dom-
inant term arises from extragalactic DM halos, which
strongly depends on the poorly-known description of
DM subhalos. To bracket the uncertainty, we consid-
ered two different scenarios, “LOW” and “HIGH”, which
lead to an upper limit of 〈σannv〉 = 10−25 cm3/s and
〈σannv〉 = 1.5 × 10−26 cm3/s, respectively, on the an-
nihilation cross section at the DM mass of 10 GeV, for
annihilation into bottom quarks.
The present analysis of the UGRB anisotropies is

based on the measurement of (Ackermann et al. 2018),
where no evidence for an `-dependent APS was found.
Further data, and more resolved sources, would allow to
reduce the level of the Poisson noise CP and to measure
an APS unveiling the large-scale clustering of gamma-
ray sources. This would allow us to deepen our under-
standing of blazar populations, as well as exploit the
APS observable in a much more powerful way in the
context of DM bounds.
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APPENDIX

A. ONE OR TWO POPULATIONS: A
PHENOMENOLOGICAL INTERPRETATION

In this paper, we have considered two blazar popula-
tions, BLLs and FSRQs. Both populations are impor-
tant and their sum provides a good fit to angular cor-
relations of the UGRB. In more detail, FSRQs give the
largest contributions to the CP below a few GeV, while
BLLs dominate at higher energies. As a consequence,
we found that the FSRQs are responsible for the soft-
ening of the CP at low energies, which is an interesting
result because this softening has also been interpreted as
a possible hint for a new source population (Ando et al.
2017). In a similar spirit, also (Ackermann et al. 2018)
claimed that the CP data indicates a hint for two pop-
ulations. On the other hand, in (Manconi et al. 2020) a
good fit of the CP data is obtained with one population
using a model which combines FSRQs and BLLs into a
single GLF and SED model.
Here, we explore the issue of one versus two popula-

tions more thoroughly by employing a phenomenological
model for the SED and GLF of two hypothetical source
populations. The phenomenological model is slightly
simplified as compared to the physical models for the
GLFs and SEDs of the BLL and FSRQ source popula-
tions used in the main text. The most important dif-
ference is that the phenomenological model does not in-
clude a redshift dependence. However, we find that it
is sufficient to explore the question about the number
of source populations. Furthermore, it has the clear ad-
vantage that the large parts of the computations can be
done analytically. We find that the width of the spectral
index distribution is a key parameter to distinguish the
scenarios of one or two populations.

A.1. Definition of the GLF and SED

The source count distribution as a function of the pho-
ton flux S is modeled as a power law:

dN

dS
= A

(
S

S0

)−γ
, (A1)

where A is an overall normalization, γ is the power-law
index, and S0 is a reference flux. In the following, S0

is fixed to 1 × 10−10 cm2s−1 and the fluxes S and S0

always refer to the photon flux in the energy bin from
1 GeV to 100 GeV. To relate the flux S to the flux Si
in a different energy bin i we need the SED, which we
model as a power law with an exponential cutoff:

dN

dE
= K

(
E

E0

)−Γ

exp

(
− E

Ec

)
. (A2)

HereK is the normalization, E0 a reference energy, Γ the
photon spectral index, and Ec the energy of the expo-
nential cutoff. The exponential cutoff allows mimicking
the attenuation of gamma rays at high energies. By def-
inition, the flux S is given by S =

∫ 100 GeV

1 GeV
dE dN/dE.

So, the ratio of the fluxes Si and S is given by:

si =
Si
S

=

∫ Emax,i

Emin,i
dE E−Γ exp(−E/Ec)∫ 100 GeV

1 GeV
dE E−Γ exp(−E/Ec)

. (A3)

Finally, we allow for an intrinsic distribution of the pho-
ton spectral indices following a Gaussian with mean µ
and width σ:

dN

dΓ
=

1√
2πσ

exp

(
− (µ− Γ)2

2σ2

)
. (A4)

Then, the CP of unresolved point sources is given by:

CijP =

∫
dS dΓSiSj

d2N

dSdΓ

[
1− Ω(S,Γ)

]
. (A5)

where Ω(S,Γ) is the detector efficiency to resolve point
sources, which we model as a θ-function at a Γ-
dependent flux threshold, Sthr (see main text). By con-
sidering photon spectral indices between 1 and 3, the
CP is then calculated as:

CijP =

3∫
1

dΓ

Sthr(Γ)∫
0

dS
1√
2πσ

exp

(
− (µ− Γ)2

2σ2

)

×S2 sisjA

(
S

S0

)−γ
=

3∫
1

dΓ
1√
2πσ

exp

(
− (µ− Γ)2

2σ2

)

×sisj
AS3

thr(Γ)

3− γ

(
Sthr(Γ)

S0

)−γ
.(A6)

We note that all the energy-information of the CP is
encoded in the factor sisj such that to a first approxi-
mation the slope, γ, of the dN/dS is degenerate with the
overall normalization, A. So, we fix γ to a benchmark
value of 2.2 in the following analysis.

A.2. Fits and results for the phenomenological model

In this section, we perform a total of four fits. The
fits differ by the number of source populations (one or
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Table 3. Fit results of the phenomenological model.

w/o Γ distribution w/ Γ distribution
1 pop. 2 pop.s 1 pop. 2 pop.s

pop. a pop. b pop. a pop. b

log10

(
A [cm−2s−1sr]

)
12.18+0.17

−0.16 11.87+0.36
−0.13 11.88+0.34

−0.17 12.26+0.15
−0.18 11.71+0.81

−0.20 11.52+0.96
−0.42

µ 2.11+0.04
−0.03 1.86+0.19

−0.11 2.50+0.18
−0.29 2.18+0.06

−0.05 2.02+0.22
−0.07 2.44+0.17

−0.32

σ - - - 0.34+0.07
−0.08 0.30+0.13

−0.09 0.30+0.18
−0.08

log10 (Ec [GeV]) 2.19+0.12
−0.13 1.98+0.12

−0.15 1.88+0.10
−0.12 1.88+0.10

−0.11

kCP 1.00+0.29
−0.50 1.00+0.29

−0.50 1.00+0.96
−0.24 0.97+0.38

−0.42

χ2 85.2 74.9 74.7 74.5
∆χ2 10.3 0.2
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Figure 9. Triangle plots showing the best fit region of the phenomenological model fitted to the CP data for different fit
setups. On the diagonal, we display the marginalized likelihood for all parameter and the remaining panels below the diagonal
contain the 1 and 2 σ contours derived from the marginalized likelihood in two dimensions for each parameter combination.
The red contours and lines correspond to a fit with a single population, while the green and blue contours correspond to the two
different populations of a fit containing two populations (labeled a and b). Left panel: Phenomenological model with a fixed
photon spectral index. Right panel: Phenomenological model with a Gaussian distribution of the photon spectral index.

two) and by the inclusion of a distribution in the photon
spectral index.
In the first two fits, we neglect the distribution of spec-

tral indices, namely we force σ = 0. Then, the first anal-
ysis employs a single source population with the SED
and GLF specified in the previous paragraph. The free
parameters are the normalization of the GLF (A), the
photon spectral index (µ), and the energy cutoff of the
SED (Ec). Furthermore, we use a nuisance parameter
(kCP) that varies the value of flux threshold (see main

text for more details). This fit has 4 free parameters.
In the second analysis, we use two source populations,
labeled a and b. They have the same functional form,
but different parameters: in particular, for the normal-
ization of the GLF and the photon spectral index. How-
ever, we force them to have the same value for the cutoff,
Ec. Together with the nuisance, this amounts to 6 free
parameters. To avoid an extra degeneracy in the fit we
restrict the photon spectral indices to µa < µb.
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Figure 10. Left panel: Phenomenological model with a fixed photon spectral index. Right panel: Phenomenological model
with a Gaussian distribution of the photon spectral index.

The third and fourth fits are very similar to the first
two, but we allow for a distribution in Γ. Consequently,
this leads to one (σ) and two (σa and σb) more param-
eters in the fits, respectively. We use the MultiNest
code to perform the four fits and to obtain the posterior
distributions presented in the following. Uncertainties
are stated in the Bayesian statistical framework.

The results of our four fits are presented in Table 3 and
in Figure 9. The χ2/dof of all four fits are close to 1 and
we conclude that all of them give a good fit to the CP

data. However, when comparing the χ2s of the first and
second fit, i.e. the fits without the Γ distribution, we
see that including a second population reduces the total
χ2 by 10.3, which formally corresponds to a statistical

Figure 11. CP energy-correlation matrix for the phe-
nomenological model in the setup with only one population
but including a Γ-distribution.

shift by 2.8σ. So, this could be interpreted as a small
hint for two populations. However, if we look at the re-
sults with a Γ distribution the conclusion changes. Here
the χ2 only decreases by 0.2 when a second population
is introduced, which is not significant. So, we cannot
distinguish between one or two populations based only
on the CP data. This can also be seen from the triangle
plots in Figure 9. Without allowing for a Γ distribution,
the red posterior contours (one population) are not fully
included in the contours of either the green or blue (pop-
ulation a or b of two population fit). Furthermore, both
populations, a and b are required to have a relatively
high normalization of A > 10−11 cm−2s−1sr−1. On the
other hand, if we allow for a Γ distribution, the red con-
tours are fully included in both the green and the blue
contours. And, in the case of 2 populations, one of the
normalizations A can be pushed to negligible values of
10−12 cm−2s−1sr−1. We compare the CP energy auto-
correlations of the best-fit to data in Figure 10. It is
clearly visible that, in the case without Γ distribution,
two populations provide a better fit, while in the case
with the Γ distribution there is almost no difference.
Finally, we have a look at the CP energy-correlation

matrix (coefficients defined as CijP /
√
CiiPC

jj
P ). By def-

inition, the diagonal coefficients are equal to one. If
there was only one source population with a single and
fixed photon spectral index, also the off-diagonal coeffi-
cients would be equal to 1. Instead, the CP measurement
(Ackermann et al. 2018) showed that the off-diagonal
coefficients are ∼ 0.6, which was interpreted as an indi-
cation for two populations. In Figure 11, we show that
also a single source population with a distribution of
photon spectral indices provides the correct off-diagonal
pattern.
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A.3. Conclusions

We conclude that, based on the CP measurement it-
self, it is not possible to distinguish between two pop-
ulations with narrow spectral index distributions and a
single population with a broader distribution. In the
latter case, the required value for the width of the Γ
distribution is σ = 0.34+0.07

−0.08. Additional information
can help to solve the riddle. In the analysis of the main
text, we included a physical model and the constrain-
ing power from the 4FGL catalog. This allowed us to
break the degeneracy and to determine the presence of
two populations, BLL and FSRQ.

B. RESOLVING PREVIOUS UGRB ANISOTROPY
MEASUREMENTS

As mentioned in the main text, the UGRB emission
is exposure-dependent: the more the LAT observes, the
more sensitive is the survey to fainter sources, and con-
sequently less unresolved emission contributes to the
UGRB. We show this effect by comparing the UGRB
anisotropy energy spectrum measured by (Fornasa et al.
2016), which masked sources from the 3FGL source cat-
alog (Acero et al. 2015) based on 4 years of LAT survey,
with the one in (Ackermann et al. 2018). In Figure 12
we report both measurements in red and black, respec-
tively. The difference between the two measurements,
which consider similar total mission times (7.5 years in
(Fornasa et al. 2016) and 8 years in (Ackermann et al.
2018)), is mainly due to the difference in the number of
resolved sources masked away from the analyzed maps:
the 4FGL counts approximately 2000 more sources than
the 3FGL. We test this by evaluating the anisotropy en-
ergy spectrum of the populations of FSRQs, BLLs, and
BCUs of the 4FGL not yet resolved (i.e., not present)
in the 3FGL (let us call it ∆CP,4FGL−3FGL). We verify
that the sum of the best-fit model of the measurement in
(Ackermann et al. 2018) plus the ∆CP,4FGL−3FGL repro-
duces the anisotropy energy spectrum as measured by
(Fornasa et al. 2016). In agreement with our expecta-
tions, the results in Figure 12 show that there is a tran-
sition between FSRQs and BLLs in the ∆CP,4FGL−3FGL

when going from lower to higher energies. So it is plau-
sible to observe a similar transition in the CP measure-
ment of (Ackermann et al. 2018).
This test is performed considering only energies up to

10 GeV. The measurement by (Ackermann et al. 2018)
masks also 3FHL sources above those energies, making
the comparison with (Fornasa et al. 2016) less straight-
forward and beyond the scope of this study.
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Figure 12. Comparison between the measurements from
(Fornasa et al. 2016) (red points) and (Ackermann et al.
2018) (black points). The CP’s of the populations of FSRQs,
BLLs, and BCUs of the 4FGL not yet resolved in the 3FGL,
are shown in orange, blue and green, respectively, and the
best-fit to the CP of (Ackermann et al. 2018) is given by the
black curve. Their sum is shown with the red curve, which
well-reproduces the measurement of (Fornasa et al. 2016).
The comparison is restricted to energies below 10 GeV, see
text.
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