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6Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino, Italy

Accepted ??. Received ??; in original form ??

ABSTRACT

We carry out a linear stability analysis of a magnetized relativistic rotat-
ing cylindrical jet flow using the approximation of zero thermal pressure.
We identify several modes of instability in the jet: Kelvin-Helmholtz, cur-
rent driven and two kinds of centrifugal-buoyancy modes – toroidal and
poloidal. The Kelvin-Helmholtz mode is found at low magnetization and
its growth rate depends very weakly on the pitch parameter of the back-
ground magnetic field and on rotation. The current driven mode is found
at high magnetization, the values of its growth rate and the wavenumber,
corresponding to the maximum growth, increase as we decrease the pitch
parameter of the background magnetic field. This mode is stabilized by ro-
tation, especially, at high magnetization. The centrifugal-buoyancy modes,
arising due to rotation, tend also to be more stable when magnetization
is increased. Overall, relativistic jet flows appear to be more stable with
respect to their non-relativistic counterpart.
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1 INTRODUCTION

The study of jet instabilities is of utmost importance for understanding their dynamics and phenomenology.

Astrophysical jets propagate over very large distances (up to 109 times their initial radius in the case of AGN

jets) maintaining a coherent structure and, for this remarkable stability property, an acceptable explanation is

still missing. On the other hand, instabilities can play a fundamental role in the dissipation of part of the jet

energy, leading to the observed radiation as well as the formation and evolution of various observed structures.

One of the mechanisms through which dissipation of the jet energy may occur, and that has recently attracted

a lot of interest, is magnetic reconnection (see e.g. Giannios 2010; Sironi et al. 2015; Werner et al. 2018). In this

context, current driven kink instabilities (CDI) may play an important role by enhancing or killing reconnection

(Striani et al. 2016; Ripperda et al. 2017a,b). Apart from CDI, other types of instabilities are possible in jets:

Kelvin-Helmholtz instabilities (KHI) driven by the velocity shear and centrifugal-buoyancy instabilities driven by

the jet rotation. While the Newtonian, or non-relativistic case has been extensively studied, general analyses in the

relativistic regime, without invoking the force-free approximation, i.e., taking into account gas inertia, are more

limited due to the complexity of the problem. By “relativistic” we mean that the Lorentz factor of the jet flow is

larger than unity and/or the magnetization (i.e., the ratio of the magnetic energy density to the energy density

of matter) is high, enabling the jet to accelerate to relativistic velocities. KHI have been extensively studied in
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several different configurations both in the non-relativistic (see e.g. Bodo et al. 1989; Birkinshaw 1991; Hardee

et al. 1992; Bodo et al. 1996; Hardee 2006; Kim et al. 2015) and relativistic (see e.g. Ferrari et al. 1978; Hardee

1979; Urpin 2002; Perucho et al. 2004, 2010; Mizuno et al. 2007) cases. Similarly, CDI have been extensively

studied in the Newtonian limit both in the linear (e.g. Appl & Camenzind 1992; Appl 1996; Begelman 1998;

Appl et al. 2000; Baty & Keppens 2002; Bonanno & Urpin 2011a,b; Das & Begelman 2018) and nonlinear (e.g.,

Moll et al. 2008; O’Neill et al. 2012) regimes, while the analysis of the relativistic case has been more limited,

most of the linear studies have considered the force-free regime (Voslamber & Callebaut 1962; Istomin & Pariev

1994, 1996; Lyubarskii 1999; Tomimatsu et al. 2001; Narayan et al. 2009; Gourgouliatos et al. 2012; Sobacchi

et al. 2017) and the full MHD case has been addressed more recently by Bodo et al. (2013) (hereinafter Paper

I), for the cold case, and by Begelman (1998); Kim et al. (2017, 2018), who included thermal pressure. Due to

the complexity of the relativistic case, the evolution of CDI beyond the force-free approximation has been tackled

often by means of numerical simulations, which mainly focus on the nonlinear behaviour (e.g., Mizuno et al. 2009,

2011; O’Neill et al. 2012; Mizuno et al. 2012; Mignone et al. 2010, 2013; Singh et al. 2016). In the absence of

magnetic fields, rotation can drive the centrifugal instability in jets, whose relativistic extension has been recently

analysed by Gourgouliatos & Komissarov (2018). The combination of rotation and magnetic field adds another

degree of complexity, other kinds of instabilities may arise and the interplay between the different modes can

become quite complicated (for non-relativistic studies, see e.g. Kim & Ostriker 2000; Hanasz et al. 2000; Keppens

et al. 2002; Varnière & Tagger 2002; Huang & Hassam 2003; Pessah & Psaltis 2005; Bonanno & Urpin 2006,

2007; Fu & Lai 2011). The interplay of rotation and magnetic field, in the non-relativistic case and in the absence

of a longitudinal flow, has been analyzed by Bodo et al. (2016) (hereinafter Paper II), and the resulting main,

rotationally-induced types of instability – the centrifugal-buoyancy modes – have been identified and described.

In Paper I we considered a cold, relativistic, non-rotating jet and found that KHI is prevalent for matter-

dominated jets, while CDI is more effective for magnetically-dominated jets. In Paper II, we considered the effects

of rotation in a non-relativistic plasma column, where no longitudinal flow is present. We found additional modes

of instability driven by rotation: the centrifugal-buoyancy modes. In this paper, which represents a sequel of Papers

I and II, we study the stability problem in the full case of a cold, relativistic, magnetized and rotating jet. We still

consider a cold jet, because, on one side, in the case of a Poynting-dominated jet, this can be assumed as a valid

approximation and, on the other side, the incorporation of pressure would introduce new kinds of instabilities

even more complicating the analysis. This is therefore a further step towards a complete study, where we will

drop this limitation in the end. The equilibrium configuration here is similar to that adopted in these papers,

which assumes a current distribution that is peaked on the jet axis and closes at very large distances from the jet

(i.e., the total net current becomes equal to zero only at large distances). This class of equilibria is different from

those considered by Kim et al. (2017, 2018), where the current closes inside the jet. Resulting main modes of the

instability in the relativistic and rotating case remain the KH, CD and centrifugal-buoyancy ones. The main goal

of the present paper is to investigate the effect of the different parameters of the jet on the growth efficiency of

these modes in the more comprehensive relativistic rotating case compared to the relativistic non-rotating and

non-relativistic rotating ones analyzed, respectively, in Papers I and II. The main parameters, with respect to

which we explore the jet stability, are the Lorentz factor of the propagation velocity along jet axis, pitch of the

background magnetic field, degree of magnetization, rotation frequency, vertical/axial wavenumber. In contrast

to the present more general study, in Paper I rotation was zero, whereas in Paper II, being in the Newtonian

limit, the Lorentz factor was unity and the magnetization, as defined here, was very small. Ultimately, one would

like to understand how instabilities can tap part of the jet flow energy, without leading to its disruption. To this

aim, numerical simulations are an essential tool, however, linear studies such as the present one may still provide

necessary insights.

The plan of the paper is the following: in section 2 we will describe the physical problem, the basic equations,

the general equilibrium configuration and the characteristic parameters, in section 3 we present our results, first

for the KHI and CDI and then for the centrifugal-buoyancy instabilities and, finally in section 4, we summarize

our findings.

2 PROBLEM DESCRIPTION

We investigate the linear stability of a cold (i.e., with zero thermal pressure), magnetized, rotating, relativistic

cylindrical flow of an inviscid and infinitely conducting fluid. It is governed by the basic equations of ideal

relativistic MHD:

∂

∂t
(γρ) +∇ · (γρv) = 0, (1)
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γρ
∂

∂t
(γv) + γρ(v · ∇)(γv) =

1

c
J ×B +

1

4π
(∇ ·E)E, (2)

1

c

∂B

∂t
= −∇×E, (3)

1

c

∂E

∂t
= ∇×B − 4π

c
J , (4)

where ρ is the proper density, γ = (1 − v2/c2)−1/2 is the Lorentz factor, with c being the speed of light, and v,

B, E, J are, respectively, the 3-vectors of the velocity, magnetic field, electric field and current density. These

equations are written in the CGS system and a factor of
√

4π is absorbed in the definitions of E and B. In the

following we choose the units such that the speed of light is unity, c = 1, .

2.1 Equilibrium Configuration

The equilibrium configuration was described in Paper I, here we summarize the relevant equations. We adopt

cylindrical coordinates (r, ϕ, z) (with versors er, eϕ, ez) and seek for axisymmetric steady-state solutions (i.e.,

∂t = ∂ϕ = ∂z = 0) of equations (1)-(4). The jet propagates in the vertical/axial (z) direction, the magnetic

field and velocity have no radial components and consist of a vertical (poloidal), Bz, vz, and toroidal, Bϕ, vϕ,

components. The magnetic field configuration can be characterized by the pitch parameter

P =
rBz
Bϕ

.

The only non-trivial equation is given by the radial component of the momentum equation (2) which, in the zero

pressure case, simplifies to

ργ2v2ϕ =
1

2r

d(r2H2)

dr
+
r

2

dB2
z

dr
, (5)

where H2 = B2
ϕ − E2

r (in the non-relativistic case H2 = B2
ϕ) and

Er = vzBϕ − vϕBz (6)

Equation (5) leaves the freedom of choosing the radial profiles of all flow variables except one and then solve for

the remaining profile. We note that while in the Newtonian case, the presence of a longitudinal velocity has no

effect on the radial equilibrium, this no longer holds in the relativistic case, where the Lorentz factor appears

in the equilibrium condition (5). The choice of the radial profiles is somewhat arbitrary since we have no direct

information about the magnetic configuration in astrophysical jets. We choose to follow the prescriptions given in

Papers I and II and to consider a general class of constant density equilibria in which the vertical current density

is peaked on the central axis of the jet and is concentrated in a region of the characteristic radius a. We prescribe

the velocity profile by choosing γz(r), i.e., the Lorentz factor with respect to the z-component of the velocity only,

of the form

γz(r) ≡
1√

1− v2z
= 1 +

γc − 1

cosh(r/rj)6
, (7)

where γc = (1 − v2c )−1/2 is the Lorentz factor for the vertical velocity on the central axis, vc = vz(0), and rj is

the jet radius. From now on, we will use the subscript ‘c‘ to denote values at r = 0, in addition, all lengths will

be expressed in units of rj (recall that the velocities are measured in units of the speed of light c). As in Paper I,

we prescribe the profile of H as

H2 =
H2
c

r2

[
1− exp

(
− r

4

a4

)]
(8)

and for the azimuthal velocity we take the form

γ2v2ϕ = r2Ω2
cγ

2
c exp

(
− r

4

a4

)
, (9)

where Ωc is the angular velocity of the jet rotation on the central axis (γcΩc is the angular velocity measured in

the jet rest frame). The characteristic radius of the current concentration in the jet is set to a = 0.6 below. With

these choices, from equation (9) we get for vφ the expression

v2ϕ =
r2γ2

cΩ2
c

γ2
z

[
1 + r2γ2

cΩ2
c exp

(
− r

4

a4

)]−1

exp

(
− r

4

a4

)
, (10)
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from which it is evident that for any value of Ωc, vφ is always less than unity, i.e., the azimuthal velocity does

not exceed the speed of light. From equations (5), (8) and (9), we get the Bz profile as

B2
z = B2

zc − (1− α)
H2
c

√
π

a2
erf

(
r2

a2

)
(11)

where erf is the error function and the parameter

α =
ργ2
cΩ2

ca
4

2H2
c

(12)

measures the strength of rotation: for α = 0 (no rotation) the gradient of r2H2 in equation (5) is exactly balanced

by the gradient of B2
z (Bz decreases outward), whereas for α = 1, it is exactly balanced by the centrifugal force

and Bz is constant. Intermediate values of rotation correspond to the range 0 < α < 1. As shown in Paper II,

one can, in principle, consider also configurations with α > 1, in which Bz grows radially outward, but such

configurations will not be considered in the present paper.

The azimuthal field is obtained from the definition of H using the expression of Er = vzBϕ − vϕBz. This

yields a quadratic equation in Bϕ with the solution

Bϕ =
−vϕvzBz ∓

√
v2ϕB2

z +H2(1− v2z)

1− v2z
. (13)

Here we consider the negative branch because it guarantees that Bϕ and vϕ have opposite signs, as suggested by

acceleration models (see e.g., Blandford & Payne 1982; Ferreira & Pelletier 1995; Zanni et al. 2007). We choose

to characterize the magnetic field configuration by specifying the absolute value of the pitch on the axis, Pc, and

the ratio of the energy density of the matter to the magnetic energy density, M2
a ,

Pc ≡
∣∣∣∣rBzBϕ

∣∣∣∣
r=0

, M2
a ≡

ργ2
c〈

B2
〉 , (14)

where
〈
B2
〉

represents the radially averaged magnetic energy density across the beam〈
B2〉 =

∫ rj
0

(B2
z +B2

ϕ)r dr∫ rj
0
r dr

, (15)

and rj = 1 in our units. Ma is related to the standard magnetization parameter σ = B2/(ρh) (h is the specific

enthalpy) used in other studies via M2
a = γ2

c/σ and to the relativistic form of the Alfvén speed, va = B/
√
ρh+B2,

via M2
a = γ2

c (1 − v2a)/v2a (c = 1 and in the cold limit h = 1). The constants Bzc and Hc appearing in the above

equations can be found in terms of Pc, Ma and Ωc by simultaneously solving equations (14) and (15) using

expressions (11) and (13) for the magnetic field components. In particular, from the definition of the pitch

parameter, after some algebra, we find (in the r → 0 limit)

a4B2
zc =

H2
cP

2
c

1− (PcΩc + vzc)
2 . (16)

Fig. 1 shows the typical radial profile of this equilibrium solution for the special/representative case of maximal

rotation, α = 1, and different γc. However, as discussed in Paper II for the non-relativistic case, not all the

combinations of Ωc, γc, Pc and Ma are allowed, because, in order to have a physically meaningful solution, we

have to impose the additional constraints that B2
ϕ and B2

z must be everywhere positive. We note that, since

B2
z decreases with radius monotonically, the condition limr→∞B

2
z > 0 ensures that B2

z is positive everywhere.

Fig. 2 shows the allowed region (shaded in light green) in the (Ωc, γcPc)-plane, with the red curve marking the

boundary where limr→∞B
2
z = 0 and the green curve marking the boundary where B2

z becomes constant with

radius (i.e., α = 1). (As discussed in Paper II, there are also possible equilibria where B2
z increases with radius,

outside the green curve, but they are not considered here.) We used γcPc on the ordinate axis, since it represents

the pitch measured in the jet rest frame. The three panels in each row refer to decreasing values of M2
a (from left

to right, M2
a = 100, 1, 0.1) corresponding to increasing strength of the magnetic field, while the three panels in

each column refer to increasing value of the Lorentz factor (from top to bottom, γc = 1.01, 2, 5). The top leftmost

panel with the lowest magnetization and γc = 1.01 should correspond to the Newtonian limit shown in Fig. 1 of

Paper II, comparing these two figures we can see that the shape of the permitted light green regions are nearly

the same, while the values of Ωc are different because of the different normalization, in Paper II it was normalized

by va/rj , whereas here it is normalized by c/rj . Even at this nearly Newtonian value of γc = 1.01, the relativistic

effects become noticeable starting from intermediate magnetization M2
a = 1 – the corresponding permitted light

green region with its green and red boundaries (top middle panel) differs from those in the Newtonian limit

M2
a = 100 (top left panel), after taking into account the above normalization of the angular velocity. Generally, in

Fig. 2, relativistic effects become increasingly stronger, on one hand, going from left to right, because the Alfvén

c© 2016 RAS, MNRAS 000, 1–21



Instabilities in rotating jets 5

Figure 1. Radial profiles of the Lorentz factor, magnetic field components and axial current density for the equilibrium at

α = 1, M2
a = 1, Pc = 1 and different γc = 1.01 (blue), 2 (green), 5 (red).

Figure 2. Regions of allowed equilibria in the (Ωc, γcPc)-plane shaded in light green. The different panels refer to different
values of γc and Ma, the values corresponding to each panel are reported in the legend. The red curves mark the boundary
where limr→∞B2

z = 0 and the green curves mark the boundary where B2
z is constant with radius (α = 1). Insets show the

maximum Ωc of the possible equilibria when the latter extend beyond the range of Ωc represented in these plots.

c© 2016 RAS, MNRAS 000, 1–21
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Figure 3. Plots of αmin as a function of γcPc. αmin represents the minimum value of α for which equilibrium is possible.

The three panels refer to three different values of γc, the corresponding values are reported in each panel. The different
curves correspond to different values of Ma as indicated in the legend.

speed approaches the speed of light, and on the other hand, going from top to bottom, because the jet velocity

approaches the speed of light.

At high values of the pitch, there is a maximum allowed value of Ωc, while decreasing the pitch we see that

below a threshold value γcPc = 0.8, the jet must rotate in order to ensure a possible equilibrium and the rotation

rate has to increase as the pitch decreases. For low values of Pc, the allowed range of Ωc therefore tends to become

very narrow. Comparing the panels in the three columns, we see that increasing the magnetic field, the maximum

Ωc, found for Pc → 0, increases, scaling with 1/Ma, and the rotation velocities become relativistic. Increasing the

value of γc (middle and bottom panels), the allowed values of Ωc in the laboratory frame (shown in the figure)

decrease, however, they increase when measured in the jet rest frame.

Since in the stability analysis we will often make use of the parameter α, defined in equation (12), for

characterizing the equilibrium solutions, in Fig. 3 we show the minimum value of α required for the existence of

the equilibrium as a function of γcPc. We recall that α = 0 corresponds to no rotation and α = 1 corresponds to the

case where Bz is constant and the hoop stresses by Bφ are completely balanced by rotation. As discussed above,

for γcPc < 0.8 some rotation is needed for maintaining the equilibrium and this minimum rotation corresponds

to αmin plotted in Fig. 3. The three panels refer to three different values of γc and in each panel the three curves

correspond to three different values of Ma. Decreasing γcPc below the critical value, αmin increases tending to 1

as γcPc → 0. Comparing the curves for the same value of γc in each panel, we see that αmin decreases as Ma is

decreased. Comparing the different panels, the corresponding curves for the same value of Ma also show a decrease

of αmin with γc.

3 RESULTS

In Paper II, we identified and described different linear modes of instability existing in a non-relativistic rotating

static (with vz = 0) column: the CD mode as well as the toroidal and poloidal buoyancy modes driven by the

centrifugal force due to rotation. In the present analysis, we have to consider additionally the instabilities driven

by the velocity shear between the jet and the ambient medium, that is, KH modes. We will investigate these

different perturbation modes in the following subsections.

The small perturbations of velocity and magnetic field about the above-described equilibrium are assumed

to have the form ∝ exp(iωt − imϕ − ikz), where the azimuthal (integer) m and axial k wavenumbers are real,

while the frequency ω is generally complex, so that there is instability if its imaginary part is negative, Im(ω) < 0,

c© 2016 RAS, MNRAS 000, 1–21
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and the growth rate of the instability is accordingly given by −Im(ω). The related eigenvalue problem for ω –

the linear differential equations (with respect to the radial coordinate) for the perturbations together with the

appropriate boundary conditions in the vicinity of the jet axis, r → 0, and far from it, r →∞ – were formulated

in Paper I in a general form for magnetized relativistic rotating jets, but then only the non-rotating case was

considered. For reference, in Appendix A, we give the final set of these main equations (A1) and (A2) with the

boundary conditions (A3) and (A4), which are solved in the present rotating case and the reader can consult

Paper I for the details of the derivation. In this study, we focus on m = 1 modes for the following reasons. For

CDI, this kink mode is the most effective one, leading to a helical displacement of the whole jet body, while CDI

is absent for m = −1 modes (Paper I). As for KHI, it is practically insensitive to the sign of m (Paper I), so

we can choose only positive m. Finally, as we have seen in Paper II, the centrifugal-buoyancy modes also behave

overall similarly at m = −1 and m = 1 for large and small k, which are the main areas of these modes activity.

Our equilibrium configuration depends on the four parameters γc, α, Pc and Ma, specifying, respectively, the

jet bulk flow velocity along the axis, the strength of the centrifugal force, the magnetic pitch and the magnetization.

As mentioned above, relativistic effects become important either at high values of γc, because the jet velocity

approaches the speed of light, or at low values of Ma, because the Alfvén speed approaches the speed of light,

even when γc ∼ 1. For some of the parameters we are forced to make a choice of few representative values since

it would be impossible to have a full coverage of the four-dimensional parameter space. For γc we choose one

value to be 1.01 since at large Ma we make connection with the non-relativistic results (Paper II), while at low

Ma we can explore the relativistic effects due to the high magnetization. As another value, we choose γc = 10,

which can be considered as representative of AGN jets (Padovani & Urry 1992; Giovannini et al. 2001; Marscher

2006; Homan 2012) (except for some cases in which lower values are used, since the growth rates of the modes for

γc = 10 becomes extremely low). For α we chose the two limiting cases α = 0 (no rotation) and α = 1 (centrifugal

force exactly balances magnetic forces) and one intermediate value, α = 0.2, for which the effects due to rotation

start to be substantial (notice that the relation between α and the rotation rate is not linear). Finally, for Pc we

explore several different values, Pc = 0.01, 0.1, 1, 10, depending on the allowed equilibrium configurations (see

discussion above).

3.1 CD and KH modes

CD and KH modes were already discussed in detail in Paper I, where we found KH modes dominating at large

values of Ma and CD modes dominating at small values of Ma. Here we are mainly interested in how they are

affected by rotation. In Fig. 4, we show the behaviour of the growth rate (defined as −Im(ω)) as a function of the

wavenumber k and Ma for Pc = 10, γc = 1.01 and three different values of α: α = 0 in the top panel corresponds

to no rotation, α = 1 in the bottom panel corresponds to the case where rotation exactly balances magnetic forces

and as an intermediate value, in the middle panel, we choose α = 0.2 for which the influence of rotation is already

appreciable. The case shown in the top panel is for zero rotation and has already been considered in Paper I, we

show it again here in order to highlight the effects of rotation by direct comparison. Increasing rotation (middle

and bottom panels), we see a stabilizing effect on CDI, which progressively increases when Ma decreases. This

stabilizing effect of rotation has been already discussed in Paper II (see also Carey & Sovinec 2009). In this figure,

the difference between the last two values of α may still be small, however, as we will see below, the behaviour

can be noticeably different at Ma < 1 for other values of Pc and γc, especially, in the limit Ma → 0. By contrast,

the KH modes, occurring at larger values of Ma, are essentially unaffected by rotation and, for this value of Pc,

are the dominant modes. Fig. 5 shows the same kind of plots, but for a lower value of the pitch, Pc = 1. In

the top panel (no rotation, α = 0) we see that, as discussed in Paper I, the CD mode increases its growth rate

and moves towards larger values of the wavenumber. Rotation has, as before, a stabilizing effect, that becomes

stronger as we decrease Ma. At zero rotation, CDI is the dominant mode, its growth rate is independent from Ma

(for Ma < 1), and is about an order of magnitude larger than the growth rate of KHI. As we increase rotation, the

growth rate of CDI decreases and the stability boundary moves towards smaller and smaller k as Ma is decreased.

This decrease in the level of CDI in Fig. 5 is most dramatic when α goes from zero to 0.2 (as it is visible by

comparing the top and middle panels), further increasing α to 1 the decrease is then much less pronounced. As

a result, for α = 1, the KHI is again the mode with the highest growth rate, which, however, has changed only

slightly relative to its value in the non-rotating case. The cases with the same high γc = 10 and three different

values of the pitch, Pc = 10, Pc = 1 and Pc = 0.1, are shown, respectively, in Figs. 6, 7 and 8. We note that

the pitch measured in the jet rest frame is given by γcPc, so these three values would correspond to Pc = 100,

Pc = 10 and Pc = 1 when measured in the rest frame. (Additionally, we have to note that for γc = 1.01 there are

no equilibrium solutions for Pc = 0.1.) In the top panel (no rotation) of Fig 6, we therefore see that the stability

boundary of the CD modes moves further to the left, i.e., towards smaller wavenumbers compared to the above

c© 2016 RAS, MNRAS 000, 1–21



8 G.Bodo et al.

Figure 4. Distribution of the growth rate, −Im(ω), as a function of the wavenumber k and Ma for γc = 1.01 and Pc = 10.
The three panels correspond to three different values of α (Top panel: α = 0; Middle panel: α = 0.2; Bottom panel: α = 1).

In this and other analogous plots below, the colour scale covers the range from 0 to the maximum value of the growth rate,

while the contours are equispaced in logarithmic scale from 10−5 up to this maximum growth rate.

c© 2016 RAS, MNRAS 000, 1–21
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Figure 5. Same as in Fig. 4, but for γc = 1.01 and Pc = 1.

c© 2016 RAS, MNRAS 000, 1–21
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Figure 6. Same as in Fig. 4, but for γc = 10 and Pc = 10.

c© 2016 RAS, MNRAS 000, 1–21
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Figure 7. Same as in Fig. 4, but for γc = 10 and Pc = 1.

c© 2016 RAS, MNRAS 000, 1–21
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Figure 8. Same as in Fig. 4, but for γc = 10 and Pc = 0.1.

c© 2016 RAS, MNRAS 000, 1–21
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Figure 9. Distribution of the growth rate, −Im(ω), as a function of the wavenumber k and Ma for γc = 10, α = 1 and

Pc = 0.01.

case with γc = 1.01, because of the high value of the pitch measured in the jet rest frame. Increasing rotation

(middle and bottom panels), below Ma ∼ 2 the CD mode is stable (at least in the wavenumber range considered).

For lower values of the pitch in Figs. 7 and 8, in the absence of rotation, the stability limit of the CD modes shifts

again to larger k with decreasing pitch. The effect of rotation is thus similar also in this highly relativistic case as

it is for γc = 1.01, being most remarkable when α increases from zero to 0.2. Notice that, as discussed in Paper

I, we have a splitting of the CD mode as a function of wavenumber for Pc = 1, this splitting is, however, only

present at zero rotation (top panel of Fig. 7). As noted above, the KH mode is essentially unaffected by rotation.

Therefore, except for the case with Pc = 0.1 and no rotation, the mode with the highest growth rate remains the

KHI. Finally, in Fig. 9 we show the case with Pc = 0.01, γc = 10 and α = 1. For this value of Pc, equilibrium is

possible only at high values of γc and the allowed values of α cannot be much smaller than 1. The behavior is

similar to those discussed above, on one hand the CDI tends to move towards higher wavenumbers and increase

its growth rate due to the decreasing value of Pc, on the other hand, rotation has the usual stabilizing effect and,

as a result, creates an inclined stability boundary that moves towards smaller wavenumbers as Ma is decreased.

These results show that the effect of rotation is generally stabilizing for the CD mode, at Ma . 1 (high

magnetization). An interesting question is then what happens in the limit Ma → 0. This limit, corresponding to

the force-free regime in relativistic jets, was investigated by Istomin & Pariev (1994, 1996); Lyubarskii (1999) and

Tomimatsu et al. (2001). Tomimatsu et al. (2001) derived the following condition for instability:

|Bϕ| > rΩFBz (17)

where ΩF is the angular velocity of field lines that can be expressed as (see Paper I)

ΩF =
vϕ
r
− vz
P
. (18)

Using equation (6) for the electric field Er and equation (18) for ΩF , the condition (17) can be written as

|Bϕ| > |Er|. (19)

The equilibrium condition (5) in the force-free limit becomes

1

2r

d(r2H2)

dr
+
r

2

dB2
z

dr
= 0. (20)

If Bz is constant, we have H = 0 and |Bϕ| = |Er|. According to Tomimatsu condition (19), in this case, we are

on the stability boundary and the system can be stable. In fact, Istomin & Pariev (1994, 1996) considered such a

situation and found stability. On the other hand, if Bz decreases radially outward, H > 0, the Tomimatsu condition

is satisfied and there is instability. Lyubarskii (1999) considered such a case and indeed found instability, with a

characteristic wavenumber increasing inversely proportional to pitch. In our setup, a constant Bz corresponds to

α = 1, while a radially decreasing vertical field corresponds to α < 1. From the above figures we have seen that, in

the presence of rotation, the instability boundary moves towards smaller and smaller values of the wavenumber as

Ma becomes low. However, it is hard to deduce from this result how exactly the instability region changes along

k when approaching the force-free limit, Ma → 0, because of the limited interval of Ma and k values represented.

c© 2016 RAS, MNRAS 000, 1–21



14 G.Bodo et al.

Figure 10. Distribution of the growth rate, −Im(ω), of the toroidal buoyancy mode as a function of the wavenumber k

and Ma for γc = 1.01, α = 1 and Pc = 1.

Nevertheless, we can see that, in general, at a given small Ma � 1, the stability boundary for α = 1 tends to be

at values of k smaller than those for α = 0.2 (see e.g., Figs. 5 and 8), that is overall consistent with the results of

Istomin & Pariev (1994, 1996); Lyubarskii (1999) and Tomimatsu et al. (2001).

3.2 Centrifugal-buoyancy modes

In Paper II, we demonstrated that in rotating non-relativistic jets, apart from CD and KH modes, there exists

yet another important class of unstable modes that are similar to the Parker instability with the driving role of

external gravity replaced by the centrifugal force (Huang & Hassam 2003) and analysed in detail their properties.

At small values of k, these modes operate by bending mostly toroidal field lines, while at large k they operate

by bending poloidal field lines. Accordingly, we labeled them the toroidal and poloidal buoyancy modes (see also

Kim & Ostriker 2000). In this subsection, we investigate how the growth of these modes is affected by relativistic

effects.

3.2.1 Toroidal buoyancy mode

The toroidal buoyancy mode operates at small values of k and, in fact, its instability is present only for wavenum-

bers k < kc, where the high wavenumber cutoff kc depends on the pitch parameter and satisfies the condition

kcPc ∼ 1. Fig. 10 presents the typical behaviour of the growth rate of the toroidal mode as a function of k and Ma

for Pc = 1, γc = 1.01 and α = 1. It is seen that in the unstable region, the growth rate is essentially independent

from k and reaches a maximum for Ma slightly larger than 1. At smaller and larger values of Ma the mode is

stable or has a very small growth rate, depending on the parameters, as we will see below.

In Paper II, we showed that the growth rate of the centrifugal-buoyancy modes scales approximately as Ω2
c .

In the present case, we have to take into account the relativistic effects and, as the mode tends to be concentrated

inside the jet, we have to consider quantities measured in the rest frame of the jet. The growth rate in the rest

frame should scale as in the non-relativistic case, i.e., as the square of the rotation frequency in this frame. Since

the growth rate in the jet rest frame is Im(ω′) = γcIm(ω), while the rotation frequency is Ω′c = γcΩc, we can write

the scaling law in the lab frame

−Im(ω) ∼ γcΩ2
c , (21)

In Fig. 11, we plot the growth rate normalized according to this scaling, −Im(ω)/(γcΩ
2
c), as a function of the

wavenumber for α = 1, Pc = 1 and three different values of γc = 1.01, 2, 5. For each γc, we choose the value of

Ma, which corresponds to the maximum growth rate at a given k, these values are reported in the figure caption.

For each curve, the value of Ωc is also different and equal to 0.6 for γc = 1.01, 0.09 for γc = 2 and 0.01 for γc = 5.

The growth rate in the unstable range is independent from the wavenumber, as seen in Figs. 10 and 11, and the
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Figure 11. Growth rate of the toroidal mode as a function of k for α = 1, Pc = 1 and γc = 1.01, 2, 5. The growth rate is

normalized by γcΩ2
c . The three different curves refer to three different values of γc as indicated in the legend. Ma is also

different for the three curves and for each curve it has the value at which the maximum growth rate is reached at a fixed
k: Ma = 1.5, 4.5, 15, respectively, for γc = 1.01, 2, 5.

scaling law (21) reproduces quite well the behaviour of the growth rate at different γc: the corresponding curves

come close to each other (collapse) when the normalized growth rate is plotted.

To study in more detail the dependence of the toroidal buoyancy instability on the jet flow parameters, in

Fig. 12, we plot the growth rate as a function of Ma for a given k and various Pc and γc. Although the value of k

is fixed in these plots, we recall that, as we have seen above, there is no dependence of the growth rate on k when

k is sufficiently smaller than the cut-off value. So, the curves in this figure would not change for other choices of

the unstable wavenumber. The four different panels correspond to different values of the pitch parameter (top

left: Pc = 10, top right: Pc = 1, bottom left: Pc = 0.1, bottom right: Pc = 0.01). In each panel, different colours

refer to different values of γc = 1.01, 2, 5, 10, while the solid curves are for α = 1 and dashed ones for α = 0.2. Not

all curves are present in all panels because, as discussed in subsection 2.1, there are combinations of parameters

for which equilibrium is not possible. At large values of Ma & 10 (low magnetization), the growth rate decreases

as 1/Ma for all values of γc, Pc and α given in these panels. In particular, at γc = 1.01 the behaviour coincides

with the non-relativistic MHD case (black lines in Fig. 12 calculated with ideal non-relativistic MHD equations

at zero thermal pressure, as in Paper II). This behaviour can be explained as follows. At large Ma, rotation is

balanced by magnetic forces and hence both decrease with increasing Ma. As a result, the growth rate of the

centrifugal-buoyancy modes decreases too, because it scales with the square of the rotation frequency (Eq. 21).

As Ma decreases, the growth rate first increases more slowly, reaches a maximum and then decreases at small

Ma � 1, as we approach the force-free limit where the centrifugal instabilities should eventually disappear. The

behaviour of the growth rate as a function of α, Pc and γc can be understood from the same scaling with the

rotation frequency discussed above. Increasing α, the rotation frequency increases as well and, consequently, the

growth rate. A decrease in the pitch also leads to an increase of the rotation frequency and, therefore, of the

growth rate. Finally, understanding the dependence on γc is more complex since we have to take into account the

transformation of all the quantities from the lab frame to the jet frame. The pitch in the jet frame is given by

γcPc and is, therefore, larger for larger γc and the rotation rate is consequently smaller. In addition, the growth

rate measured in the lab frame is smaller by a factor of γc than the growth rate measured in the jet frame, as a

result, the growth rate strongly decreases with γc.

3.2.2 Poloidal buoyancy mode

Another type of the centrifugal-buoyancy mode existing in the rotating jet is the poloidal buoyancy mode. As

mentioned above, this mode operates at large k by bending mostly poloidal field lines. In Fig. 13, we present the
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Figure 12. Growth rate of the toroidal mode as a function of Ma. The four panels refer to different values of the pitch

parameter Pc (Top left: Pc = 10; Top right: Pc = 1; Bottom left: Pc = 0.1; Bottom right: Pc = 0.01). Solid curves are for
α = 1, dashed curves are for α = 0.2, curves with different colours refer to different values of γc = 1.01, 2, 5, 10 as indicated

in the legend of each panel. The black lines represent the growth rate calculated with non-relativistic ideal MHD equations

at zero thermal pressure and the same pitch and α in the respective panel. If the dashed curve is absent in any panel,
this means that the equilibrium with α = 0.2 is not possible for that pair of Pc and γc associated with this panel. The

wavenumber is k = 0.01 in all the cases, although the growth rate is essentially independent of this value.

Figure 13. Distribution of the growth rate, −Im(ω), of the poloidal buoyancy mode as a function of the wavenumber k
and Ma for γc = 1.01, α = 1 and Pc = 1.
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Figure 14. Growth rate of the poloidal buoyancy mode as a function of k for α = 1, P = 1 and γc = 1.01, 2, 5. The growth

rate is normalized by γcΩ2
c . The three different curves refer to three different values of γc as indicated in the legend. Ma

is different for the three curves and for each curve has the value at which the maximum growth rate is found at fixed k:

Ma = 1.8, 5.72, 14.2, respectively, for γc = 1.01, 2, 5.

behaviour of its growth rate as a function of the wavenumber k and Ma for Pc = 1, γc = 1.01 and α = 1. This

figure is almost specular with respect to Fig. 10 and shows that the poloidal buoyancy instability first starts from

the same cutoff wavenumber kcPc ∼ 1 and extends instead to larger wavenumbers, k > kc, having the growth

rate somewhat larger than that of the toroidal buoyancy mode. At fixed k, it is concentrated in a certain range of

Ma, with the maximum growth rate being achieved around Ma ∼ 1 at every k and decreasing at large and small

Ma. At a given finite Ma, in the unstable region, the growth rate initially increases with k and then tends to a

constant value at k � kc, as also seen in Fig. 14. Like the toroidal buoyancy mode, the poloidal buoyancy mode

obeys the same scaling law (21), because it is also determined by the centrifugal force. This is confirmed by Fig.

14, which presents the growth rate as a function k for α = 1, Pc = 1 and three different values γc = 1.01, 2, 5,

while Ma is chosen for each curve such that to yield the maximum the growth rate at a given wavenumber. Thus,

modification (reduction) of the growth of both centrifugal-buoyancy instabilities in the relativistic case compared

to the non-relativistic one is in fact mainly due to the time-dilation effect – in the jet rest frame their growth rate

is determined by Ω′2c in this frame, as it is in the non-relativistic case.

Fig. 15 shows the behaviour of the poloidal buoyancy mode as a function of Ma for fixed, sufficiently large

values of k, when the instability is practically independent of it (see Fig. 14). The values of α, γc and Pc are the

same as used in Fig. 12 except that in the bottom right panel we used Pc = 0.03 instead of 0.01 since for Pc
slightly below 0.03 the poloidal mode becomes stable, when the cutoff wavenumber, kc, which is set by the pitch,

becomes larger than the fixed wavenumber (k = 40) used in this panel. Overall, the dependence of the growth rate

of the poloidal buoyancy mode on these parameters is quite similar to that of the toroidal one described above. In

particular, at large Ma the growth rate varies again as 1/Ma at all other parameters, coinciding at γc = 1.01 with

the behaviour in the non-relativistic case (black lines). It then increases with decreasing Ma, reaches a maximum

and decreases at small Ma. The lower is γc the higher is this maximum and the smaller is the corresponding Ma.

On the other hand, with respect to pitch, the highest growth is achieved at Pc ∼ 0.1 at all values of γc considered.

Due to the above scaling with the jet rotation frequency, the growth rate also increases with α. This behaviour

of the poloidal mode instability as a function of α, Pc and γc can be explained by invoking similar arguments as

for the toroidal mode in the previous subsection.

4 SUMMARY

We have investigated the stability properties of a relativistic magnetized rotating cylindrical flow, extending the

results obtained in Papers I and II. In Paper I, we neglected rotation, while in Paper II we did not consider the

presence of the longitudinal flow and relativistic effects, here we considered the full case, still remaining however

in the limit of zero thermal pressure. In the first two papers, we discussed several modes of instabilities that in
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Figure 15. Growth rate of the poloidal buoyancy mode as a function of Ma. The four panels refer to different values of

the pitch parameter Pc (Top left: Pc = 10; Top right: Pc = 1; Bottom left: Pc = 0.1; Bottom right: Pc = 0.03). Solid curves
are for α = 1, dashed curves are for α = 0.2, curves with different colours refer to different values of γc = 1.01, 2, 5, 10

as indicated in the legend. As in Fig. 12, the black lines represent the results obtained using ideal non-relativistic MHD

equations for the same pitch and α in each panel. The dashed curves are absent in those panels with such a pair of Pc and
γc that do not allow the equilibrium with α = 0.2. For computation reasons, the wavenumber k is different for each panel

(Top left: k = 5; Top right: k = 10; Bottom left: k = 14; Bottom right: k = 40), but corresponds to the regime where the

growth rate practically no longer depends on it.

the present situation all exist. The longitudinal flow velocity gives rise to the KHI, the toroidal component of the

magnetic field leads to CDI, while the combination of rotation and magnetic fields gives rise to unstable toroidal

and poloidal centrifugal-buoyancy modes. The instability behaviour depends, of course, on the chosen equilibrium

configuration and our results can be considered representative of an equilibrium configuration characterized by a

distribution of current concentrated in the jet, with the return current assumed to be mainly found at very large

distances. Not all combinations of parameters are allowed: there are combinations for which equilibrium solution

does not exist. More precisely, for any given rotation rate, there is a minimum value of the pitch, below which no

equilibrium is possible. Increasing the rotation rate, this minimum value of the pitch decreases.

The behaviour of KHI and CDI is similar to that discussed in Paper I, at high values of Ma we find the

KHI, while at low values we find the CDI. The KHI is largely unaffected by rotation, which, on the contrary,

has a strong stabilizing effect on the CDI. Decreasing Ma and increasing rotation, the unstable region (stability

boundary) progressively moves towards smaller axial wavenumbers. A decreasing value of the pitch, on the other

hand, moves the stability limits towards larger axial wavenumbers. For relativistic flows, we have also to take into

account that the pitch measured in the jet rest frame, which determines the behaviour of the CDI, is γc times

the value measured in the laboratory frame, therefore relativistic flows, with the same pitch, are more stable. In

Paper I, we found a scaling law showing that the growth rate of CDI strongly decreases with γc, while an even

stronger stabilization effect is found here due to the combination of relativistic effects and rotation. Extrapolating

the behaviour found at low values of Ma to the limit Ma → 0, the results are in agreement with Tomimatsu

condition (Tomimatsu et al. 2001), applicable to the force-free limit.

Rotation drives centrifugal-buoyancy modes: the toroidal buoyancy mode at low wavenumbers and the

poloidal buoyancy mode at high axial wavenumbers. Apart from the different range of these wavenumbers, they
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have a similar behaviour and their growth rate scales with the square of the rotation frequency, which, in turn,

increases as the pitch decreases; therefore they become important at low values of the pitch. In the unstable range,

the growth rate is independent from the wavenumber. As the magnetic field increases they tend to be more stable.

The same happens increasing the Lorentz factor of the flow.

In this paper, we have considered only the m = 1 mode, as this mode is thought to be the most dangerous

one for jets. Higher order modes (m > 1) can trigger instabilities internally in the jet, instead of a global kink.

These perturbations can cause inherent breakup of current sheets, reconnection, etc. So, these modes are also

interesting to study in the future. If the global jet can remain stable for long time scales and large distances,

locally, higher order modes can cause local instabilities that can or cannot disrupt the jet.

In summary, rotation has a stabilizing effect on the CDI which becomes more and more efficient as the

magnetization is increased. Rotation on the other hand drives centrifugal modes, which, however, are also stabilized

at high magnetizations. Finally, relativistic jet flows tend to be more stable compared to their non-relativistic

counterparts.
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APPENDIX A: EQUATIONS OF THE EIGENVALUE PROBLEM FOR THE JET STABILITY

Considering small perturbations of the velocity, electric and magnetic fields, v1, E1, B1 ∝ exp(iωt− imϕ− ikz),

about the equilibrium state with v = (0, vϕ, vz), E = (Er, 0, 0), B = (0, Bϕ, Bz) described in subsection 2.1, and

linearizing the main equations (1)-(4), after some algebra, we arrive at the following system of linear differential

equations for the radial displacement ξ1r = −iv1r/ω̃ and electromagnetic pressure Π1 = B · B1 − E · E1 =

BϕB1ϕ +BzB1z − ErE1r (see Appendix A of Paper I for the detailed derivations),

D
dξ1r
dr

=

(
C1 +

C2 −Dk′B
kB

− D

r

)
ξ1r − C3Π1 (A1)

D
dΠ1

dr
=

[
A1D −

ργ2v2ϕ
r

(
C1 +

C2 −Dk′B
kB

)
+
C4

r
+ C5

]
ξ1r +

[
1

r

(
ργ2v2ϕC3 − 2D + C6

)
+ C7

]
Π1, (A2)

where

D ≡
(
B2

ργ2
+ 1

)
B2ω̃2 +

kBB
2

ργ2

[
2ω̃(v ·B)− kB

γ2

]
,

ω̃ ≡ ω − m

r
vϕ − kvz, kB ≡

m

r
Bϕ + kBz, k′B ≡

dkB
dr

, B2 = B2
ϕ +B2

z .
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The other quantities, A1, C1, C2, C3, C4, C5, C6, C7 contained in these equations, also depend on the chosen profile

of the equilibrium solution, and their explicit forms are derived in Appendix B of Paper I. They are rather long

expressions and we do not give them here.

The boundary conditions near the jet axis and at large radii are also derived in Appendix C and D of Paper I

and are as follows. In the vicinity of the jet axis, r → 0, the regular solutions have the form ξ1r ∝ r|m|−1,Π1 ∝ r|m|

(|m| ≥ 1) and their ratio is

Π1

ξ1r
=
rργ2

c

mB2
c

[
sign(m)D + 2B2

z

(
ω̃v′ϕ +

B2

ργ2
(ω −mΩF ) ΩF +

B2B′ϕkB

ργ2B2
z

)]
|r=0

. (A3)

Here ΩF is the angular velocity of magnetic field lines given by equation (18).

At large radii, r →∞, the solution represents radially propagating waves that vanish at infinity. The electro-

magnetic pressure perturbation of these waves is given by the Hankel function of the first kind, Π1 = H
(1)
ν (χr),

where

χ2 =
ρ+B2

z

B2
z

ω2 − k2, ν2 = m2 +
ρB2

ϕcω
2

B4
z

,

with the leading term of the asymptotic expansion at r →∞

Π1 = H(1)
ν (χr) '

√
2

πχr
exp

[
i
(
χr − νπ

2
− π

4

)]
. (A4)

In this expression, the complex parameter χ can have either positive or negative sign,

χ = ±

√
ρ+B2

z

B2
z

ω2 − k2. (A5)

Requiring that the perturbations decay at large radii, in equation (A5), we choose the root that has a positive

imaginary part, Im(χ) > 0. These perturbations are produced within the jet and hence at large radii should have

the character of radially outgoing waves. This implies that the real parts of χ and ω should have opposite signs,

Re(ω)Re(χ) < 0 (Sommerfeld condition), in order to give the phase velocity directed outwards from the jet. As a

result, the asymptotic behaviour of the displacement ξ1r can be readily obtained from Π1 correct to O(r−3)

ξ1r =
Π1

ω2(ρ+B2)− k2B

(
iχ− 1

2r

)
.

The main equations (A1) and (A2) together with the above boundary conditions at small (A3) and large (A4)

radii are solved via shooting method to find the eigenvalues of ω.
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