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Abstract Binary systems with a neutron-star primary accreting from a companion
star display variability in the X-ray band on time scales ranging from years to mil-
liseconds. With frequencies of up to∼1300 Hz, the kilohertz quasi-periodic oscilla-
tions (kHz QPOs) represent the fastest variability observed from any astronomical
object. The sub-millisecond time scale of this variability implies that the kHz QPOs
are produced in the accretion flow very close to the surface of the neutron star, pro-
viding a unique view of the dynamics of matter under the influence of some of the
strongest gravitational fields in the Universe. This offers the possibility to probe
some of the most extreme predictions of General Relativity, such as dragging of in-
ertial frames and periastron precession at rates that are sixteen orders of magnitude
faster than those observed in the solar system and, ultimately, the existence of a min-
imum distance at which a stable orbit around a compact object is possible. Here we
review the last twenty years of research on kHz QPOs, and we discuss the prospects
for future developments in this field.

1 Introduction

Fast time variability from accreting X-ray binaries has become in the past decades
a very important tool for our understanding of the process of accretion onto com-
pact objects. As emission properties change on time scales well below a second, it
is impossible to ignore variability while concentrating solely on spectral analysis.
It was the Rossi X-ray Timing Explorer (RXTE) satellite with its large-area PCA
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instrument that allowed us to probe very fast time scales, below 10 milliseconds. In
this regime, we are exploring the accreting flow very close to the compact object,
whether it is a black hole or a neutron star. So deep into the potential well the ef-
fects of General Relativity in the strong-field regime can be observable and timing
analysis is a very direct way to explore them.

In neutron-star binaries, the phenomenology is particularly rich and complex,
with the presence of Quasi-Periodic Oscillations (QPOs) at frequencies of hundreds
of Hz, and even faster than 1 kHz. The frequencies of these oscillations are linked
to fundamental frequencies in a gravitational field, allowing us to probe General
Relativity in extreme gravitational fields. Most of what we learned comes from the
RXTE satellite, which ended in 2012, although new information is provided by cur-
rent missions such as Astrosat and NICER. New, much more sensitive, instruments
are being planned, like the Chinese-European satellite eXTP, and when they become
operative we expect a real explosion of new results. This will take several years; here
we review the current state of research for neutron-star binaries, concentrating on
high-frequency oscillations.

2 History

The history of aperiodic variability from X-Ray Binaries began in the early days of
X-ray astronomy. After several detections of spurious pulse periods from Cygnus
X-1 were reported, the idea that the observed variability was the result of an inco-
herent process (shot noise) was put forward (155). Further observations with more
advanced instrumentation led to the production of the first statistically significant
Power Density Spectra (PDS) from which the strong noise from this black hole can-
didate was defined and found to be more complex than a simple shot noise (see e.g.
123).

For Neutron-Star Low-Mass X-ray Binaries (NS LMXB), the first important re-
sult was the discovery of Quasi-Periodic Oscillations (QPO) in GX 5–1 in 1985 with
the EXOSAT satellite (162), obtained serendipitously when looking for X-ray pul-
sations (see the chapter by Patruno & Watts, this volume). From this first detection,
QPOs were soon observed in many other sources of the same class. The detection
of a signal with a very defined frequency provided the first precise time scale mea-
surement of the accretion flow. The first interpretation of QPOs was in terms of the
spin frequency of the neutron star. The values of their frequencies (typically∼1 Hz)
and the fact that they were not coherent or constant in time excluded that they could
be a direct observation of the spin. However, models that interpreted them as a beat
between the rotation of the neutron star and the orbital motion at the inner radii of
the accretion flow were proposed and were able to explain the observations (see e.g.
6, 88). For this to be the case, the presence of a non-negligible magnetic field is
necessary. Additional types of QPOs with different properties were also found, the
origin of which was even more difficult to explain.
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A few years later, similar QPOs started being observed from black-hole bina-
ries (BHB), thanks to the new all-sky monitors that were able to discover transient
systems (since most of the BHB are transient). Their frequency was lower (1− 10
Hz), but they appeared to be rather similar to those in NS LMXB (see e.g. 118). In
addition, the broad-band noise component connected to QPOs was found, at least
in some source states, to be extremely similar between the two classes. Since black
holes do not have a solid surface nor a magnetic field, the NS models that depend
on either could not be applied to black holes.

The launch of RXTE at the end of 1995 opened the way to the detection of high-
frequency (>100 Hz) features in the PDS of accreting binaries. For NS systems,
new quasi-periodic peaks at frequencies of hundreds of Hertz, called kilohertz QPOs
(kHz QPOs), were discovered first in the brightest source, Sco X–1 (164), then soon
in many other NS LMXBs. The model involving a beat with the neutron star spin
was adapted to interpret these high frequencies, as the peaks often appear in pairs
with roughly the same separation (e.g. 50, 150), but new data presented problems for
the model, which had to be abandoned. RXTE also allowed to bring the BHB QPOs
into a phenomenological scheme that appears to be connected to that of NS LMXB
low-frequency QPOs (34). The kHz phenomenon appears to be very common in
bright NS LMXBs. RXTE also discovered high-frequency QPOs (HFQPOs) from
BHBs, but they are extremely rare to the extent that, excluding one peculiar source
that had many detections (21, 119), only a handful of them were found in the sixteen
years of operation of the satellite (22). RXTE also led to the discovery of other fast-
timing phenomena from NS LMXBs that have completely changed our knowledge
of these systems: burst oscillations, accreting millisecond pulsars and intermittent
pulsars, all of which are dealt with in other chapters of this book.

After the end of the RXTE mission it has become much more difficult to detect
fast-timing aperiodic phenomena, because missions like XMM-Newton, Chandra
or Swift are not optimised for timing studies and do not yield the high count rates
that are needed. In the recent years, the launch of the Indian satellite Astrosat, which
contains an instrument similar to the main one on board RXTE (3) and of the NICER
experiment on board the International Space Station (53) have opened a new window
onto these phenomena, while future missions like eXTP are being studied.

3 Basic frequencies close to a neutron star

The accretion flow around a neutron star is a very complex physical system. In
order to study the time variability of the emitted flux, it is important to consider the
expected characteristic time scales that might be observed, leaving aside the issue
of the mechanism that will give rise to flux variability.

• Neutron stars in LMXBs are expected to be rapidly rotating, based on evolution-
ary scenarios (154). An obvious characteristic time to consider is the rotational
period of the central object, which would manifest itself in the form of a coherent
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signal. Rotational frequencies higher than 100 Hz are known for 26 systems, with
the fastest being currently 620 Hz (see chapter by Patruno & Watts and (179)).

• A particle orbiting a compact object defines an obvious time scale, that of the
period of its orbit (hereafter dynamical time scale tK). In the vicinity of a neutron
star, the space time is affected by the presence of the compact object and an
expression from General Relativity has to be used.

• The accretion flow around a compact object is made of different components
whose physical nature and emission properties are very varied, more for a neu-
tron star than for a black hole (see e.g. 94, and references therein). Depending on
the model and on the source state, we have: (a) the surface of the neutron star,
onto which the accreting matter is deposited; (b) a boundary layer between the
star and the accretion flow, where the speed of the material in the disc needs to
drop rather quickly to adjust to the slower rotation speed of the neutron-star sur-
face; (c) a geometrically thin accretion disc; (d) a Comptonising medium whose
spatial location is not yet firmly established; (d) a relativistic jet where matter is
ejected from the system at a speed close to that of light. In addition, although
the magnetic field of the neutron star in a LMXB is expected to be low, of the
order of 108G, nevertheless the presence of a magnetosphere has influence onto
the accretion flow.

Close the surface of the neutron star surface, matter orbits with a speed close to
half the speed of light, c. A number of fundamental time scales can be identified. The
light-crossing time, tLC, is shorter than a millisecond and is potentially detectable in
time delays between signals. For sub-Keplerian flows, the free-fall time scale t f f
can become important. In an optically thick and geometrically thin disc, in addition
to the shortest characteristic time scale corresponding to the dynamical timescale tK
(see above), other important time scales are the viscous time scale, tdisc, on which
matter diffuses through the disc due to viscosity, the vertical time scale, tz, on which
vertical deviations from the hydrostatic equilibrium are damped, and the thermal
time scale, tth. on which deviations from thermal equilibrium are damped (see 52).
In the innermost regions of an accretion disc around a neutron star, tK and tz are of
the order of milliseconds, tth is higher by a factor of a few and tvisc is much higher.
Moreover, all these time scales increase moving away from the neutron star, and
have similar functional dependences on the orbital radius.

With the exception of the neutron star spin, all other timescales apply also to the
case of black holes. Since the inner orbits of the accretion flow are comparable in
radius between the two objects, similar frequencies are expected, although the mass
difference will yield faster time scales for neutron stars. Notice that General Rel-
ativity predicts the presence of an innermost stable orbit around a compact object,
which naturally imposes a lower limit on all these time scales.
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4 Timing phenomenology: QPOs 101

In this section we provide a brief introduction to the study of variability using
Fourier power density spectra, we explain the concept of variability components in
the Fourier power spectrum of accreting LMXBs, and we discuss the properties of
one of those components, the high-frequency quasi-periodic oscillations in neutron-
star LMXBs, the so-called kHz QPOs. In subsequent sections we expand on some
of the properties of the kHz QPOs in more detail. Because this is meant to be a very
general introduction to the topics discussed later in this chapter, and to improve the
readability, in this section we try to keep the references to the minimum necessary.
We give the appropriate references when we discuss the topics introduced here in
more detail in the rest of the chapter.

A useful way to characterise the variability of a source is to use the Fourier power
density spectrum (PDS) of the source light curve. The PDS gives the square of the
amplitude, called power, of the variability in the light curve at each frequency over a
range of frequencies (see 161, for a full explanation). The great advantage of using
the Fourier PDS instead of studying the light curves directly is that, while in a light
curve one is bound to study the variability over a single, broad range of time scales,
from the longest time scale equal to the length of the observation to the shortest time
scale equal to the time resolution of the light curve (more precisely, twice the time
resolution), in the PDS one can isolate a certain range of frequencies (or equivalently
time scales) to study those separately. For instance, it would be very difficult (to say
the least) to study a weak, short-period, quasi-periodic signal (e.g., a truly periodic
signal with a period that changes randomly during the observation time) in a light
curve when that signal is superimposed to another signal that changes stochastically
over a long time scale. The reason for this complication is that the two signals would
be mixed up in the light curve; one would only be able to study the amplitude of the
variability over the total range of time scales combined, and hence only see the
combined effect of the two processes. On a PDS, however, one can isolate certain
time scales to study the phenomena independently. Perhaps the best example is the
case of a strictly periodic signal, e.g., from a pulsar; even if the pulsations appear on
top of a very noisy light curve, the signal of the pulsar can be easily identified in the
PDS. This is so because the amplitude of the variability of the pulsar signal is spread
over all time bins in the light curve, but the power is concentrated in a few frequency
bins (ideally one) in a PDS. The same applies to signals that are not strictly periodic;
the advantage in these cases is, again, that in the PDS one can isolate, and study
separately, the properties of different variability components that are present in the
light curve, but span only a limited range of frequencies, whereas this is impossible
using the light curve directly. Also because of this, one final advantage of using the
PDS is that, at each frequency, one can easily separate and subtract the part of the
variability in the light curve due to the Poisson nature of the signal. The power per
unit frequency of a constant, Poisson dominated, signal is also a constant that, when
the units of the PDS are chosen conveniently (90), is equal to 2. In the remainder of
this chapter we will use the PDS to characterise the variability components observed
in accreting X-ray sources.
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Without entering into too much details, a PDS gives the power per unit frequency
of a signal as a function of frequency. The units of the power can be chosen arbi-
trarily, but the important point we want to make here is that this power is per unit
frequency (therefore the word density in the name power density spectrum; as is
common in the literature, here we use loosely the word power to refer to power
density). The total power in a light curve over a certain range of time scales is the
integral of the PDS with respect to frequency over the corresponding range of fre-
quencies; this quantity is no longer a density (per unit frequency) and, because of
Parseval’s theorem, this integral is equal to the total variance in the light curve in
that particular frequency range. By choosing the appropriate PDS normalisation,
this quantity can represent the fractional root-mean square variability, also known
as fractional rms, in the light curve over a range of frequencies (see 161, for details).

After producing the PDS of a light curve, the power can be fitted as a function
of frequency with (a combination of) all kinds of mathematical functions, and use
the parameters of those functions to characterise the properties of the components
that those functions represent. Ideally those functions would have some underlying
theoretical meaning but, even if they do not, one can still deduce interesting proper-
ties of the processes that produce that variability, and eventually about the sources
themselves, from the parameters of those functions. For instance, a mathematical
function that is commonly used to fit the PDS is a Lorentzian, or Cauchy, function:

P(ν) =
∆

2π

N
(ν−ν0)2 +(∆

2 )
2
. (1)

This function has three parameters: The centroid frequency, ν0, measures the
frequency at which this variability component peaks in the PDS. When we fit a
Lorentzian to a QPO, the centroid frequency of the Lorentzian provides information
about the dynamics of the process that produces the QPO, e.g. an orbital frequency
in the disc, or the frequency of a standing wave in the accretion disc. The next pa-
rameter is the full-width at half-maximum (FWHM), ∆ , which measures the range
of frequencies over which the power of this component contributes significantly to
the variability. Instead of the width, some authors use the quality factor, Q, (some-
times also called the coherence, but we will reserve the name coherence for another
property of the QPO signal), defined as the ratio of the centroid frequency and the
FWHM of the QPO, Q = ν0/∆ , to characterise the width of the Lorentzian. A nar-
row Lorentzian would then have a high quality factor. The width or, equivalently,
the quality factor, can provide information about the lifetime of the process that pro-
duces the QPO, or how much the frequency of the QPO changes over the time in-
terval that was used to produce the PDS. On the other hand, an initially very narrow
QPO could be broadened if the oscillations are damped in an intervening medium
between the source and the observer, e.g., an X-ray corona very close to the ac-
creting object. Finally, the normalisation, N, equal to the integral of the Lorentzian
from −∞ to ∞, measures the total power of that variability component. As men-
tioned earlier, the integral of the power density over a certain frequency range gives
the power contributed by, in this case, the Lorentzian component that represents the
QPO and, because of Parseval’s theorem, this is the part of the variance in the light
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curve that is produced by the QPO. The amplitude of the QPO is the square root
of N, and is usually expressed as the rms variability of the signal that produces the
QPO divided by the average intensity of the source (and normally given in percent),
the so-called rms fractional amplitude, or rms amplitude for short (17, 118). When
it is not normalised by the average intensity, this amplitude is called the absolute
rms variability (158). Both the fractional and the absolute rms amplitudes provide a
measure of the variability of the light curve of the source over the range of frequen-
cies (or, equivalently, times scales) where the QPO dominates the power spectrum.
The rms amplitude as a function of energy provides information about the radiative
process that produces the QPO.

A narrow component, with a Q factor larger than 2, is usually called a QPO. The
definition is a bit vague (should a component with a Q factor just a bit smaller or
bigger than 2 be also called a QPO?), but it has been useful, and hence it sticked.
Components that have Q < 2 are usually called bumps and, if the central frequency
of this component is at ν0=0, they are called zero-centred Lorentzians. In general,
all components that produce power over a broad frequency range are called broad-
band noise components. (Notice that, in this case, the word noise refers to variability
from the source.) Sometimes a broad-band noise component can be fitted by a com-
bination of several, relatively broad and weak, Lorentzians. Since a Lorentzian is
the Fourier transform of a sine (or cosine) function whose amplitude drops expo-
nentially with time, a so-called shot, there have been many attempts to understand
the variability in these sources in terms of a combination of shot noise components,
with different periods, amplitudes and decay times, that add up together to produce
the observed light curve. (The decay time of a shot in the light curve is inversely
proportional to the FWHM of the Lorentzian in the Fourier PDS.) In recent years,
however, it has been shown that the variability in these sources is inconsistent with
additive shots, but it is rather a multiplicative process (159). This raises the question
of whether the bumps and broad-band noise components in the PDS of these sources
are in reality a combination of several narrow Lorentzians. This standpoint is attrac-
tive because a broad-band noise component is complex, and it is difficult to assign
a characteristic frequency (time scale) to it, whereas relatively narrow QPOs give
good frequencies which are easier to extract and follow over time, and can be treated
in a model-independent way. This approach has been tried in a few cases, and in-
teresting correlations among the properties of those (sometimes weak) Lorentzians
have emerged. We will mention some of those in the coming sections.

The Rossi RXTE mission yielded thousands of high-sensitivity observations of
X-ray binaries and revolutionised our knowledge of these objects. RXTE observa-
tions covered a large range of states of dozens of X-ray binaries, unveiling details
of the variability of these objects that helped us understand them more deeply. One
of the discoveries of RXTE was the existence of very-high frequency quasi-periodic
variability components, up to ∼ 1200 Hz, in several NS LMXBs. These variability
components are what we call the kHz QPOs. Other variability components were also
studied with RXTE, including low-frequency QPOs and broad-band noise compo-
nents. We will mention some of those in passing when necessary, but here we will
concentrate mainly on the properties of the kHz QPOs.
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At a very basic level, NS LMXBs can be subdivided into three classes: (i) per-
sistent sources at high luminosity, historically called “Z” sources, that can reach
luminosities close to the Eddington limit for a neutron star, (ii) persistent and tran-
sient sources that can become rather bright but, with top luminosities of 0.1-0.2
Eddington, do not reach the same high luminosities as the Z sources, historically
called “atoll” sources, and (iii) faint sources which, even when transient, remain at
low luminosities, below 0.01 Eddington.

Po
w

er

10−5

10−4

10−3

10−2

10−1

1

Frequency (Hz)
0.1 1 10 100 1000

(a)

Po
w

er
2.0

2.2

2.4

2.6

2.8

3.0

Frequency (Hz)
1 10 100 1000

(b)

Fig. 1 Left: Two power spectra of the low-luminosity source and X-ray burster 1E 1724–3045 in
the globular cluster Terzan 2 (9, 126). Right: Two power spectra of the atoll source 4U 1636–53.
The power spectra of 4U 1636–53 were computed on the basis of data published in (18, 143). In
both panels the power spectra show the broad-band noise component, extending up to∼20−30 Hz
in 1E1724–3045 and up to ∼10−20 Hz in 4U 1636–53, some low-frequency QPOs at ∼30 Hz,
and one or two simultaneous kHz QPOs above ∼500−600 Hz and up to ∼1000 Hz. The power
spectra on the left have the Poisson noise component subtracted and the power is plotted in units
of rms2 per Hz. The power spectra on the right still contain the Poisson noise component and the
power is given in units such that the Poisson level is 2.

The power spectrum of the three classes of sources mentioned above show sev-
eral differences. For example, the amplitude of the variability components in Z
sources is generally (but not for all variability components) lower than in atoll
and low-luminosity sources. In Figure 1 we show examples of the PDS of a low-
luminosity (Fig. 1a; the NS LMXB 1E 1724–3045 in the globular cluster Terzan 2)
and an atoll source (Fig. 1b; the NS LMXB 4U 1636−53). As it is apparent in that
Figure, all the PDS show a broad-band noise component extending up to ∼10−20
Hz; above that frequency the power drops as the frequency increases, except for
a few relatively narrow features peaking at some specific frequencies. The narrow
peaks appearing above∼400 Hz are the kHz QPOs. Notice also that the scales in the
y axis of the two Figures are different, and that the PDS on the Figure on the right
approaches a power level of 2 at high frequencies, whereas the one the left drops to
0 (the y axis on the left panel is in a log scale). The difference is that the powers in
Figure 1a are in units of fractional rms2 per Hz (see above), whereas in Figure 1b
the power has not been converted to rms units. Furthermore, in Figure 1a the con-
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tribution of the constant level due to the Poisson nature of the counting process was
subtracted from the PDS, leaving only the signal from the source.

The first two sources to show kHz QPOs were the Z source Sco X-1 (164) and
the atoll source 4U 1728–34 (152). Both sources displayed (sometimes) two QPOs
appearing simultaneously in the PDS at frequencies between ∼700 Hz and ∼1100
Hz. The two QPOs were then labeled “lower” and “upper” kHz QPO according
to their frequencies, such that νupper > νlower. If observed frequently enough, most
sources with kHz QPOs show two simultaneous QPOs in the PDS, but some (few
cases) have so far only showed one. We will come to that below.

Given that the frequency of the upper kHz QPO is consistent with the Keplerian
orbital frequency of a test particle at ∼10−20 km around a ∼1.5-M� neutron star
(see §3), the kHz QPOs were immediately associated to motion of matter at the inner
parts of the accretion disc. Because of this, and because the bolometric luminosity,
and hence the observed flux and intensity, of the source is expected to be propor-
tional to mass accretion rate, Ṁ, while the inner radius of the accretion disc, Rin, is
expected to decrease as Ṁ increases (and vice versa), the expectation was that the
QPO frequency would increase with X-ray intensity. While this was the case over
short time intervals (a day or less), the long term relation was more complex, with
the QPO frequency tracing several, more or less parallel, tracks in a plot of QPO
frequency vs. X-ray intensity (Fig. 2a). This kind of plots were then, indeed, called
parallel tracks.

When enough observations of a single source are collected, a pattern of the de-
tection of the kHz QPOs emerges. In an atoll source, the lower kHz QPO appears
in a relatively narrow part of the colour-colour diagram, at an intermediate state, the
transitional part of this diagram, between the low-luminosity hard state (called the
island state) and the high-luminosity soft state (called the banana; we will try not
to use these names here to avoid too much jargon, and we will call these low or
hard and high or soft states). The X-ray colours of the source do not change much
in the observations in which the lower kHz QPO is present, but the frequency of the
QPO appears to correlate with the position of the source in this diagram, with the
frequency increasing as the inferred mass accretion rate increases.

Figure 2b shows the colour-colour diagram of 4U 1636–53. The red and black
points indicate, respectively, the observations in which the lower and the upper kHz
QPOs were detected. The solid line parameterises the position of the source in this
diagram, through the variable Sa. High values of Sa correspond to high values of in-
ferred Ṁ. The frequency of the lower kHz QPO increases as Sa increases. The upper
kHz QPO, on the contrary, covers a broader range in the colour-colour diagram, with
the frequency of the QPO increasing as the source moves from the low-luminosity
hard state, via the transitional intermediate state to the high-luminosity soft state
(increasing value of Sa). This is the sense in which mass accretion rate is inferred
to increase in these sources. For completeness, the grey points mark observations in
which no kHz QPO was detected. The observations with no kHz QPOs are at the
extremes of the C-shaped figure traced by the source in the colour-colour diagram;
at the top right the source is in the low-luminosity hard state, where the inferred Ṁ
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(a) (b)

Fig. 2 Left panel: Frequency of the lower kHz QPO in 4U 1608–52 vs. the count rate of the source
in the 2−16 keV band. Each point corresponds to a measurement over intervals of ∼ 64−128 s.
The frequency and the source count rate are significantly correlated over intervals of a few thousand
seconds, producing each of the tracks in the plot, but different observations, made a few days
or weeks apart, produce different tracks. This plot shows the so-called parallel tracks (originally
published as Figure 2 in 108). Right panel: the distribution of the observations with kHz QPOs on
the colour-colour diagram of 4U 1636–53 (187). Black points correspond to observations in which
only the upper kHz QPO was detected, while red points correspond to observations that showed
only the lower, or both the lower and the upper, kHz QPO. The grey points indicate observations
where no kHz QPO were detected. The parameter Sa gives the length along the solid line, which
parametrises the position of the source in this diagram. High values of Sa correspond to high values
of inferred Ṁ.

is the lowest, while at the bottom right it is in the high-luminosity soft state, where
the inferred Ṁ is the highest.

Although not apparent from the plot, there are several observations in which both
QPOs were detected simultaneously. This can be seen in Figure 3; the left panel of
that Figure shows the frequency of both kHz QPOs as a function of the hard colour,
while the right panel shows the frequency of both kHz QPOs as a function of Sa.
The two kHz QPOs are clearly separated in these two plots, and the parallel tracks of
Figure 2a collapse into a single track (one for each kHz QPO) when the frequencies
of the QPOs are plotted against the hard colour or Sa. By the way, since the position
of the source in the colour-colour diagram, and therefore hard colour and the value
of Sa, is driven by changes of the source spectrum, it should be no surprise that
the relation of the QPO frequency with the parameters of the models used to fit the
energy spectrum also consists of a single track. We will discuss this in §7.

In Z sources, the kHz QPOs appear mostly in the so-called horizontal and normal
branches in the colour-colour diagram (roughly speaking these are, respectively, the
top horizontal and diagonal parts of the letter Z that the source traces as it moves in
the hardness-intensity diagram), and the QPOs disappear when the source is in the
flaring branch (the bottom horizontal part of the letter Z in the hardness-intensity
diagram). In Figure 4a we show the hardness-intensity diagram of the Z source
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Fig. 3 Left: Frequency of the kHz QPOs in 4U 1636–53 vs. the source hard colour (see Fig. 2b).
Grey symbols correspond to observations in which only one of the kHz QPOs was observed; red
and blue symbols correspond to QPOs identified, respectively, as the lower and upper kHz QPO.
The inset shows only the QPO frequencies of the observations in which two simultaneous kHz
QPOs were detected (145). Right: Frequency of the lower (red symbols) and upper (black symbols)
kHz QPOs in 4U 1636–53 vs. Sa (187). The quantity Sa measures the position of the source along
the track in the colour-colour diagram in Figure 2b.

GX 5–1 with the branches indicated. As for the atoll sources, the parameter SZ mea-
sures the position along the track traced by the source in this diagram, with inferred
Ṁ increasing when SZ increases. The frequency of the QPOs increases as the source
moves from left to right and then from the top right to the bottom left along the Z
shape in the colour-colour diagram, which is the same direction in which, according
to work that preceded the discovery of kHz QPOs, Ṁ increases in these sources. In
Figure 4b we show the frequency, FWHM and fractional rms amplitude of both kHz
QPOs in GX 5–1 as a function of SZ . The fact that QPO frequency increases with
inferred mass accretion rate (increasing SZ) made the identification of the upper kHz
QPO with the Keplerian frequency at the inner disc radius plausible.

The frequency range that makes a QPO a kHz QPO is roughly 400− 1200 Hz.
The fact that kHz QPOs are not detected outside this frequency range can be un-
derstood from the dependence of the other properties of the kHz QPO upon QPO
frequency. The rms amplitude and the Q factor of both kHz QPOs depend upon QPO
frequency in a systematic way. The rms amplitude and the Q factor of the lower kHz
QPO are maximum when the frequency of the QPO is around 700− 800 Hz, and
both the rms and Q decrease when the QPO frequency either increases or decreases.
The typical range of fractional rms amplitudes of the lower kHz QPO is 3− 15%
considering photons in the full band covered by RXTE/PCA, nominally from 2 to
60 keV. At the same time, the Q factor of the lower kHz QPO ranges from ∼10 to
∼50, and can be as high as ∼ 200−250 in some sources. For the upper kHz QPO,
when the QPO frequency is low the rms amplitude is maximum and remains roughly
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Fig. 4 Left panel: Hardness intensity diagram of the Z source GX 5–1 with the different branches
of the Z shape indicated (originally published as Figure 1 in 70). The position of the source along
the Z-shaped track is parameterised through the quantity SZ which is set to SZ=1 at the vertex be-
tween the Horizontal and the Normal branches, and to SZ=2 at the vertex between the Normal and
the Flaring branches. Right panel: Frequency (top), FWHM (middle) and rms amplitude (bottom)
of the kHz QPOs vs. SZ for GX 5–1 (originally published as Figure 9 in 70). From the values of
SZ in this plot it is apparent that the QPOs are detected in the Horizontal and the initial part of the
Normal branches.

constant and then drops more or less continuously as the QPO frequency increases
whereas, at the same time, the Q factor remains constant or increases slightly. The
rms amplitude of the upper kHz QPO is 2− 20% in the 2− 60-keV band, while Q
is usually around 10 or less. In Figures 5a and 5b we show, respectively, the rms
amplitude and the Q factor, of the lower and upper kHz QPOs in 4U 1636–53.

The drop of both the rms amplitude and the Q factor limits the detectability of
the lower kHz QPO at low and high QPO frequencies below ∼400 Hz and above
∼950 Hz. Similarly, the drop of the rms amplitude of the upper kHz QPO limits
its detectability at frequencies above ∼ 1200 Hz, whereas at low QPO frequencies
the detectability of the upper kHz QPO is limited by the relatively low Q value and
the fact that, when the frequency of the upper kHz QPO goes down to ∼ 400 Hz
the broad-band noise extends up to comparable frequencies such that the upper kHz
QPO starts to appear on top of the broad-band noise, and hence it is difficult to de-
tect. All in all, there is a range of frequencies at which the QPOs are the narrowest
and the strongest, and hence the most significantly (and hence most often) detected.
In the sources in which a single kHz QPO was detected, either the source was not
observed for long enough to sample the range of states in which the QPOs are de-
tected, or the source was relatively weak such that sensitivity to detecting kHz QPOs
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Fig. 5 Left: Fractional rms amplitude of the kHz QPOs in 4U 1636–53 vs. the frequency of that
same QPO (adapted from 138). Right: Quality factor of the kHz QPOs vs. the frequency of the
strongest kHz QPO in the power spectrum of 4U 1636–52 (14).

was not sufficient. The fact that the kHz QPOs most often appear in pairs is then a
characteristic that needs to be explained.

The frequency of the two QPOs change when other source properties, e.g. the
source intensity or colours, change; but an interesting fact is that, as the frequency
of the QPOs changes, the difference of the centroid frequency of the two QPO peaks
remains more or less constant. When burst oscillations and two simultaneous kHz
QPOs were detected in 4U 1728–34, with the frequency separation between the two
QPOs consistent with being equal to the frequency of the burst oscillations, a beat-
frequency mechanism (116) was proposed to explain the double kHz QPOs. In the
original model, the upper kHz QPO was identified with the Keplerian frequency at
the inner edge of the disc, which is truncated at the sonic radius, the radius at which
the radial component of the velocity of the material falling onto the neutron star
goes from subsonic to supersonic. The lower kHz QPO was then interpreted as a
beat between the oscillation at the Keplerian frequency and the neutron-star spin.
Under those conditions, the frequency separation between the two QPOs, which is
equal to the neutron-star spin, should remain constant as the frequencies of the QPO
move. We will return to this below.

The initial observations of the kHz QPOs in Sco X-1 had already shown that
the frequency separation between the two QPO peaks was not always the same,
but decreased systematically, and significantly, by a few percent as the frequencies
of the two simultaneous kHz QPOs increased. The beat-frequency model could still
explain this behaviour if the material at the inner radius of the disc, where the beating
took place, suffered from radiation drag and the beating took place as that material
spiralled in towards the neutron star. Being a very luminous source, this effect could
be strong in the case of Sco X-1. But soon after several other less luminous sources,
starting with the atoll source 4U 1608–52, showed the same effect.

The situation got more complicated for this model when burst oscillations and
two simultaneous kHz QPOs were detected in 4U 1636–53, with the frequency



14 Mariano Méndez and Tomaso M. Belloni

of the burst oscillations being twice the difference in frequency between the kHz
QPOs. The original beat-frequency model could not explain this. The model had
to be made more complex, by adding a possible excitation of vertical modes in the
accretion disc at a radial distance where the difference between the Keplerian fre-
quency at the inner edge of the disc (that causes the QPO at νupp) and the neutron-
star spin frequency is equal to the vertical epicyclic frequency in the disc. Depend-
ing on whether the material in the disc is smooth or clumped, the excited frequency,
which produces the lower kHz QPO, would be at νupp−νspin or νupp−νspin/2.
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Fig. 6 Difference between the centroid frequencies of the kHz QPOs, ∆ν=νupp−νlow, as a func-
tion of the frequency of the upper kHz QPO in Cir X-1 (originally published as Figure 11 in 28).

These complications for the beat-frequency model triggered other proposals to
explain the QPO frequencies. One of them, that could explain the phenomenology
rather naturally, was the idea of periastron precession of the innermost parts of the
accretion disc. Under this hypothesis, the upper kHz QPO was still identified as the
epicyclic azimuthal (Keplerian) frequency of a test particle at the inner edge of the
disc, under the influence of the general relativistic (GR) potential of the neutron
star. In this model, however, the lower kHz QPO would be the difference between
this azimuthal and the epicyclic radial frequency, the so-called periastron precession
frequency, at the same spot in the disc. The difference between the azimuthal and
the periastron precession frequency in the model changes generally in the same way
as in the observations (148), although the calculations do not fit the exact trend of
the observations.
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One strong prediction of this model was that the difference between the fre-
quency of the two QPOs should not only decrease at high, but also at low QPO
frequencies, something that was later on observed in the system Cir X-1 (Fig. 6).
To be fair to history, the relativistic-precession model, as this model was called,
came about as an extension of the Lense-Thirring model (147) that was proposed
a year earlier to explain the correlation between the frequency of the upper kHz
QPO and a low-frequency QPO in neutron-star LMXBs. The Lense-Thirring and
the relativistic-precession models became one consistent model for both the low-
and the high-frequency variability. Notice, also, that in this model there is no re-
lation between the frequencies of the kHz QPOs and the spin of the neutron star,
therefore this model was also applicable to QPOs in black-hole systems.

If the kHz QPOs and the low-frequency QPOs are all GR frequencies in the disc
(but notice that the calculations assume test particles, so no disc hydrodynamics),
another prediction of this model is that the frequency of the low-frequency QPO
should be proportional to the square of the frequency of the upper kHz QPO. Fig-
ure 7a shows the PDS of three separate observations of 4U 1728–34 in which the
low-frequency and upper kHz QPOs are marked with vertical lines. Figure 7b, on
the other hand, shows the relation between the frequency of the low-frequency QPO
and that of the upper kHz QPO in this same source, with the line corresponding
to the best-fitting power to the data with index of 2.11± 0.11. We will expand on
models in §5
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Fig. 7 Left: Power spectra of three separate observations of 4U 1728–34 with the low-frequency
and upper kHz QPO indicated (the plot is based on the data published in 152). Right: Plot of the
frequency of the low-frequency QPO vs. that of the upper kHz QPO in 4U 1728–34. The solid line
is the best-fitting power-law relation to the data (originally published as Figure 2 in 51).
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One can extract useful information about the mechanism that causes the QPOs
from the Q factor, if one has a model to explain its behaviour with QPO frequency.
As shown in Figure 5b, in 4U 1636–53 the Q factor of the lower kHz QPO first
increases as the QPO frequency increases, it reaches a maximum at νlow∼800−850
Hz, and drops rather abruptly as the frequency of the QPO continues to increase.
This same behaviour was observed in all sources for which enough data were avail-
able. The rapid drop at high frequencies was interpreted as the inner radius of the
accretion disc reaching closer and closer to the ISCO (see §3), where the faster and
faster radial drift of the material in the disc towards the neutron star causes a drift of
the QPO frequency over the lifetime of the process that produces that QPO, hence
broadening the observed QPO peak, and reducing Q. We will discuss this effect, and
other alternatives, in §8.
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Fig. 8 Fractional rms amplitude as a function of energy for the lower kHz QPO in 4U 1608–52
(originally published as Figure 4 in 24).

The other parameter of the Lorentzian function in eq. 1 is the rms amplitude,
equal to

√
N in that equation. Already the initial observations showed that the spec-

trum of the variability is hard. In other words, the fractional rms amplitude of both
kHz QPO increases with energy. For instance, in 4U 1608–52 and 4U 1636–53, the
rms amplitude of the lower kHz QPO at ∼ 25 keV is ∼ 20%, while the rms of the
upper kHz QPO in these two sources increases a bit less steeply with energy, reach-
ing ∼ 12% at ∼ 20 keV. In Figure 8 we show the rms spectrum of the lower kHz
QPO in 4U 1608–52.

The soft thermal component, which is the combined emission from the neutron-
star surface and the accretion disc, in the time-averaged X-ray energy spectrum of
these sources peaks at ∼3−6 keV and drops very rapidly as the energy increases.
Therefore, the contribution of the disc and the neutron-star surface to the total emis-
sion at energies higher than ∼10−15 keV is always negligible and, even if the disc
or the neutron-star surface were oscillating with an rms amplitude of 100%, their
contribution to the observed fractional rms amplitude at and above those energies
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would be totally negligible. This shows that, while the dynamical process that de-
termines the frequency of the QPOs could take place in the disc, like in the models
described above, the radiative process that modulates the source emission at the
QPO frequency cannot come from either the neutron star or the disc. At those en-
ergies, the dominant spectral component is the corona, in which highly energetic
electrons transfer energy to the soft photons emitted form the neutron star and the
disc via inverse Compton scattering, redistributing those photons into a power-law
shaped component in the energy spectrum. We will discuss this further in §8.1.

Finally, a property of the kHz QPOs (and any other variable signal) that is not
represented in eq. 1 is the energy-dependent phase lag (or, equivalently, time lag) of
the signal. To understand the phase lag one needs to go back to the Fourier analysis
of a signal. The power spectrum that we described at the beginning of this section, is
the modulus square of the complex Fourier transform of the light curve of the source
as a function of frequency or, equivalently, the product of the Fourier transform of
the signal by its complex conjugate. If, instead, one multiplies the Fourier transform
of a signal by the complex conjugate of another signal, both functions of frequency,
the result is the cross-spectrum. In the same way that the power spectrum measures
the variance of the signal per unit frequency (through Parseval’s theorem), the mod-
ulus and the argument of the cross-spectrum measure, respectively, the covariance
per unit frequency and the phase difference, also called phase lag, ∆φ , between the
two signals as a function of Fourier frequency. In the same way that the power spec-
trum gives the degree of correlation of a light curve with itself, the autocorrelation
of the light curve, the cross-spectrum gives the degree of correlation of one light
curve with the other, the cross-correlation between the two light curves. If the sig-
nals are uncorrelated, at each Fourier frequency the covariance and the phase lag
will be on average 0. (Notice that uncorrelated signals give a 0 phase lag, but a 0
phase lag does not imply that the signals are uncorrelated.) At any given frequency,

ν , the phase lag can be converted into a time lag, ∆ t(ν) =
∆φ(ν)

2πν
. The phase lags

are defined1 from −π to π , while the time lags run between −1/(2ν) and 1/(2ν).
Since both quantities are related, depending on the context, we will either use the
term phase or time lags to refer to the delay between the two light curves in the
Fourier space.

If the two light curves used to compute the cross-spectrum come from two differ-
ent energy bands, the time lag at each Fourier frequency represents the time delay
between the light curves in those two energy bands at each Fourier frequency. For a
QPO (and any other somewhat broad component) with a centroid frequency ν0 and
a FWHM ∆ , we call the phase (or time) lag of the QPO to the average of the phase
(or time) lags over a frequency range around the centroid frequency of the QPO, e.g.
from ν0−∆ to ν0 +∆ . It is customary to take the light curve at the lowest energy
band as the reference band and to measure the phase lag, with respect to reference
band, of the light curve in the bands, called subject bands, at energies above the
energy of the reference band. Under this convention, a positive phase/time lag, also

1 Phase lags equal to ∆φ ±2nπ , with n any integer number, cannot be distinguished from a phase
lag ∆φ .
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called hard lag, indicates that the hard light curve lags (follows after) the soft one,
whereas a negative phase/time lag, when the soft light curve leads (comes before)
the hard light curve, is called soft lag. Alternatively, one can use the full band as
the reference band, and narrow bands within the full band to measure the lags, pro-
vided that one corrects for the correlation introduced by the part of the signal that
is both in the subject and the reference bands. In the end one obtains the energy
dependent phase lags, of the subject bands with respect to the reference band, over
the frequency range in which the QPOs dominate the variability of the source.

Because the lower kHz QPO is usually narrower and, therefore usually more
significantly detected, than the upper, the first measurements of lags where obtained
for the lower kHz QPO. The magnitude of the time lags of the lower kHz QPO in
4U 1608–52 (174, 175) and 4U 1636–53 (72) was ∆ t∼20−25µs, constraining the
size of the region where the lags are produced to c∆ t <∼ 10 km. A remarkable fact
of those detections was that the lags of the lower kHz QPO in these two sources
were soft, contrary to the expectation if the lags were produced by inverse Compton
scattering in the corona, since in that case the low-energy photons escape from the
system before the photons that are up-scattered in the corona to high energies.

Fifteen years passed before new measurements of the lags of the kHz QPOs were
published. In that period the number of sources with kHz QPOs, and the number of
detections of QPOs in individual sources, covering a broad range of frequencies,
allowed for more detailed studies of the lags as a function of energy and QPO fre-
quency (11, 38). At the same time, this also allowed to measure, for the first time,
the lags of the upper kHz QPO (11, 37, 38, 130, 157).
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Fig. 9 Time lags as a function of energy (left) and frequency (right) for the lower (top panels) and
the upper (bottom pane4ls) kHz QPOs in 4U 1636–53 and 4U 1608–52 (adapted from 38)

.

Figure 9a shows the lags of the lower and the upper kHz QPO in 4U 1608–52
and 4U 1636–53 as a function of energy. The lags of the lower kHz QPO in both
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sources are soft and become softer as the energy increases, whereas the lags of the
upper kHz QPO are either consistent with zero or increase slightly with energy.
Figure 9b shows the lags measured between two broad energy bands for the lower
and the upper kHz QPO in the same two sources as a function of frequency. The
magnitude of the lags of the lower kHz QPO in 4U 1636–53 first increases and
then decreases as the frequency of the QPO increases, whereas the lags of the upper
kHz QPO remain more or less constant at zero. The lags of the lower and upper
kHz QPOs in 4U 1608–52 have larger error bars, but their dependence upon QPO
frequency is consistent with that of 4U 1636–53. These two plots show that two
different radiative mechanisms operate to produce the lags (and, as we saw, the rms
amplitude) of the lower and the upper kHz QPO, and this, in turn, provides valuable
information for models that try and explain these phenomena. We will come back
to this in §8.3.

5 Linking observed frequencies with theoretical expectations

The initial reports of the detections of the first kHz QPOs in Sco X-1 and 4U 1728–
34 already put forward the suggestion that the observed frequency could be the
Keplerian frequency at the inner edge of the disc. The IAU Circulars with those
reports stated: “The high-QPO frequency, and its increase with mass-transfer rate,
suggest that we may be seeing the keplerian frequency at the inner edge of the disk
near the magnetospheric boundary, or its beat frequency with a slower (about 100
Hz) pulsar.” (163), and “Explanations in terms of either keplerian frequencies or a
beat-frequency model cannot yet be ruled out, although no evidence has yet been
seen for a coherent pulsar frequency in the same data.” (150).

About two months later the first detection of coherent pulsations in a neutron star
during an X-ray burst, the so-called burst oscillations (see the Chapter by Patruno
& Watts in this book for more details on this phenomenon), was announced. The
IAU Circular with that report said: “Of the seven bursts that we have observed from
4U 1728–34 during a recent campaign with RXTE, five show oscillations with a
frequency of 363 Hz.”, and continued: “We have also found in the same data set
two simultaneously-present kHz quasiperiodic oscillations (QPOs), one of which
has been reported earlier (IAUC 6320). The centroid frequencies of the two QPOs
change with intensity and time, but their difference appears to be always near 363
Hz. These observations are consistent with a neutron star spin period of 2.75 ms.”
(149).

These results set up the stage for the idea (116) of a beat-frequency model of the
kHz QPOs. (Although published in 1998, the idea was first presented in detail by the
same authors in a preprint in 1996, arXiv:astro-ph/9609157.) In this model, called
the sonic-point beat-frequency model or, for short, the sonic-point model, the upper
kHz QPO is a beaming oscillation produced by a hot spot on the neutron-star sur-
face. This spot is the footprint of a stream of matter falling from material at the sonic
radius (see §4) onto the neutron star. When this stream hits the star it heats a small
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area producing a footprint that rotates around the surface of the star at the same
frequency as that of the material in the disc, at the sonic radius, where the stream
originates. When the neutron star rotates, radiation from the pole(s) illuminates pe-
riodically the part in the disc where the stream starts and, because of radiation drag,
increases momentarily the rate of mass that is injected into the stream and falls onto
the neutron star. When this extra amount of material hits the neutron-star surface at
the footprint of the stream, the temperature of the spot increases. The emission from
the footprint is therefore modulated at a frequency that is equal to the Keplerian fre-
quency at the sonic radius minus the neutron-star spin frequency. In this model, the
luminosity modulation of the hot spot produces the lower kHz QPO. (Please read
116, for the full explanation of the model).

One obvious conclusion of this scenario is that the frequency difference between
the kHz QPOs, which is equal to the neutron-star spin frequency2, has to remain
constant when the QPO frequencies move (§4). This was the case for most of the
sources in which kHz QPO had been detected, except for Sco X-1 (165), in which
the frequency difference decreased systematically as the QPO frequencies increased
together. While this result posed a problem to the sonic-point model, the situation
could be explained if the clumps in the disc, where the stream originates, spiralled
in due to the strong radiation drag in this bright source (86). In this case, the fre-
quency difference could be less than the neutron-star spin frequency and decrease
as the QPO frequencies increased. The situation became even more difficult for the
sonic-point model when this effect was observed in more sources, all much weaker
than Sco X-1 (105, 109, 110) and, especially, when the difference of the QPO fre-
quencies in some observations of 4U 1636–53 (68) turned out to be larger than half
the neutron-star spin frequency in this source, something that could not be explained
in the sonic model and its subsequent extensions.

Almost at the same time, a different model that could explain the dependence
of νupp− νlow vs. the frequency of the QPO was proposed. As in the sonic-point
model, this relativistic-precession model (147, 148) considered that the frequency
of the upper kHz QPO is the Keplerian frequency at the inner edge of the disc; but
differently from the previous model, in this case the lower kHz QPO would be the
periastron precession frequency, equal to the difference between the Keplerian and
epicyclic radial frequencies at the inner edge of the disc. In this model the frequency
difference between the kHz QPOs is independent of the neutron-star spin and, as can
be readily seen from the identification of the lower kHz QPO, should be equal to the
epicyclic radial frequency at the inner radius of the disc. This epicyclic frequenciy
is 0 at the ISCO, first increases as the radial distance in the disc increases, and then
decreases again as the radial distance continues increasing. This implies that the
frequency difference between the kHz QPOs should decrease both at high and low
QPO frequencies, corresponding to small and large radial distances in the disc. As
indicated, this explained the observed decrease of νupp−νlow with QPO frequencies
as the QPO frequencies increase in Sco X-1 (106, 165) and other sources (68, 105,
109, 110), but also predicted a trend at low kHz QPO frequencies for which there

2 As explained in §4, in a modified version of the sonic-point model the frequency difference
between the kHz QPOs can also be equal to half the neutron-star spin frequency (87).
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were no data at the time. A few years later, the neutron-star LMXB Cir X–1 (28)
showed exactly that (Fig. 6 in §4) and, since other predictions of the model for low-
frequency variability had already been validated (Fig. 7b in §4), all this lent support
to this model. Notice, however, that the model relies on frequencies of test particles
around the neutron star, and therefore does not consider the hydrodynamical effects
in the disc that may affect those frequencies. We will come to this again in §8.4.

A third class of models considers wave patterns in the disc as the cause of the
kHz QPOs. These models also rely upon the three basic GR epicyclic frequencies
discussed in the previous models (and sometimes also upon the neutron-star spin),
but in this case those are not the frequencies of test particles orbiting the neutron star,
but characteristic frequencies in a hydrodynamical flow that determine how pressure
and gravity waves travel in the disc and, sometimes, lead to other frequencies that
are resonances of the basic ones (some examples of those ideas can be found in
76, 77, 78, 79, 85, 125, 176, but the list is much longer). Among these models,
one that received some attention (1, 2) argued that a resonance in the disc appears
when the ratio of two of the epicyclic frequencies discussed above is the ratio of
two small integer numbers, e.g. 2:3. Such a preferred frequency ratio was reported
for the kHz QPOs in Sco X-1 (1), and the model gained popularity because, in two
cases in which two simultaneous high-frequency QPOs were observed in black-
hole systems, those QPOs appear at frequencies that are in a 2:3 ratio (e.g., at 300
Hz and 450 Hz in the black-hole LMXB GRO J1655–44; see 136, 151). In essence,
this resonance model is equivalent to the example of a double pendulum discussed
in books of Mechanics (e.g. 89) with, in this case, a mechanism that couples two
oscillating phenomena in the disc. The report of a 2:3 frequency ratio of the kHz
QPOs in Sco X-1 has been subsequently disputed (19, 20, 114), but the model is
still considered for high-frequency QPOs in black-hole LMXBs.

The models described in this section, and most of the models of the kHz QPOs
that appeared in the last 20 years, aim at explaining the frequencies of the oscilla-
tions and, in that sense, are dynamical models of the QPO phenomenon. Very few
models have attempted to give an explanation of the other, radiative, properties of
the QPOs. We will discuss those radiative properties of the kHz QPOs in §8, and we
will also mention some of the latest attempts to try and explain those properties.

6 QPO frequency correlations

Although the beat frequency model is unable to explain all observations, it is rea-
sonable to think that the kHz QPOs could in some way be connected to the rota-
tion of the neutron star. When the first source for which both burst oscillations and
kHz QPOs were discovered, 4U 1728-34, it was realised that ∆ν was around the
same value as the burst oscillation frequency (149). However, the next source with a
double detection was 4U 1636-63, where ∆ν∼270 Hz and the burst oscillation fre-
quency was 581 Hz, close to twice that value. After then, every time a new source
showed kHz QPOs and had an estimate of the spin period either through burst os-
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cillations or through a direct detection in the case of accreting millisecond pulsars,
it turned out that the latter were close to ∆ν or half of it. More specifically, if the
νspin was slower than ∼400 Hz, ∆ν∼νspin, if it was faster ∆ν∼νspin/2. The symbol
∼ here is to be intended as “close to”, since ∆ν is not constant for any particular
source, but varies over a range. However, it was later realised that the data are also
compatible with ∆ν being essentially constant around 305 Hz (104), especially af-
ter multiplying the kHz QPO frequencies of accreting millisecond pulsars by 1.5, as
suggested by an offset in the correlation with the low-frequency QPO frequencies
(96, 172). The situation can be seen in Fig. 10. Notice that the spin period of 4U
0614+09 was discovered after the original version of this plot was published and its
∆ν values fall on the constant-∆ν track rather than the ∆ν∼νspin/2 one.
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Fig. 10 ∆ν/νspin vs.νspin for all sources for which both kHz QPOs and pulse periods are available
(adapted from 104). The ∆ν values for accreting millisecond pulsars (empty circles) have been
multiplied by 1.5 (see text). The X symbols correspond to 4U 0614+09. The solid line corresponds
to a constant ∆ν=305 Hz, the dashed line is 1 until 400 Hz, then 0.5.

It is interesting to compare the distribution of all ∆ν values available in the litera-
ture and the distribution of detected (or derived from burst oscillations) spin periods
(see chapter by Patruno & Watts, this book) as shown in Fig. 11. The distribution
of ∆ν values, coming from a large number of sources, peaks around 300 Hz and is
well approximated by a Gaussian with centroid 305 Hz. The distribution of pulse
periods, obviously less populated, is rather flat between 200 Hz ad 600 Hz. From
these data, it appears that the kHz QPOs are not related to the spin period of the
neutron star, although in a number of sources ∆ν does increase towards νspin with
decreasing νupp (e.g. 105, 109, 110, but see (68)) .

Going back to the correlations between kHz QPO frequencies and theoretical
models, it is interesting to produce an updated version of the plot shown in Figure
6 (originally shown for a few sources in 148), which gives ∆ν vs. νupp, where all
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Fig. 11 Top: distribution of all available ∆ν tabulated in the literature. The dashed line is a Gaus-
sian fit, which yields a centroid of 305 Hz. Bottom: distribution of pulse periods for neutron-star
LMXBs, both from accreting millisecond pulsars and burst oscillations. An earlier version of this
figure can be found in (104).

published values from RXTE are shown (the same values used for the top panel of
Fig. 11). They can be seen in Figure 12. Notice that a prediction of the relativistic-
precession model is that, for these masses, ∆ν should not exceed ∼400 Hz, which
indeed is what is observed.
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Fig. 12 ∆ν vs. νupp for all values published in the literature. The three curves correspond to the
prediction of the relativistic-precession model for a mass of 1.8, 2.0 and 2.2 solar masses.
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However, when dealing with pairs of values, in this case νlow and νupp, it is best
to plot them one versus the other. This was done in (104); in Figure 13 we show a
new version of that plot with all published values included (the same values used
for Fig. 12). The predictions of the relativistic-precession model for a neutron-star
mass of 1.8, 2.0 and 2.2 solar masses (dashed lines) fit rather well the distribution
of points at low frequencies, but diverge slightly at high frequencies, as can also be
seen from Figure 12. Moreover, a constant 3:2 ratio, shown by the dotted line, fails
to represent the data. What is important to note is that, despite the fact that the plot
contains points from a number of different sources, the overall correlation is rather
good. This suggests that the process that gives rise to the signal at these frequencies
is not strongly dependent on other parameters of the sources, like the spin period.
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Fig. 13 The frequency of the upper kHz QPO, νupp, vs. that of the lower kHz QPO, νlow, for all
values published in the literature. The gray area is obviously not allowed. The dashed lines are the
predictions of the relativistic-precession model for a neutron-star mass of 1.8, 2.0 and 2.2 solar
masses. The dashed line is νupp=1.5νlow.

7 Relation between properties of the kHz QPOs and parameters
of the energy spectrum

If kHz QPOs are produced in the accretion flow close to the neutron star, one would
expect that properties of that accretion flow will affect the properties of the QPOs.
For instance, the frequencies would be related to the radius of the disc, obtained
from spectral fits, if the QPOs reflect the Keplerian frequency at that radius while,
if the photons that oscillate at the QPO frequency are up-scattered in the corona, the
fractional rms amplitude and the phase lags of the QPO would depend on the optical
depth and the electron temperature of the corona. One should keep in mind that, to
recover a potential relation between timing and spectral parameters, one needs to
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Fig. 14 Dynamical power spectrum of an observation of 4U 1728–34 (left), and six power spectra
from that same observation (right) computed over intervals of ∼2000 seconds (adapted from 108).

study both the energy and the power spectrum of a source over time scales that are
comparable to (or preferably shorter than) the time scales over which the properties
of the accretion flow change.

Following the discussion in §3, a perturbation in the accretion disc travels
through the disc over the viscous time scale, which in these systems is of the or-
der of hundreds of seconds (e.g. 24). This is also the time scale over which the
frequency of the kHz QPOs was observed to change in the power spectrum of some
of this sources. For instance, the left panel of Figure 14 shows the dynamical power
spectrum of an observation of 4U 1728–34 (108). In a dynamical power spectrum
one plots time in the x axis (in this case t= 0 corresponds to the start of the obser-
vation), Fourier frequency in the y axis (the plot shows only the frequencies above
∼400 Hz to focus on the kHz QPOs), and the power density in the z coordinate
(plotted with colours). The dark track in the dynamical power spectrum is the lower
kHz QPO in this source. As it is apparent in the plot, the frequency of the QPO
changes by ∼100 Hz over time scales of a few thousand seconds. The right panel
of Figure 14 shows power spectra of six contiguous time intervals within that same
observation, with the changes of the QPO frequency, going from ∼700 Hz to ∼900
Hz over the period of the observation, visible in the individual power spectra. If one
wants to compare, for instance, the frequency of the QPO with the inner radius of
the accretion disc, one needs to match the length of the observations used for the
comparison with intervals over which the QPO frequency is more or less constant.
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Figure 15 shows the inner radius of the accretion disc as a function of the fre-
quency of the lower kHz QPO in 4U 1608–52 (11). The solid line in the plot is
the radius as a function of the Keplerian orbital frequency around a 2-M� neutron
star. As expected, if the QPO frequency is equal to the orbital frequency at that ra-
dius, the radius decreases as the QPO frequency increases. Notice, however, that the
match of the orbital frequency as a function of the radius with the QPO frequency
in that Figure would imply that, contrary to what most models propose (see §4), the
lower, not the upper, kHz QPO would reflect the Keplerian frequency at the inner
disc radius.
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Fig. 15 Inner radius of the accretion disc, from fits to the energy spectra, as a function of the fre-
quency of the lower kHz QPO, from fits to the power spectra, in 4U 1608–52 (originally published
as Figure 5 in 11).

Figure 16 shows the spectral parameters of the X-ray corona as a function of the
kHz QPO frequencies in 4U 1636–53 (138, see also (73)). The fits to the energy
spectra yield Γ and kTe, the power-law index and the electron temperature of the
Comptonised component, respectively, whereas the optical depth, τ , of the corona
is a function of the other two parameters (153). In the left panel the red and black
points correspond to, respectively, the lower and the upper kHz QPO. The right
panel shows the same parameters but with the frequency of the lower kHz QPO
shifted up by 300 Hz. From this Figure it is apparent that there is a smooth relation of
the frequency of the QPOs and the parameters of the corona. Given that the corona
is driven by the soft photons in the disc, it is no surprise that both the inner disc
radius (11) and the corona parameters (73, 138) change with QPO frequency in a
systematic way. The dependence of the rms amplitude of the lower and upper kHz
QPOs upon the spectral parameters of the corona (see plots in 139), however, do not
match in the same way; in other words, one cannot apply a shift to the relation of the
rms amplitude of one of the kHz QPOs vs. any of the spectral parameters and make
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Fig. 16 Left: Spectral parameters of the lower and the upper kHz QPOs in 4U 1636–53 as a
function of the QPO frequency. Right: Same as left panel, but with the frequency of the lower kHz
QPO shifted up by 300 Hz (139).

it match the same plot of the other kHz QPO (139). As we discuss below, the same
applies to the quality factor and phase lags. The fact that, except for a frequency
shift, the relation of the parameters of the corona vs. the QPO frequency is the same
for both QPOs, whereas the relation of the rms amplitude is different, indicates that
the dynamical mechanism that drives the frequency of both kHz QPOs can be the
same, whereas the radiative mechanisms that modulate the QPO signals must be
different.

8 Beyond QPO frequencies

8.1 The fractional rms amplitude of the kHz QPOs

For both kHz QPOs, the spectrum of the fractional rms amplitude of the variability
is hard. For instance, in 4U 1608–52 the fractional rms amplitude of the lower kHz
QPO increases from ∼ 5% at ∼ 3 keV up to ∼ 20% at 20−25 keV (24, 56, 107). A
similar trend is seen for the lower kHz QPOs of 4U 1728–34 and Aql X-1 (107, 121),
4U 1636–53 (138), and the only kHz QPO in EXO 0748–676 (see 58, and Fig. 17a).
For the upper kHz QPO the trend is similar, although the increase of the fractional
rms amplitude with energy is less steep (Figs. 17a and 17b; but notice that, as we
show below, the total rms amplitude and the slope of the rms spectrum of both
QPOs depend upon QPO frequency, and therefore one has to consider that to draw
conclusions from the comparisons). For instance, for 4U 1608–52 the amplitude of
the upper kHz QPO increases from ∼ 2− 4% at ∼ 3 keV to ∼ 20% at ∼ 20 keV
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Fig. 17 Left: rms spectrum of the single kHz QPO in EXO 0748–676 (originally published as
Figure 4 in 58), and the lower and upper kHz QPOs in 4U 1608–52 (24, 107). Right: rms (red) and
covariance (black) spectrum of the upper kHz QPO in six sources (originally published as Figure
5 in 157).
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Fig. 18 Fractional rms amplitude of the lower (left) and upper (right) kHz QPOs as a function of
energy for different frequencies of the QPOs. From the plots it is apparent that the slope of the
rms-energy relation changes in a systematic way as a function of the frequency of the QPO (138).

(24, 107). On the other hand, there is no evidence that the frequency or the width of
either of the kHz QPOs change with energy (121).

Figure 18 shows the rms spectrum of the lower and the upper kHz QPO plotted
in different colours for different QPO frequencies. For both kHz QPOs the rms
increases with energy (remember Fig. 8 showing the rms spectrum of the lower kHz
QPO in 4U 1608–52) with, at least for the lower kHz QPO, the rate of increase being
faster at low than at high energies. It is also apparent from this Figure that, for the
lower kHz QPO, as the QPO frequency increases the slope of the rms spectrum first
increases, and then decreases. For the upper kHz QPO the slope of the rms spectrum
decreases more or less steadily as the frequency of the QPO increases.



High-frequency variability in neutron-star low-mass X-ray binaries 29

400 500 600 700 800 900 1000 1100 1200 1300

−0.8

−0.4

0

0.4

0.8

1.2

1.6

Sl
op

e 
(%

/k
eV

)

Frequency (Hz)

All energies

Upper kHz QPO

Lower kHz QPO

Fig. 19 Slope of the rms vs. energy relation of the lower (red) and upper (blue) kHz QPO in
4U 1636–53 as a function of the QPO frequency. The slopes were obtained from fits to the data
in Figure 18. Compare this Figure with Figure 5a that shows, for the same data, the total rms
amplitude vs. QPO frequency (adapted from 138).

This is seen more clearly in Figure 19, which shows the slope of the rising part
of the rms spectrum of both QPOs as a function of the frequency of each QPO. The
dependence of the slope of the rms spectrum with QPO frequency is almost exactly
the same as that of the total fractional rms (for all energies combined) as a function
fo QPO frequency shown in Figure 5a. From this comparison one can conclude that
the change of the rms amplitude of the QPOs with frequency is driven by a non-
monochromatic change of the rms spectrum, rather than by an energy-independent
shift of the rms amplitude of the QPOs at all energies (see 138, for more details).

On the other hand, the fractional rms amplitude of both kHz QPO changes in a
systematic way with the frequency of the QPO. Figure 20 shows the behaviour of the
total (for all energies combined) rms amplitude of both kHz QPOs as a function of
the frequency of the upper kHz QPO in the atoll sources 4U 0614+09 and 4U 1728–
34 (170). Figure 5a showed the same for another atoll source, 4U 1636–53. (Notice
that in that Figure the rms amplitude of each kHz QPO is plotted as a function of the
frequency of the corresponding QPO itself, whereas in Fig. 20 the rms amplitude of
both QPOs is plotted as a function of the frequency of the upper kHz QPO).

As shown in Figure 4b, the case of Z sources is similar, albeit in those cases the
custom is to plot all the QPO parameters as a function of SZ , the variable that mea-
sures the position of the source along the branches in a colour-colour or hardness-
intensity diagram. Bus since the QPO frequencies are correlated with SZ (see upper
panel of Figure 4b), it follows that the rms amplitude of the QPOs in Z sources
follows a similar trend as in atoll sources.
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Fig. 20 Fractional rms amplitude of the lower (upper panel) and lower (middle panel) kHz QPOs
as a function of the frequency of the upper kHz QPO in 4U 0614+09 (black points) and 4U 1728–
34 (grey points). The bottom panel shows the rms amplitude of the hectohertz (hHz) QPO as a
function of the frequency of the upper kHz QPO in these tow sources (originally published as
Figure 4 in 170).

At first, at low QPO frequencies, the rms amplitude of the upper QPO increases
slightly or stays more or less constant as the QPO frequency increases, and then
decreases more or less steadily as the frequency increases further. For the lower
kHz QPO the trend is similar, but the rising part when the frequency of the QPO
increases, at low QPO frequencies, is steeper than that of the upper kHz QPO.

In fact, a similar behaviour has been observed in all sources for which enough
measurements of the QPOs are available (7, 8, 12, 14, 15, 27, 37, 43, 44, 50, 51, 60,
70, 71, 103, 107, 138, 139, 144, 165, 166, 167, 169, 170, 171, 172, 182, 183, 184).
Figure 21 shows the fractional rms amplitude of the lower and upper kHz QPO as a
function of the QPO frequency for seven atoll and four Z sources (103). While the
trend is the same, the data are noisier in the case of the Z sources, because the QPOs
in those cases are weaker (have lower fractional rms amplitude; notice the scale of
the y axis in the different panels) and generally broader (see § 8.2) than in the atoll
sources. Since the spectrum of the Z sources is in general softer than that of the atoll
sources (e.g. 35), the difference between the rms amplitude of the kHz QPO in the Z
and atoll sources suggests that the same mechanism that modulates the oscillations
at the QPO frequency sets the shape of the emitted spectrum.

The conclusion from the results presented above is that the fractional rms ampli-
tude of the kHz QPOs depends both on energy and QPO frequency. So far we have
shown either the rms amplitude vs. QPO frequency, marginalised over energy, the
rms amplitude vs. energy, marginalised over QPO frequency, or the rms vs. energy
for a given frequency (the conditional plots). In Figure 22 we show the rms ampli-
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Fig. 21 Fractional rms amplitude of the lower (filled symbols) and the upper (open symbols) kHz
QPOs as a function of the QPO frequency for seven atoll sources, 4U 1608–52, 4U 0614+09,
4U 1728–34, Aql X-1, 4U 1820–30, 4U 1636–53, and 4U 1735–44, and four Z sources, Cyg X-
2, GX 340+0, GX 17+2 and GX 5–1 (103). Because Sco X-1 is so bright, the detector’s dead
time made it impossible to measure the fractional rms amplitude of the kHz QPOs in this source.
Notice that the scale in the y axis is different for the atoll and the Z sources, because the maximum
fractional rms amplitude of the QPOs is generally larger in the former than in the latter.

tude of the lower and upper kHz QPO plotted vs. both energy and QPO frequency
(the joint plots; 138).

The rms amplitude of the lower kHz QPO in 4U 1636–53 is maximum at
νlow≈800 Hz and E≈13 keV, while the rms amplitude of the upper kHz QPO in-
creases both as the QPO and the energy increase.

From spectral modelling of accreting neutron-star systems, the temperature of
the accreting gas at the inner edge of the accretion disc is typically ∼ 0.3− 2 keV,
depending on the state of the source, while the temperature of the neutron-star itself
is ∼1− 2 keV (54, 99, 142). This implies that the emission from the disc and the
neutron star components peaks at <∼1−6 keV, and drops quickly at energies higher
than that, such that at energies above ∼10−15 keV the spectrum of accreting neu-
tron stars is dominated by a power-law like component which is usually ascribed
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(a) (b)

Fig. 22 Fractional rms amplitude of the lower (left) and upper (right) kHz QPO in 4U 1636–53 as
a function of both energy (x axis) and QPO frequency (y axis). The colours (z coordinate) represent
the rms amplitude of the QPO. The top and right panels next to each Figure show the rms amplitude
of the QPOs marginalised over, respectively, QPO frequency and energy (138).

to inverse Compton scattering in a corona (with unspecified geometry) of highly-
energetic electrons (153, 181). The total contribution of the disc or the neutron-star
surface at ∼20− 25 keV, where the amplitude of the QPOs is ∼10− 25%, is be-
tween 10−3 and 10−6 of the total flux of the source at those energies (e.g. 16, 45).
Therefore, even if the kHz QPOs may represent variations of a dynamical property
of the accretion disc, e.g., one of the epicyclic frequencies in the relativistic preces-
sion model (147, 148), a beat between the Keplerian frequency at the inner edge of
the accretion disc and the neutron-star spin (86, 116), or a perturbation wave in the
disc (1, 93), the mechanism that modulates the QPO signal cannot be at the disc
itself, but must be connected to the corona. We will return to this below.

8.2 The width of the kHz QPOs

The quality factor, or equivalently the FWHM, of the kHz QPOs depends upon the
QPO frequency (7, 12, 13, 14, 15, 27, 43, 44, 50, 51, 60, 70, 71, 103, 107, 144,
165, 169, 170, 171, 172, 182, 183, 184). For the lower kHz QPO, the quality factor
first increases slowly as the frequency of the QPO increases, and after reaching
the maximum value it drops more or less abruptly as the QPO frequency continues
increasing. This can be seen in Figure 23 for the case of 4U 1636–53 (15, see also
(44)). Notice also in this Figure the difference of the quality factors of the lower and
the upper kHz QPOs: The lower kHz QPO is almost always narrower than the upper
one, and can be as narrow as ∼5 Hz. To reduce the errors in the measurements, this
plot shows the quality factor averaged over intervals of∼20 Hz in frequency for the
lower kHz QPO, and combines measurements for many separate observations, taken
at different epochs, of the source. When measured over short intervals in single
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Fig. 23 Quality factor of the lower (filled circles) and upper (filled squares) kHz QPOs in 4U 1636–
53. The solid line shows the trend expected from a simplified calculation of the effect of broadening
of the profile of the QPO by: (i) radial drift of the inner parts of the disc as the gas falls onto the
neutron star, (ii) the range of radii in the disc at which the QPO is produced, and (iii) the lifetime
of the blobs that produce the oscillations (15).

observations, the quality factor in 4U 1636–53 can be as large as 200− 220 (see
Fig. 5b) which, at ∼850 Hz means that the lower kHz QPO can be as narrow as
∼4 Hz FWHM (see also 120, for the source EXO 1745–248). The quality factor
of the upper kHz QPO, on the other hand, is much less than that of the lower kHz
QPO, and it remains more or less constant or increases slowly as the frequency of
the QPO increases. Translated into a width, the FWHM of the upper kHz QPO goes
from ∆∼40 Hz at νupp∼1150 Hz to ∆∼120 Hz at νupp∼600 Hz.

The more or less abrupt drop of the quality factor of the lower kHz QPO has
been interpreted (13, 14, 15) as an indication that the inner radius of the accretion
disc where, according to most models, the QPOs are formed, starts to reach the
ISCO (§3). Close to the ISCO, three effects contribute to the width of the QPO
peak: First, because of the rapid increase of the radial component of the velocity of
a particle orbiting the neutron star when it approaches the ISCO, the gas will move
a certain radial distance ∆rdrift during the lifetime of the oscillation, leading to a

change ∆νdrift ≈
3
2

∆rdrift

rorb
νorb of the frequency of the oscillations during this time.

Second, the region in the disc where the QPO is formed is stretched in the radial

direction, leading to a range of frequencies of the oscillations ∆νorb ≈
3
2

∆rorb

rorb
νorb.

Finally, the finite lifetime of the oscillations adds to the width of the QPO profile.
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The solid curve in Figure 23 shows a simplified calculation of these effects com-
bined, for a set of parameters that roughly reproduce the data, and that yield a
neutron-star mass of∼2M� or higher. In this model, at frequencies above νlow≈800
Hz the main contribution to the width of the QPO is from the drift of the QPO fre-
quency, ∆νdrift. If this interpretation is correct, the drop of the quality factor of the
lower kHz QPO in this and other sources would provide a constrain to the mass
of the neutron star, and a direct evidence of the existence of the ISCO around the
neutron star in these systems.
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Fig. 24 Absolute values of the positive (red points) and negative frequency derivative (black
points) for the lower kHz QPO in 4U 1636–53 as a function of the QPO frequency measured
on time-scales of 64 s or shorter (145).

Measurements of the rate at which the QPO frequency changes as a function of
the QPO frequency, however, appear to question this interpretation. As shown in
Figure 24 (145), the rate of change of the QPO frequency is the largest at low QPO
frequencies, decreases as the QPO frequency increases, and is the smallest at the
highest QPO frequency. On the contrary, under the interpretation that the drop of Q
is due to the ISCO, at high QPO frequencies, when the radius of the disc is closest
to the ISCO, the effect of ∆νdrift and the rate of change of the frequency of the lower
kHz QPO should be the largest.

In Figure 21 we saw that the rms amplitude of the kHz QPOs is lower in Z than
in atoll sources. In fact, also the quality factor of the kHz QPO, and in particular
that of the lower kHz QPO, is in general lower in Z (60, 71, 127, 165, 182, 188)
than in atoll sources (7, 8, 12, 14, 15, 27, 37, 43, 44, 50, 51, 103, 107, 138, 139,
144, 166, 167, 169, 170, 171, 172, 183, 184). This is shown in Figure 25 in which
the quality factor, both of the lower and the upper kHz QPO, in seven atoll and 5 Z
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Fig. 25 Quality factor of the lower (filled symbols) and the upper (open symbols) kHz QPOs as
a function of the QPO frequency for seven atoll sources, 4U 1608–52, 4U 1636–53, 4U 1728–34,
Aql X-1, 4U 1820–30, 4U 1735–44, and 4U 0614+09, and five Z sources, Sco X-1, Cyg X-2,
GX 17+2, GX 5–1, and GX 340+0 (103). Notice that, as with the fractional rms (Fig. 21), the scale
of the y axis is different for atoll and Z sources, reflecting the fact that the maximum value of the
quality factor is larger in the former than in the latter.

sources is plotted as a function of the frequency of the QPO (103). From this Figure
it is apparent that the lower kHz QPO is narrower in the atoll than in the Z sources
and that, within the atoll sources, the minimum width that the QPO can attain is
different for different sources. The situation is less clear for the upper kHz QPO
because the measurements, especially of the Z sources, have larger errors. The Z
sources are more luminous and have a softer spectrum than the atoll sources, and
this differences are likely due to the difference of the total mass accretion rate in
these two classes of sources (see above in this section). It is, therefore, possible that
the rms amplitude and quality factor of the kHz QPOs depend upon mass accretion
rate, reflecting properties of the accretion flow that produces the X-ray spectrum in
these sources.

Figures 26a and 26b summarise these points. The black symbols in those Figures
show the maximum quality factor and maximum fractional rms amplitude of, re-
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Fig. 26 Maximum quality factor (top panels), obtained from Figure 25, and maximum fractional
rms amplitude (lower panels), obtained from Figure 21, of the lower (left) and upper (right) kHz
QPOs of seven atoll (circles) and five Z sources (squares) as a function of the source luminosity
(103). The red points in the left panel correspond to the measurements of the quality factor and
rms amplitude of the lower kHz QPO in the transient LMXB XTE J1701–462. The red circles and
red squares show the maximum quality factor (upper panel) and maximum rms amplitude (lower
panel) of the lower kHz QPO in XTE J1701–462 when the source was, respectively, in the atoll
and the Z phases of the outburst (144).

spectively, the lower and the upper kHz QPO as a function of the source luminosity
(in Eddington units), for the seven atoll and five Z sources in Figures 21 and 25. (We
will discuss the red points below.) The relation between the maximum quality factor
of the lower kHz QPO and the luminosity of the source in this Figure resembles
the relation between the quality factor and the frequency of the lower kHz QPO in
4U 1636–53 (15) and other sources (see Figure 23). The same is true for the de-
pendence of the maximum rms amplitude of the lower kHz QPO with luminosity in
the set of sources seen in this Figure, and the relation between rms amplitude and
QPO frequency for the lower kHz QPO in individual sources (e.g., Figs. 5a and 20).
Since in individual sources the QPO frequency generally increases with luminos-
ity (see Fig. 2a; despite being partially affected by the parallel-track phenomenon,
this is generally the case), this suggests that the same mechanism is responsible for
the drop of quality factor and rms amplitude of the lower kHz QPO with QPO fre-
quency in 4U 1636–53 and other sources, as well as for the drop of the maximum
QPO quality factor and maximum QPO rms amplitude with luminosity in the set of
sources. This would imply that the drop of the quality factor in 4U 1636–53 is not
driven by the inner edge of the disc approaching the ISCO, but to changes in the
properties of the accretion flow, e.g. optical depth and temperature of the boundary
layer (56) or the corona (103), where the signal of the QPO is likely modulated (see
below).

The fact that the maximum rms amplitude and quality factor of the lower kHz
QPO in the set of sources are lower in the Z than in the atoll sources offers the
possibility to test these ideas. If the scenario in which the drop of the quality factor
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and rms amplitude of the lower kHz QPO in 4U 1636–53 and other sources is driven
only by the inner edge of the disc approaching the ISCO was correct, one would
expect that, if a source ever switched from atoll to Z, or vice versa, and continued
showing kHz QPOs both in the atoll and Z phases, at the same QPO frequency,
hence the same inner disc radius, the quality factor and rms amplitude of the lower
kHz QPO would be the same. The reason for this is that the radius of the ISCO
depends only on the mass, spin and equation of state of the neutron star, which do
not change when the source switches from one class to the other. On the other hand,
if the quality factor and rms amplitude of the lower kHz QPO were driven (at least in
part) by the properties of the accretion flow, since the properties of the accretion flow
are different in Z and atoll sources, the average quality factor and rms amplitude of
the lower kHz QPO between the Z and atoll phases would change.

In 2006, when this was proposed (103), such a source did not exist. But in April
of 2007, the transient source XTE J1701–462 (135), which started its outburst as
a Z source, underwent a transition and switched into an atoll source (59, 61, 95).
This source also showed kHz QPOs both in the Z (57) and atoll phases (62). As
proposed in the second scenario, at the same QPO frequency, the quality factor and
rms amplitude of the lower kHz QPO in the Z phase of XTE J1701–462 were,
respectively, ∼7− 8 and ∼3 times larger in the atoll than in the Z phase (144).
Not only that, but the quality factor and rms amplitude of the lower kHz QPO in
the Z phase of XTE J1701–462 were also similar to those of the other Z sources,
and in the atoll phase of XTE J1701–462 they were similar to those of the other
atoll sources. The red points in Figure 25 show the quality factor and rms amplitude
of the lower kHz QPO in XTE J1701–462 in the Z (open square) and atoll (filled
circle) phase, perfectly in line with the other sources in that plot. This shows that
in XTE J1701–462, and other sources, the quality factor and rms amplitude of the
kHz QPOs are, at least in part, driven by the properties of the accretion flow. This
questions the suggestion that the drop of the quality factor of the lower kHz QPO at
high QPO frequencies provided evidence of the ISCO in these systems. This, on the
other hand, offers an avenue to develop models to explain the radiative properties of
the QPO.

8.3 The energy-dependent lags and coherence of the kHz QPOs

As we described in §4, one can study the phase/time lags of the QPOs using light
curves in two different energy bands. Besides the lags, one can also study the coher-
ence function between the two light curves (65, 124, 173). The coherence function
(23), γ2(ν), measures the degree of linear correlation between two noiseless signals
(light curves) as a function of the Fourier frequency. More precisely, γ2(ν) should
be called γ2(ν ;E1,E2) to indicate that it is the coherence function between two light
curves at energies E1 and E2; when the lags and the coherence function are given
as a function of energy, one means that those are the quantities measured at E = E2
with respect to the reference band, in this case E1. However, since the observed
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light curves are not noiseless, but are affected by Poisson counting noise (see §4), to
study the degree of correlation between two X-ray light curves one uses the intrinsic
coherence function, usually denoted as γ2

I (ν), that corrects for this (see 173, for an
explanation). For simplicity, here we will use the term coherence function, and will
write γ2(ν), to refer to the intrinsic coherence function.
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Fig. 27 Time lags (top panel) and coherence function (bottom panel) as a function of Fourier
frequency, at frequencies around that of the lower kHz QPO in 4U 1608–52. The horizontal line in
the top panel is at the zero time lag, while the horizontal line in the bottom panel shows the perfect
coherence of 1 (38).

Figure 27 shows the time lags (top panel) and coherence function (bottom panel)
around the frequency of the lower kHz QPO in 4U 1608–53, using light curves with
energies around 3 keV and 8 keV (38). This Figure shows that the two light curves
used to compute the lags and coherence function are perfectly correlated (coherence
function equal to 1 with small errors) in the frequency range at which the QPO signal
dominates, and uncorrelated (coherence function consistent with 0 and large errors)
outside that frequency range. This Figure also shows that the lags of the lower kHz
QPO in this source are soft (negative), meaning that the low-energy photons lag the
high-energy ones.

In §4 we showed that the lags of the lower kHz QPO are significantly different
from those of the upper kHz QPO (38). Specifically, the lags of the lower kHz QPO
in 4U 1608–52, 4U 1636–53, Aql X-1 and 4U 1728–34 are soft and become softer
as the energy increases (11, 37, 38, 130, 156). On the contrary, the lags of the upper
kHz QPO in 4U 1608–52, 4U 1636–53 and 4U 1728–34 are either consistent with
zero or hard and, if anything, they become harder as the energy increases (38, 130).
This can be clearly seen in Figure 28 (see also Fig. 9 in §4). The left panel shows
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Fig. 28 Time lags as a function of energy for the lower (left) and upper (right) kHz QPO in
4U 1728–34 for different QPO frequencies (originally published as Figure 3 in 130).

the lags of the lower kHz QPO in 4U 1728–34 as a function of energy for different
QPO frequencies. The right panel shows the same for the upper kHz QPO in this
source. This difference in the lags of the lower and upper kHz QPOs indicates that
either the radiative mechanisms that generate each of the kHz QPOs are different,
or the mechanism is the same but each of the two signals that are modulated at the
frequency of the lower and the upper kHz QPO travel through different parts of the
accretion flow before reaching the observer.

In §4 (see Figure 9b) we showed that the magnitude of the soft lags of the lower
kHz QPO in 4U 1636–53 first increases and then decreases as the frequency of
the QPO increases. Since the QPO frequency is a function of Sa (Fig. 3b), the de-
pendence of the lags on Sa is similar to that on νlow (see Fig. 7 in 37). Figure 29
shows the time lags of the lower kHz QPO in 4U 1608–52 as a function of QPO
frequency (11). The magnitude of the lags shows a significant increase as the QPO
frequency increases from νlow≈550 Hz to νlow≈700, and a significant decrease as
the frequency increases further. (Notice that in this Figure the convention is that soft
lags are positive, therefore the trend appears be the opposite of what is shown in
Figure 9b.) In other sources, e.g., 4U 1728–34 (130), Aql X-1 (156, see also (157)),
the trend is not as clear as in 4U 1608–52 and 4U 1636–53.

The magnitude of the lags of the lower kHz QPO in 4U 1608–52 is between
15µs and 40µs. These values translate into light-travel distances between 4.5 km
and 12 km, commensurate with the expected distance between the inner edge of
the accretion disc and the neutron-star surface (e.g. 116). It is therefore tempting
to identify the lags with the light travel time in that environment. However, from
the trend of the lags of the lower kHz QPO in 4U 1608–52 with QPO frequency in
Figure 29, and that of the frequency of the lower kHz QPO vs. the inner radius of
the accretion disc for the same source in Figure 15, it is apparent that the relation
between the lags of the lower kHz QPO and the inner radius of the accretion disc
is not monotonic. If the model used to fit the energy spectra of 4U 1606–52 (11)
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Fig. 29 Time lags as a function of frequency for the lower kHz QPO in 4U 1608–52 (originally
published as Figure 2 in 11). The lower panel shows the lags measured over 128-s time intervals,
while the upper panel shows the same data binned into ten adjacent QPO-frequency intervals.
Notice that by convention, in this Figure negative values correspond to soft lags, which is the
opposite convention to the one used in Figures 9 and 27.

is correct (remember, it is just a model), this non-monotonic relation between the
lags and the inner-disc radius implies that the lags cannot be just a delay due only to
the light travel-time of the photons from the disc to the neutron star, or vice versa.
A similar conclusion can be drawn about the lags of the upper kHz QPO. In this
case the lags do not appear to depend upon QPO frequency (but the errors of the
lags of the upper kHz QPO are larger than those of the lags of the lower kHz QPO);
at the same time, the frequency of the upper kHz QPO changes by a factor of ∼2
(see Figs. 9b and 28) and, comparing the range of frequencies spanned by the lower
and the upper kHz QPOs and the range of inner-disc radii in Figure 15, the inner-
disc radius changes also by a factor of at least ∼2. Therefore, the lags of the upper
kHz QPO cannot be due only to a light travel-time delay between the disc and the
neutron star either.

Since the lags of the lower kHz QPO are soft, whereas inverse Compton scatter-
ing in a corona should produce hard lags (§4; but see below), a different mechanism
was required to model the lags of the lower kHz QPO. Reverberation due to re-
flection of hard photons from the corona off the accretion disc had been used to
explain the soft lags of the broad-band noise component in the power spectrum of
active galactic nuclei (49, 189, 190) and galactic black-hole candidates (39, 160, see
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also (74)). Reverberation was therefore a promising mechanism to explain the lag
spectrum of the lower kHz QPOs.
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Fig. 30 Time lags of the lower kHz QPO in 4U 1608–52 (left; originally published as Figure 6
in 30) and the upper kHz QPO in 4U 1728–34 (right; originally published as Figure 6 in 36) as a
function of energy, with the best-fitting reverberation model.

Figure 30a shows the lag spectrum of the lower kHz QPO in 4U 1608–52 (30)
with the best-fitting reverberation model. While the lags of the QPO decrease more
or less monotonically as the energy increases, the best-fitting model predicts that
above E∼8 keV the lags should increase with energy, contrary to the observations.
This led to the conclusion (30) that the lags of the lower kHz QPO in 4U 1608–52
cannot be due only to reverberation. Subsequently, the same idea was tested on the
upper kHz QPO in 4U 1728–34 (36); the result of the fits of a reverberation model
to the lags of this QPO is shown in Figure 30b. From this Figure it is apparent
that, while the lags of the QPO first decrease with energy up to E∼5− 6 keV, and
increase again above that energy, the model predicts that the lags should follow the
opposite behaviour. This led to the conclusion that, as with the case of the lags of
the lower kHz QPO in 4U 1608–52, the lags of the upper kHz QPO in 4U 1728–34
cannot be solely due to reverberation. Notice that, with few exceptions (66, 101),
so far reverberation models have been used only to fit and explain the time/phase
lags, and not the amplitude, of the observed light curves of accreting supermassive
black holes in active galactic nuclei and stellar-mass black holes in galactic X-ray
binaries, whereas a consistent model of the radiative mechanism that fits the data
should be able to explain both the rms and lag spectrum of the variability in these
sources.

Figure 31 shows some of the results of the most extensive study yet of the lags
and rms spectra of the kHz QPOs in LMXBs (157). That work presents the energy-
dependent rms amplitude, time lags and intrinsic coherence function, plus the time
lags as a function of frequency of the lower kHz QPOs in 14 sources, and the same
information for the upper kHz QPO in six out of those 14 sources. In Figure 31 we
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show only the rms and lag spectra of the lower kHz QPO in those 14 sources (we
already showed the rms spectra of the upper kHz QPO in six of those 14 sources in
Fig. 17b). The results shown in (157) reinforce the importance of considering both
the rms and lag spectra to try and model the radiative properties of the kHz QPOs.
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Fig. 31 Fractional rms (left) and time lags (right) as a function of energy for the lower kHz QPO
in 14 atoll sources (originally published as Figures 4 and 8 in 157).

Models that involve inverse Compton scattering did not seem appropriate to ex-
plain the lags of the lower kHz QPO, given that those lags are soft, whereas Comp-
tonisation would only produce hard lags (see §4). Contrary to those expectations,
inverse Compton scattering could work, and produce soft lags, if there is feedback
from the corona to the disc (92, see also (91)). In this scenario, soft photons from
the disc are up-scattered in the corona; part of those up-scattered photons go to the
observer, and produce the power-law like component in the spectrum, but a fraction
of those corona photons will illuminate back the disc, increasing the disc temper-
ature (55). If the photon flux that is originally produced in the disc is modulated
(e.g., at the QPO frequency), the flux that returns to the disc after being scattered
in the corona will also be modulated and, as those photons reheat the disc, the disc
temperature will vary at the frequency of that modulation. In this feedback loop, the
photons that reach the observer from the corona through the disc will be delayed
with respect to those photons from the corona that are directly emitted towards the
observer. Since the disc temperature is lower than that of the corona, the process
results in a delay of the soft with respect to the hard photons, as observed.
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Fig. 32 Fractional rms amplitude (left) and time lags (right) of the lower kHz QPO in 4U 1608–52
as a function of energy. The three lines lines labeled 1, 2 and 3 correspond to calculations of the
variability produced by a feedback loop between the accretion disc and a 1-km thick corona (82)
with values of η , the fraction of photons of the corona that impinge back onto the disc, of 0.3, 0.4
and 0.5, respectively.

This process can be modelled by solving the time-dependent version of the Kom-
paneets equation (81), assuming a geometry of the corona (75, 82, 83, 91, 92). Since
the inverse Compton scattering process cools down the electrons in the corona, there
has to be an external source of heating (100, 111) to explain long-lived coronas in
accreting LMXBs. If the photon flux from the disc that cools the corona is variable,
the power provided by this external heating source must also be variable to maintain
the equilibrium in the system. An interesting aspect of this approach is that the solu-
tion of the equation that describes the variability of the flux received by the observer
provides both the energy-dependent amplitude and lags of the signal, and hence one
can fit, with the same model, both the rms and lag spectrum of the QPOs.

The two panels in Figure 32 show the rms and lag spectrum of the lower kHz
QPO in 4U 1608–52 together with the results of the model that describes, simul-
taneously, the energy-dependent amplitude and lag of the variability produced by a
feedback loop between the accretion disc and the corona (82). The models repro-
duce the rms and lag spectrum of the lower kHz QPO in 4U 1608–52 fairly well
when the corona is a few km thick and for feedback fractions between ∼0.1 and
∼0.5.

The plots in Figure 32 correspond to data obtained (11, 24) when the frequency
of the lower kHz QPO in 4U 1608–52 was ∼800 Hz. We saw, however, that the rms
spectrum of the lower kHz QPO changes significantly as the frequency of the QPO
changes (see §8.1 and 138); while it is likely that the lag spectrum of the lower kHz
QPO also changes with QPO frequency, the error bars of the current measurements
(38, 130) are too large to tell.

Figure 33 shows the fits to the rms and lag spectra of the lower kHz QPO in
4U 1636–53 for six different values of the QPO frequency, while Figure 34 shows
the full-band fractional rms amplitude vs. QPO frequency that results from these
fits (75). These fits provide (under the assumptions made in the model; see 75, for
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Fig. 33 Fractional rms (left) and phase lag (right) spectra of the lower kHz QPO in 4U 1636–53
for six values of the QPO frequency as indicated. (75). The red and blue lines correspond to the
best-fitting model of the variability model that includes feedback between the accretion disc and
the corona for, respectively, a hot and a cold accretion disc (see 75, for details).

details) the evolution of the parameters of the corona, size, kTe and τ , as a function
of the QPO frequency that matches reasonably well the observations (e.g., Fig. 16;
see 75, for details).

While the model appears to work reasonably well, it does not reproduce the data
completely. As Figures 32 and 33 show, the models fit the lags over the full energy
range and the rms spectrum below ∼12 keV quite accurately, but fail to reproduce
the rms spectrum at energies above ∼12− 13 keV. Above those energies the rms
spectrum stops increasing and levels off (see also Figs. 8 and 18), whereas the sec-
ond derivative of the model is always positive (Fig. 32a). This is the energy range
at which emission from the Compton hump due to reflection of corona photons
off the accretion disc is expected (e.g., 49, 140, 141). If the reflected signal is not
(strongly) modulated, that extra emission component at those energies will reduce
the rms variability without affecting the lags. This needs to be explored further using
time-dependent reflection models.
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Fig. 34 Full-band fractional rms amplitude of the lower kHz QPO in 4U 1636–53 as a function of
QPO frequency. The grey shaded area represents the same measurements (138) of the rms ampli-
tude of the QPO shown in Figure 5a, while the red and blue lines and symbols correspond to the
best-fitting model of the variability model for, respectively, a hot and a cold accretion disc (75).

To end this part, we will now discuss briefly some results of the coherence func-
tion of the kHz QPOs. In Figure 35 we show the coherence function of the lower
and upper kHz QPOs in 4U 1636–53 and 4U1608–52 as a function of energy and
QPO frequency (the plots are from 38, see that reference for details of the way the
coherence function was calculated using all the QPO data for those two sources).
There are four things that we would like to mention about the plots shown in this
Figure: (i) The coherence function of the lower kHz QPO in both sources is inde-
pendent of energy below E≈12 keV, and drops as the energy increases beyond that
value. This is the same energy at which the rate of increase of the rms spectrum of
the lower kHz QPO starts to flatten (Figs. 8, 18, 31a and 33). This suggests that at
those energies another signal, independent of the one that produces the variability
of the signal at the frequency of the lower kHz QPO, starts to become important in
the light curves .

As mentioned previously, this extra component could be the Compton hump,
which is part of the reflection component coming from the accretion disc and dom-
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Fig. 35 Coherence function of the lower (top) and upper (bottom) kHz QPOs in 4U 1636–53 and
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in the reference bands, for all observations with QPOs combined. The plots on the right show the
coherence between photons in the 4−12 keV band relative to photons in the 12−20 keV band at
different QPO frequencies (adapted from 38)

inates the reflected spectrum at those energies (140). (ii) In 4U 1636–53, the degree
of linear correlation at the frequency of the lower kHz QPO between the light curves
in the two energy bands used in this study (see caption in Fig. 35) increases from
γ2≈0 to γ2≈1 as the QPO frequency increases from νlow≈600 Hz to νlow≈800 Hz,
and then drops to γ2≈0.5 as the QPO frequency increases further to νlow≈900 Hz.
The behaviour of the coherence function of the lower kHz QPO in 4U 1636–53 with
QPO frequency is very similar to that of the quality factor and the rms amplitude
of the lower kHz QPO in this source (Figs. 5a and 23). These similarities provide a
strong indication that these three phenomena are related, and suggest that the ampli-
tude and width (or the quality factor) of the lower kHz QPO in 4U 1636–53 (and, by
extension, of the lower kHz QPO in all the other sources3) reflect (at least in part)
the degree of linear correlation of the signals in different energies bands at the QPO
frequency. In the model of the rms amplitude and the lags in which the corona and
the disc are connected through a feedback loop (75, 82, 92), the temperatures of the
corona and the accretion disc oscillate coherently; therefore, the soft and hard light
curves produced in this scenario are linearly correlated and the intrinsic coherence
is high. (iii) The degree of linear correlation between the light curves of the source
in the two energy bands used to calculate the coherence function is much lower at
the frequency of the upper than at the frequency of the lower kHz QPO. From the

3 This is possibly also the case for the upper kHz QPO, and all other QPO signals in these sources.
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discussion in the previous point, this is probably the reason why the upper kHz QPO
is much broader (lower quality factor) than the upper kHz QPO (15). (iv) The coher-
ence of the upper kHz QPO shows a small increase at νupp≈700− 800 Hz. This is
the same frequency at which the rms amplitude of the upper kHz QPO (Fig. 5a) and
the slope of the rms spectrum of the QPO (Fig. 19) as a function of QPO frequency
show a local maximum. In the context of the model in which a feedback mecha-
nism connects the corona and the disc (75, 82, 92), this could be interpreted as the
source of soft photons and the Comptonising medium not oscillating coherently for
the largest part of the range of QPO frequencies spanned by the upper kHz QPO,
and the disc and the corona becoming resonant when the frequency of the upper kHz
QPO is at around 800 Hz.

8.4 Other phenomenology of the kHz QPOs

In this subsection we will briefly discuss two additional phenomena that are inter-
esting to try and understand the mechanisms that produce the kHz QPOs, but do
not fit thematically in the previous subsections: Harmonics of the kHz QPOs and
frequency and amplitude modulation of the QPO signal. These topics have not yet
been fully explored, partly because the analysis required is not standard, and partly
because the data available do not allow us to go beyond what has been done so far.
For instance, there is only one paper published exploring the harmonic content of
the kHz QPOs, and only four papers about the frequency and amplitude modulation
of the QPO signal by other timing phenomena. The few results available, however,
suggest that some of these endeavours are worthwhile pursuing further.

Most of the models that have been proposed to explain the frequencies of the
kHz QPOs assume that one of the QPOs reflects the Keplerian orbital motion at
some preferred radius in the accretion disc. For instance, in the sonic-point beat-
frequency model (116), the upper kHz QPO is produced at the radius where the
radial flow velocity in the disc turns from subsonic to supersonic (the sonic radius),
and the lower kHz QPO is a beat between the upper kHz QPO and the spin frequency
of the neutron star. Besides the main peaks at νlow and νupp, this model predicts some
other (weaker) harmonics and sidebands of these QPOs at specific frequencies; for
instance, in this model there should be a relatively strong harmonic of the lower
QPO at 2νlow (see table 3 of 116, for a list of other harmonic and sideband peaks
predicted by the model).

In the relativistic-precession model (148), the upper kHz QPO is also assumed
to be Keplerian, and the lower kHz QPO is the periastron precession frequency of
a slightly non-circular inner accretion disc. Oscillating disc models (e.g., 133) in a
GR potential yield the same frequencies as those for test particles in the relativistic-
precession model, but also predict other frequencies that are linear combinations of
the three basic relativistic frequencies in the disc. For instance, in an oscillating disc
in which the Keplerian and the periastron precession frequencies are excited, there
should be a peak at a frequency equal to 2νupp−νlow.



48 Mariano Méndez and Tomaso M. Belloni

Finding one of these other peaks would, on one hand, favour one model over the
other, opening up a path to understand the dynamics of the disc and the production
of the QPOs and, on the other hand, would confirm that the upper kHz QPO is
due to Keplerian orbital motion in the disc. Unfortunately, the only attempt to find
any of these peaks using data of Sco X-1 (106) gave negative results. The 95%
confidence upper limits of a peak at 2νlow and 2νupp− νlow are, respectively, 0.12
and 0.26 times the amplitude of the upper kHz QPO in this source (the amplitude
of the upper kHz QPO in Sco X-1 is between 0.6% and 2.5%; see table 1 in 106,
for the upper limits at other frequencies). The signal of these other peaks could be
attenuated in the corona (29, 84, 113, 116) depending on the frequency of the peak,
and the radius and optical depth of the corona. Considering this effect, the upper
limits of an unattenuated signal at those two frequencies would be a factor between
0.15 and 0.30 of the unattenuated amplitude of the upper kHz QPO in Sco X-1 (see
table 2 in 106, for the unattenuated upper limits at other frequencies). In conclusion,
in Sco X-1 none of the secondary QPO peaks predicted by the two main classes
of models of the kHz QPOs are detected, with upper limits that imply that these
secondary peaks are one to two orders of magnitude weaker in power than the upper
kHz QPO.

Fig. 36 Sideband peaks of the lower kHz QPO in 4U 1636–53. The sideband peaks are visible at
a frequency that is ±55 Hz of the frequency of the strong and narrow lower kHz QPOs, which is
at ∼800 Hz in this observation. The broad peak at ∼1100 Hz in the Figure is the upper kHz QPO
(69).

If the amplitude of the signal of the QPOs is modulated, one would expect to see
sidebands to the main oscillation, at frequencies that are equal to the frequency of
the QPOs plus or minus the frequency of the mechanism that modulates the QPO
amplitude. This could happen if, for instance, on very short scales the amplitude of
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the kHz QPOs depends upon mass accretion rate. Although there is no guarantee that
this is the case, given that on long time scales the amplitude of the QPOs depends
upon QPO frequency (e.g., Fig. 5a in §4) and, in turn, QPO frequency depends
on inferred mass accretion rate (e.g., Fig. 3b in §4), it is not unthinkable that this
relation could also hold on very short time scales.

Figure 36 shows the power spectrum of 4U 1636–53 in the range of frequencies
of the kHz QPOs (69). The strong and narrow peak (off the scale of the plot) at
∼800 Hz and the weak and broad peak at∼1100 Hz are, respectively, the lower and
the upper kHz QPOs. The scale of the y axis in the plot has been chosen to highlight
the weak QPO peaks that appear at frequencies that are ∼50 Hz below and above
the frequency of the lower kHz QPO. These sidebands peaks are very significantly
detected in this observation of 4U 1636–53, and had been observed before in this
source and in 4U 1608–52 and 4U 1728–34 (67). One possible explanation for these
phenomena, given in (69), is that the sideband peaks reflect a modulation in the
radiation pattern that produces the upper kHz QPO at the Lense-Thirring precession
frequency at the inner edge of the accretion rate, and that this modulation would in
turn modulate the formation of the lower kilohertz QPO.

(a) (b)

Fig. 37 Left: Power spectra in the range of frequencies of the kHz QPOs in Sco X-1. The power
spectrum in the top panel was calculated during intervals of high count rates on the time scale of
the normal branch QPO (NBO) at 6−8 Hz in this source. The power spectrum in the bottom panel
corresponds to the intervals of low count rates on the time scale of the NBO (originally published
as Figure 2 in 186). Right: For the NS LMXB 4U 1608–52, count rate of the source (top) and
frequency of the lower kHz QPO (bottom) over the cycle of the millihertz QPO in this source
(originally published as Figure 2 in 185).

Similar to what happens to the amplitude, the frequency of the oscillations that
produce the QPOs can also be modulated on the time scale of another variability
component in the light curve. Figure 37a shows two power spectra of Sco X-1 cal-
culated from very short time intervals to sample the maxima and minima of the light
curve of the source on time scales of 0.15 s, corresponding to the frequency range,
6−8-Hz, of the so-called Normal Branch Oscillation (NBO) in this source. The top
and bottom panels of this Figure show the power spectrum of, respectively, the max-
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ima and minima of the light curve on those time scales. The frequency of the upper
kHz QPO changes significantly, by ∼20 Hz, with the change being anti correlated
with the source count rate. This result shows that the frequency of the upper kHz
QPO in Sco X-1 is driven by changes that happen on the time scale of the NBO.

Figure 37b shows the result of a similar analysis for the lower kHz QPO in
4U 1608–52 on the time scale of the millihertz QPO in this source (137). In this
case, again, the frequency of the QPO changes over the cycle of the millihertz QPO
and is anti correlated with the source count rate in that cycle. This result, and the
previous one, could be explained if, for instance, the upper kHz QPO in Sco X-1
and the lower kHz QPO in 4U 1608–52 are produced at the inner inner edge of the
accretion disc, and the value of the inner radius of the disc is modulated by radiation
coming from the neutron-star surface on the time scale of the NBO signal in the case
of Sco X-1, and the time scale of the millihertz QPO in 4U 1608–52.

9 Probing neutron-star interiors and GR with kHz QPO

The Keplerian orbital frequency at a radial distance r from the centre of a slowly
rotating neutron star (to first order in the specific angular momentum, j = cJ/GM2)
is:

νK =
1

2π

(
1− j

(
GM
rc2

)3/2
)√

GM
r3 , (2)

where M and J are, respectively, the gravitational mass and angular momentum of
the star, and G and c are the gravitational constant and the speed of light, respectively
(80, 117). Because the disc must be outside the neutron star, if the frequency of one
of the kHz QPOs reflects Keplerian orbital motion at this radial distance in the disc
(116, 148), it must hold that r ≥ RNS, where RNS is the neutron-star radius. The
existence of a radius, RISCO, inside which no stable circular orbit is possible (10)
also implies that r ≥ RISCO. Depending on the equation of state, the radius of the
ISCO can be inside or outside the neutron star (115). Under these conditions, for
an observed frequency of a QPO, νQPO, the maximum allowed mass and radius of
the neutron star are, respectively, Mmax = 2.2 M�(1+0.75 j)(1000 Hz/νQPO), and
Rmax = 19.5 km(1+ 0.2 j)(1000 Hz/νQPO). The highest the QPO frequency, the
smallest the maximum allowed mass and radius of a neutron star.

The maximum frequency of any of the kHz QPO observed with RXTE from
all LMXBs is νupp=1288±8 Hz in 4U 0614+09, with a 3-σ lower limit of 1267
Hz (168). This measurement puts an upper limit to the mass of the neutron star in
this system of M < 2.1M� that is fairly independent of the assumed neutron-star
equation of state. Assuming that this QPO reflects the Keplerian orbital frequency
at, or just outside, the ISCO, this frequency leads to a mass of the neutron star in 4U
0614+09 of 2.0±0.1M� (168).
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One should keep in mind that the identification of the upper kHz QPO with the
Keplerian frequency at the inner edge of the accretion disc is model dependent. For
instance, in the model proposed in (128) the lower kHz QPO is the one identified
with the orbital frequency at the inner disc radius. On the other hand, as shown for
instance in (4, 5, 47), it is possible to have frequencies above the Keplerian fre-
quency at the inner edge of the accretion disc if there is a transition region between
the disc and the neutron-star surface where matter in the disc has to slow down to
match the rotation speed of the neutron star.

Measurements of QPO frequencies and spectral properties of the source offer
another possibility to constrain the mass and radius of a neutron star. A broad iron
emission line at 6.5−7 keV has been observed in about a dozen accreting neutron
stars (26, 31, 32, 33, 40, 41, 42, 46, 63, 64, 97, 98, 102, 112, 129, 131, 132, 134,
142, 146, 177, 178). It has been proposed that, like in accreting black-hole systems
(48, 140), the iron line is due to reflection of corona photons off the accretion disc,
and that the line profile is driven by special and GR effects. If this is the case,
the shape of the line profile would depend upon the inner disc radius. Therefore,
detecting kHz QPOs in the power spectrum and a broad iron line in the energy
spectrum of the same object would provide separate ways to constrain the neutron-
star parameters in that object (25).

There is only one source, 4U 1636–53, in which both a broad iron line in the en-
ergy spectrum and kHz QPOs in the power spectrum were observed simultaneously
in four separate occasions (143). Because these four observations sampled different
spectral states of the source, and presumably the inner radius of the disc changed
between observations (54), this dataset offered the opportunity to test whether the
inner disc radius deduced independently from the line profile and from the kHz
QPOs changed in a consistent way. The main result of this analysis (143) was that
the inner radius of the accretion disc deduced from the frequency of the upper kHz
QPO was correlated with the spectral state of the source, whereas the radius deduced
from the profile of the iron line was not. Because of this, the combined results from
the kHz QPOs and the iron line do not lead to a consistent value of the neutron-star
mass. Since those were the only observations available for this test, and no new ob-
servations of kHz QPOs are possible with current missions, we have to wait until
the eXTP (180) and Athena (122) missions fly to address this question again. For
the moment the jury is still out.

We refer the reader to the chapter in this book by Cole Miller for a more detailed
discussion on methods of constraining neutron-star masses, radii and the equation
of state of the cold dense matter that constitutes these stars.

10 Conclusions and outlook

The kHz QPOs in neutron stars unlocked a new door to study the dynamics of mat-
ter, and the time-dependent interplay between matter and radiation, on very short
time scales in the violent and turbulent environment that surrounds a neutron star,
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and under the most extreme conditions in GR. These QPOs also offer a chance to
constrain the mass, radius and internal constitution of these extremely compact ob-
jects, with the potential to unveil the properties of matter under conditions that are
unattainable in laboratories on Earth. The amount and quality of the data collected
in almost fifteen years with the RXTE satellite are unique and, for the moment, un-
rivalled by data that have or can be collected by any other satellite in the past or
currently in operation. The rich phenomenology of the kHz QPOs discussed in this
chapter triggered scores of new ideas about accretion, and will guide this area of re-
search for years to come. The next generation of X-ray satellites with enough time
resolution to observe the millisecond time scales in accreting LMXBs with enough
collecting area, and the capability to deal with very bright objects, will soon be a
reality. The complementary technical capabilities of Athena and eXTP will give a
new impulse to this topic in the coming decade. If we were asked to anticipate now
what the most fruitful areas of research will be when those missions start providing
data, we would dare to say that the most exciting results will come from the cor-
related study of the properties of the kHz QPOs and the broad iron line (§9) over
the shortest possible time scales, and the prospect of finding signatures of the in-
nermost stable circular orbit around a neutron star (§4). The analysis tools that are
needed to achieve these goals have to address simultaneously the spectral (physical
parameters that describe the emission) and timing (rms amplitudes, lags and coher-
ence function) properties of variable signals over the shortest time scales allowed
by the data. As we showed in this Chapter, initiatives are already being taken in that
direction. This, and the efforts to try and understand the data, will keep us busy for
at least two more decades.
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[54] Gierliński, M., Done, C.: The X-ray spectrum of the atoll source 4U 1608-52.
MNRAS 337(4), 1373–1380 (2002)

[55] Gierliński, M., Done, C., Page, K.: X-ray irradiation in XTE J1817-330 and
the inner radius of the truncated disc in the hard state. MNRAS 388(2), 753–
760 (2008)

[56] Gilfanov, M., Revnivtsev, M., Molkov, S.: Boundary layer, accretion disk and
X-ray variability in the luminous LMXBs. A&A 410, 217–230 (2003)

[57] Homan, J., Belloni, T., van der Klis, M., Casella, P., Mendez, M., Lewin,
W., Fender, R., Gallo, E., Gehrels, N.: Spectral evolution and kHz QPOs in
the transient Z source XTE J1701-462. The Astronomer’s Telegram 748, 1
(2006)

[58] Homan, J., van der Klis, M.: A 695 HZ Quasi-periodic Oscillation in the
Low-Mass X-Ray Binary EXO 0748-676. ApJ 539(2), 847–850 (2000)

[59] Homan, J., van der Klis, M., Fridriksson, J.K., Remillard, R.A., Wijnands,
R., Méndez, M., Lin, D., Altamirano, D., Casella, P., Belloni, T.M., Lewin,
W.H.G.: XTE J1701-462 and Its Implications for the Nature of Subclasses
in Low-magnetic-field Neutron Star Low-mass X-ray Binaries. ApJ 719(1),
201–212 (2010)

[60] Homan, J., van der Klis, M., Jonker, P.G., Wijnands, R., Kuulkers, E.,
Méndez, M., Lewin, W.H.G.: RXTE Observations of the Neutron Star Low-
Mass X-Ray Binary GX 17+2: Correlated X-Ray Spectral and Timing Be-
havior. ApJ 568(2), 878–900 (2002)

[61] Homan, J., van der Klis, M., Wijnands, R., Belloni, T., Fender, R., Klein-
Wolt, M., Casella, P., Méndez, M., Gallo, E., Lewin, W.H.G., Gehrels, N.:
Rossi X-Ray Timing Explorer Observations of the First Transient Z Source
XTE J1701-462: Shedding New Light on Mass Accretion in Luminous Neu-
tron Star X-Ray Binaries. ApJ 656(1), 420–430 (2007)

[62] Homan, J., Wijnands, R., Altamirano, D., Belloni, T.: Rapid decay of the
neutron star transient XTE J1701-462. The Astronomer’s Telegram 1165, 1
(2007)

[63] Iaria, R., D’Aı́, A., di Salvo, T., Robba, N.R., Riggio, A., Papitto, A., Burderi,
L.: A ionized reflecting skin above the accretion disk of GX 349+2. A&A
505(3), 1143–1151 (2009)



High-frequency variability in neutron-star low-mass X-ray binaries 57

[64] Iaria, R., Di Salvo, T., Del Santo, M., Pintore, F., Sanna, A., Papitto, A.,
Burderi, L., Riggio, A., Gambino, A.F., Matranga, M.: Study of the reflection
spectrum of the LMXB 4U 1702-429. A&A 596, A21 (2016)

[65] Ingram, A.: Error formulae for the energy-dependent cross-spectrum. MN-
RAS 489(3), 3927–3938 (2019)

[66] Ingram, A., van der Klis, M., Middleton, M., Altamirano, D., Uttley, P.: To-
mographic reflection modelling of quasi-periodic oscillations in the black
hole binary H 1743-322. MNRAS 464(3), 2979–2991 (2017)

[67] Jonker, P.G., Méndez, M., van der Klis, M.: Discovery of a New, Third
Kilohertz Quasi-periodic Oscillation in 4U 1608-52, 4U 1728-34, and 4U
1636-53: Sidebands to the Lower Kilohertz Quasi-periodic Oscillation? ApJ
540(1), L29–L32 (2000)

[68] Jonker, P.G., Méndez, M., van der Klis, M.: Kilohertz quasi-periodic oscil-
lations difference frequency exceeds inferred spin frequency in 4U 1636-53.
MNRAS 336(1), L1–L5 (2002)

[69] Jonker, P.G., Méndez, M., van der Klis, M.: Sidebands to the lower kilohertz
quasi-periodic oscillation in 4U 1636-53. MNRAS 360(3), 921–925 (2005)

[70] Jonker, P.G., van der Klis, M., Homan, J., Méndez, M., Lewin, W.H.G., Wi-
jnands, R., Zhang, W.: Low- and high-frequency variability as a function of
spectral properties in the bright X-ray binary GX 5-1. MNRAS 333(3), 665–
678 (2002)

[71] Jonker, P.G., van der Klis, M., Wijnands, R., Homan, J., van Paradijs, J.,
Méndez, M., Ford, E.C., Kuulkers, E., Lamb, F.K.: The Power Spectral Prop-
erties of the Z Source GX 340+0. ApJ 537(1), 374–386 (2000)

[72] Kaaret, P., Piraino, S., Ford, E.C., Santangelo, A.: Discovery of Microsecond
Soft Lags in the X-Ray Emission of the Atoll Source 4U 1636-536. ApJ
514(1), L31–L33 (1999)

[73] Kaaret, P., Yu, W., Ford, E.C., Zhang, S.N.: Correlation between Fast Quasi-
periodic Oscillations and X-Ray Spectral Shape in Atoll Sources. ApJ 497(2),
L93–L96 (1998)

[74] Kara, E., Steiner, J.F., Fabian, A.C., Cackett, E.M., Uttley, P., Remillard,
R.A., Gendreau, K.C., Arzoumanian, Z., Altamirano, D., Eikenberry, S.,
Enoto, T., Homan, J., Neilsen, J., Stevens, A.L.: The corona contracts in a
black-hole transient. Nature 565(7738), 198–201 (2019)

[75] Karpouzas, K., Méndez, M., Ribeiro, E.r.M., Altamirano, D., Blaes, O.,
Garcı́a, F.: The Comptonizing medium of the neutron star in 4U 1636 -
53 through its lower kilohertz quasi-periodic oscillations. MNRAS 492(1),
1399–1415 (2020)

[76] Kato, S.: Trapped One-Armed Corrugation Waves and QPO’s. PASJ 42, 99–
113 (1990)

[77] Kato, S., Fukue, J.: Trapped Radial Oscillations of Gaseous Disks around a
Black Hole. PASJ 32, 377 (1980)
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Jonker, P., Kaastra, J., Kara, E., Karas, V., Kastner, J., King, A., Kosenko,
D., Koutroumpa, D., Kraft, R., Kreykenbohm, I., Lallement, R., Lanzuisi, G.,
Lee, J., Lemoine-Goumard, M., Lobban, A., Lodato, G., Lovisari, L., Lotti,
S., McCharthy, I., McNamara, B., Maggio, A., Maiolino, R., De Marco, B.,
de Martino, D., Mateos, S., Matt, G., Maughan, B., Mazzotta, P., Mendez,
M., Merloni, A., Micela, G., Miceli, M., Mignani, R., Miller, J., Miniutti,
G., Molendi, S., Montez, R., Moretti, A., Motch, C., Nazé, Y., Nevalainen,
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Possenti, A., Prescod-Weinstein, C., Qu, J., Riggio, A., Salmi, T., Sanna, A.,
Santangelo, A., Schatz, H., Schwenk, A., Song, L., Šrámková, E., Stappers,
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