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ABSTRACT

We describe a state-of-the-art hybrid framework to study the interplay of particle acceleration at shocks with radiative

losses in large scale relativistic flows. In this framework, we incorporated Lagrangian particles on an Eulerian grid

where the set of conservative relativistic MHD equations are solved for the underlying fluid. A single Lagrangian

particle follows the fluid streamlines and represents an ensemble of relativistic particles, whose distribution, N (E, t),

is evolved in time, by taking into account diffusive shock acceleration (DSA) at shocks and losses due to adiabatic

expansion, to synchrotron radiation in the local magnetic field and to Inverse Compton (IC) emission on seed Cosmic

Microwave Background (CMB) photons. At shocks, the particle distribution is estimated in a consistent manner based

on shock compression ratio, orientation of magnetic field with respect to shock normal and parametrized turbulence.

The evolved distribution from each Lagrangian particle is further used to produce observational signatures like emission

maps and polarization signals accounting for proper relativistic corrections. We further demonstrate the validity of

this hybrid framework using standard tests and motivate the applicability of such a tool to study high energy emission

from extra-galactic jets.
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1. INTRODUCTION

Magnetized and relativistic large scale flows in form of

jets are a common observational feature seen for exam-

ple in active galactic nuclei (AGNs), Gamma-ray bursts

and micro-quasars. The dominant emission is originated

by non-thermal processes from high energy particles.

Multi-wavelength observations covering a wide spectrum

from Radio wavelengths to TeV Gamma ray emission

provides valuable insights into the micro-physical pro-

cesses that occur in jets and lead to the observed ra-

diation. The length scales associated with these micro-

physical processes are many orders of magnitude smaller

than the physical jet scales that can range up to few tens

of kilo-parsec. Connecting a bridge between these scales

poses a serious challenge to theoretical modeling of the

emission from AGN jets. In the present work, we aim

to build a quantitative connection between such disjoint

scales by developing a numerical tool that could simu-

late multi-dimensional flow pattern treating small-scale

processes in a sub-grid manner. In this work, we de-

scribe such a tool that consistently accounts for most of

the micro-physical processes.

The general analytical picture of multi-wavelength ra-

diation from beamed relativistic magnetized jet was pro-

posed by works in the 80s (e.g. Blandford & Königl

1979; Marscher 1980; Konigl 1981). Since then, syn-

chrotron emission signatures from large scale jets are ob-

tained from time-dependent simulations through post-

processing. In the relativistic hydrodynamic context,

transfer functions between thermal and non-thermal

electrons in jet are used (Gomez et al. 1995; Gómez et al.

1997; Aloy et al. 2000) whereas in case of relativistic

MHD calculations, magnetic structure inside the jet is

used to compute synchrotron emission maps (e.g. Porth

et al. 2011; Hardcastle & Krause 2014; English et al.

2016).

An alternative approach in numerical modeling of non-

thermal emission from astrophysical jet is when the pop-

ulation of non-thermal electrons are treated as separate

particle entities suspended in fluid (i.e test particles).

Effects due to synchrotron aging in presence of shock

acceleration under the test particle limit were studied

for radio galaxies using multi-dimensional classical MHD

simulations by (Jones et al. 1999; Tregillis et al. 2001).

Acceleration of test particles and subsequent radiative

losses in presence of shocks formed via hydro-dynamic

Kelvin Helmholtz vortices were studied by Micono et al.

(1999). Such an hybrid framework of combining test

particles with classical fluid have also been used effec-

tively to study cosmic-ray transport in cosmological con-

text (Miniati 2001). For relativistic hydrodynamic flows,

population of non-thermal particles (NTPs) have been

included to study non-thermal emission from internal

shocks in Blazars (Mimica et al. 2009; Mimica & Aloy

2012; Fromm et al. 2016). Recent relativistic hydrody-

namical simulations using NTPs have also been applied

for a study of star-jet interactions in AGNs (de la Cita

et al. 2016). There are two most critical limitations

with above models using NTPs. Firstly as the fluid sim-

ulations are done with RHD, magnetic field strengths

are assumed to be in equipartition with internal energy

density. This ad-hoc parameterized assumption of mag-

netic field strengths can affect the estimation of spectral

break in the particle distribution due to synchrotron

processes. The second simplified assumption in their

models is a choice of constant value for power law in-

dex N (E) ∝ E−m, (m = 2.0 (de la Cita et al. 2016) and

m = 2.23 (Fromm et al. 2016)) in their recipe of particle

injection at shocks.

In the present work, we describe methods used to

overcome the above limitations with an aim to build a

state-of-the-art hybrid framework of particle transport

to model high energy non-thermal emission from large

scale 3D RMHD simulations. Our sub-grid model for

shock acceleration incorporates the dependence of spec-

tral index on the shock strength and magnetic field ori-

entation. The magnetic fields obtained from our RMHD

simulations are used to compute radiative losses due to

synchrotron and IC emission in a more accurate manner

without any assumption on equipartition. Further, we

also incorporate effects to relativistic aberration in our

estimate of polarized emission due to synchrotron pro-

cesses. The paper is organized as follows - brief details

regarding the numerical methods used for our hybrid

particle & fluid framework is described in Sec. 2, differ-

ent micro-physical processes considered are elaborated

in details in Sec. 2.1. The radiative loss terms incor-

porated to obtain emissivity and polarisation maps are

described in Sec. 3. In Sec 4 we demonstrate the accu-

racy of the model and go on to describe the application

in AGN jets in Sec 5.

2. NUMERICAL FRAMEWORK

2.1. The Cosmic Ray Transport Equation

The transport equation for cosmic rays in a scatter-

ing medium has been derived, in the classical case, by

several authors (see e.g. Parker 1965; Jokipii & Parker

1970; Skilling 1975; Webb & Gleeson 1979) and, in the

relativistic case, by Webb (1989). Let f0(xµ, p) be the

isotropic distribution function of the non-thermal parti-

cle in phase space, where xµ and p denote the position

four-vector and the momentum magnitude, respectively;
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the transport equation then reads (Webb 1989)

∇µ (uµf0 + qµ) +
1

p2

∂

∂p

[
− p3

3
f0∇µuµ + 〈ṗ〉l f0

−Γviscp
4τ
∂f0

∂p
− p2Dpp

∂f0

∂p
− p(p0)2u̇µq

µ
]

= 0

(1)

where the terms in round brackets describe particle

transport by convection, and particle transport by dif-

fusion, respectively. Here uµ is the bulk four-velocity

of the surrounding fluid while qµ is the spatial diffu-

sion flux. The terms in square bracket are responsible

for evolution in momentum space and describe, respec-

tively:

• the energy changes due to adiabatic expansion;

• the losses associated due to synchrotron and IC

emission (here 〈ṗ〉l is the average momentum

change due to non-thermal radiation), see Sec.

2.2;

• the acceleration term due to fluid shear, where

Γvisc is the shear viscosity coefficient;

• Fermi II order process, where Dpp is the diffusion

coefficient in momentum space;

• non-inertial energy changes associated with the

fact that particle momentum p is measured rela-

tive to a local Lorentz frame moving with the fluid

(here p0 is the temporal component of the momen-

tum four-vector while u̇µ is the four-acceleration).

For the present purpose, we shall neglect particle

transport due to spatial diffusion, (i.e., qµ = 0) and,

for simplicity, ignore particle energization due to shear

(Γvisc = 0) , Fermi second order processes (Dpp = 0)

and the last term involving non-inertial energy changes

(as qµ = 0). Eq. (1) then reduces to

∇µ(uµf0) +
1

p2

∂

∂p

[
−p

3

3
f0∇µuµ + 〈ṗ〉l f0

]
= 0. (2)

On expanding the derivative in the first term and using

the fact that,

uµ∇µ = γ(
∂

∂t
+ vi

∂

∂xi
) ≡ d

dτ
(3)

is the Lagrangian derivative with respect to proper time

(dτ = dt/γ) where γ is the bulk Lorentz factor, we ob-

tain

p2 df0

dτ
+

∂

∂p

[
−p

3

3
f0∇µuµ + 〈ṗ〉l f0

]
= −p2f0∇µuµ (4)

We now define N (p, τ) =
∫
dΩp2f0 ≈ 4πp2f0 assuming

isotropic distribution of particles in momentum space.

Physically, N (p, t)dp represents the number of particles

per unit volume lying in the range p and p + dp at a

given time t. Since the particles are highly relativistic,

we can express the energy of the particle E ≈ p and

therefore, N (E, τ)dE = N (p, τ)dp. Integrating Eq. (4)

over the solid angle yields

dN
dτ

+
∂

∂E

[(
−E

3
∇µuµ + Ėl

)
N
]

= −N∇µuµ (5)

where the first term in square brackets accounts for en-

ergy losses from adiabatic expansion while the second

term Ėl = 〈ṗ〉l /p2 is the radiative loss term due to syn-

chrotron and inverse Compton processes.

2.2. Radiative Losses

Energetic electrons loose energy in presence of mag-

netic fields due to synchrotron emission. They are also

responsible to up-scatter surrounding radiation field via

the Inverse Compton process. For the latter process

we assume that the scattering in the relativistic particle

rest frame is Thomson, so that the cross section σT is

independent of incident photon energy Eph. The energy

loss terms for electrons with isotropically distributed ve-

locity vectors is therefore given by:

Ėl =
4

3
σT cβ

2

(
E

mec2

)2

[UB(t) + Urad(Eph, t)] , (6)

where, β is the velocity of the electrons (we assume β =

1 for highly relativistic electrons) and me is their mass.

Quantities UB = B2

8π and Urad are magnetic and

radiation field energy densities respectively. For the

present work, we use the isotropic Cosmic Microwave

Background (CMB) as the radiation source. There-

fore, applying the black body approximation, we have

Urad = aradT
4
CMB = aradT

4
0 (1 + z)4 where arad the radi-

ation constant, z is the redshift and T0 = 2.728 K is the

temperature of CMB at the present epoch.

2.3. Numerical Implementation

Eq. (5) is solved by introducing a large number

of Lagrangian particles (or macro-particles) sampling

the distribution function in physical space. A macro-

particle represents a collection of real particles (leptons

or hadrons) that are very close in physical space but

distributed in energy (or momentum) space. However,

for all the tests presented in the current work, we treat

a single macro-particle as an ensemble electrons. To

each macro-particle p we associate a time-dependent en-

ergy distribution functionNp(E, τ) quantised in discrete

energy bins. Since the distribution function is carried

along with the fluid, the spatial part of Eq. (5) is solved
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by advancing the macro-particle coordinates xp through

the ordinary differential equations:

dxp
dt

= vg(xp) , (7)

where the right hand side represents the fluid velocity

interpolated at the macro-particle position. Fluid equa-

tions given by
∂U

∂t
+∇ · F = S (8)

are solved as usual by means of the standard Godunov

methods already present in the PLUTO code. In the

equation above, U is a set of conservative variables and

F is the fluid flux tensor while S denotes the source

terms. The same time-marching scheme used for the

fluid is also employed to update the particle position.

For example, in a 2nd-order Runge-Kutta scheme, a sin-

gle time advance is comprised of the following steps -

1. The PLUTO grid is initialized and the domain is

decomposed into several processors in case of a

parallel run (see e.g. Mignone et al. 2007, 2012).

The particles are initialized on this grid via user-

defined distribution function. Each particle is rep-

resented in the code as a structure which has sev-

eral members that completely characterize that

particle. On initialization every particle is as-

signed a co-ordinate, a unique set of integers that

defines the particle , viz., id, birth rank and rank.

2. In the Predictor step, the particle’s position is up-

dated in the following manner -

x∗p = xnp + ∆tvng (xnp ) (9)

where ∆t is the one advection time step and xnp
denotes the particle’s position at time step n. The

velocity field interpolated from the fluid at the par-

ticles position at time step n is vng (xnp )

3. In the next stage, conserved quantities of the fluid

is updated from time step n to n + 1 using the

standard methods used in PLUTO code -

U∗=Un + ∆tF n

Un+1 =Un +
∆t

2
(F n + F ∗) (10)

where F ∗ is the flux tensor computed using the

intermediate values of conservative variables U∗.

4. Finally, the particle’s position is updated to step

n+ 1 in the corrector step as follows -

xn+1
p = xnp +

∆t

2

(
vng (xnp ) + vng (x∗p)

)
(11)

where vng (x∗p) implies that velocity is also interpo-

lated at the particle’s intermediate position given

by x∗p to achieve second order accuracy for the up-

date of both fluid and particle.

The MPI parallel implementation of the above hybrid

framework can efficiently scale upto 104 processors as

demonstrated in Vaidya et al. (2016). [Do we also de-

scribe the way we id the particle here as well and also

in CR paper?? Or just in CR paper and give reference

here.]

As macro-particles are transported in space by the

fluid, their spectral distribution evolves according to the

energy part Eq. (5) which can be regarded as a non-

homogeneous scalar conservation law with variable co-

efficients in the (E, τ) space. Here we show that a semi-

analytical solution can be obtained using the method of

characteristics. To this purpose, we first observe that

the characteristic curves of Eq. (5) are given by

dE

dτ
= −c1(τ)E − c2(τ)E2 , (12)

where c1(τ) = ∇µuµ/3, while c2(τ) can be derived di-

rectly from Eq. (6). Eq. (12) admits the solution

E(τ) =
E0e

−a1(τ)

1 + a2(τ)E0
, (13)

where E0 = E(τ0) while

a1(τ) =

∫ τ

τ0

c1(τ)dτ , a2(τ) =

∫ τ

τ0

c2(τ)e−a1(τ)dτ .

(14)

[Perhaps use τn and τn+1 to avoid confusion with ini-

tial condition]Along the characteristic curve Eq. (5) be-

comes an ordinary differential equation so that, for each

macro-particle we solve

dNp
dτ

∣∣∣∣
C

= −

(
3c1(τ) +

∂Ė

∂E

)
Np , (15)

where Ė is given by Eq. (12) while the suffix C on the left

hand side denotes differentiation along the characteristic

curve. Eq. (15) has the solution

Np(E, τ) = Np0
dE0

dE
exp

(
− 3a1(τ)

)
, (16)

where Np0 = Np(E0, τ0) is the distribution at the

old time level. The exponential term can be simpli-

fied with the aid of the continuity equation so that

∇µuµ = −d log ρ/dτ while the derivative on the right

hand side can be computed from Eq. (13). The final

results is

Np(E(τ), τ) = Np0
(

1 + a2(τ)E0

)2
(
ρ(τ)

ρ0

)2/3

, (17)



Non-thermal emission from Magnetised Flows 5

where ρ(τ) and ρ0 are the fluid densities interpolated at

the macro-particle positions xp(τ) and xp(τ0), respec-

tively.

Eq. (17) is an exact relation and approximation comes

in the evaluation of the a2(τ) coefficient and in interpo-

lating the fluid density at the macro-particle location.

We adopt the trapezoidal rule in time to evaluate the

second integral in Eq. (14).

Our method extends the approaches of (e.g. Karda-

shev 1962; Mimica & Aloy 2012) and it is essentially

a Lagrangian discretization for updating the distribu-

tion function in the energy coordinate. For compu-

tational purposes, we discretize the energy space (for

each macro-particle) into nE number of equally spaced

bins in logarithmic scale, ranging from Emin to Emax.

The real particle distribution can then be initialized by

prescribing an analytical functional form f(Ei) so that

Np(Ei, 0) = f(Ei), where i = 0, ..., nE denotes the en-

ergy coordinate index.

In all of the tests presented here we employ a standard

power-law

Np(Ei, 0) = N0

(
1−m

E1−m
max − E1−m

min

)
E−mi , (18)

where N0 is the initial number density of real particles

(i.e., electrons) associated with the macro-particle and

m is the electron power index. The problem dependent

parameters, viz., the initial energy bounds, N0 and the

value of electron power index m are specified for each

tests presented in this paper. The particle distribution

function is then evolved in time according to Eq. (17)

while the energy grid nodes Ei change following Eq.13.

The Lagrangian update described above has the distinct

advantages of reducing the amount of numerical diffu-

sion typical of Eulerian discretizations and it does not

require explicit prescription of boundary conditions.

2.4. Diffusive Shock Acceleration

The mechanism of diffusive shock acceleration (DSA)

plays an important role in particle acceleration in wide

variety of astrophysical environments, particularly in

Supernova remnants, AGN jets, GRBs, solar corona etc.

The steady state theory of diffusive shock acceleration

naturally results in power-law spectral distribution (e.g.

Blandford & Ostriker 1978; Drury 1983; Kirk et al. 2000;

Achterberg et al. 2001) The two most important factors

on which the post-shock particle distribution depends

on are the strength of the magnetized shock (i.e. the

compression ratio) and the orientation of magnetic field

lines with respect to the shock normal. The obliquity

of magnetized shocks plays a very important role in

determining the post-shock particle distribution (e.g.,

Jokipii 1987; Ballard & Heavens 1991). A comprehen-

sive treatment was presented by Summerlin & Baring

(2012) using Monte Carlo simulations, who have shown

the importance of mean magnetic field orientation in

the DSA process as well as the effect MHD turbulence

in determining the post-shock spectral index. Analyti-

cal estimates of the spectral index for parallel relativistic

shocks (Kirk et al. 2000; Keshet & Waxman 2005) and

for perpendicular shocks (Takamoto & Kirk 2015) have

also shown remarkable consistency with the results from

Monte Carlo simulations.

In our hybrid framework, modeling the post-shock

spectral distribution with Monte Carlo method (Sum-

merlin & Baring 2012) is computationally very expen-

sive and beyond the scope of present work. Instead we

adopt the analytical estimates to account for DSA in the

test particle limit valid for highly turbulent relativistic

shocks. The slope of spectral distribution associated

with each macro-particle will depend on the compres-

sion ratio of the shock, r and the angle between the

shock normal and magnetic field vector, ΘB . To esti-

mate these quantities, we have devised a strategy based

on a shock detection algorithm and the corresponding

change in the energy distribution of the particle as it

crosses the shock. This is based on the following steps:

1. We first flag zones as lying inside a shock when

the divergence of the fluid velocity is negative,

i.e., ∇ · v < 0 and the gradient of thermal pres-

sure is above a certain threshold, εp (see also the

appendix of Mignone et al. 2012). Typically we

observe that a value εp ∼ 3 is enough to detect

strong shocks. Shocked zones are shaded in or-

ange in Fig.1.

2. Prior to entering a shocked zone, the real particle

distribution Np - point (a) in Fig. 1 - is updated

according to Eq. (17) for each macro-particle.

3. When the macro-particle enters the shocked zone

- point (b) in Fig.1 - it is flagged to be inside

the shock and its spectral distribution is not up-

dated and kept constant to the most recent up-

dated value at - point (b), N (b)
p (E, t).

4. As the macro-particle travels inside the shocked re-

gion, we keep track of the fluid state (such as den-

sity, velocity, magnetic field and pressure), prop-

erly interpolated at the marco-particle’s position.

We estimate the maximum and minimum value for

the thermal pressure while the macro-particle is

traversing the shocked zones - between points (b)

and (d) -. The pre-shock fluid state U1 is then

chosen as the state at the macro-particle position
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when the pressure is minimum and similarly the

post-shock state U2 is when the pressure is maxi-

mum.

5. As the macro-particle leaves the shock at point

(d), we use the information of pre-shock and post-

shock states, U1 and U2 respectively, associated

with the macro-particle to compute the orientation

of shock normal and thereafter the shock speed.

We apply the co-planartity theorem to estimate

the shock normal, n̂s. This theorem states that

the magnetic fields on both sides of shock front,

B1 and B2, lie in the same plane as the shock

normal, n̂s. Furthermore, vectors like velocity and

magnetic field jumps across the shock are also co-

planar with the shock normal (Schwartz 1998). By

knowing the two co-planar vectors to the shock

normal, we can easily obtain n̂s. Then using the

conservation of mass flux, we estimate the shock

speed:

Jlab = ρ1γ1(β1− vsn̂s) · n̂s = ρ2γ2(β2− vsn̂s) · n̂s
(19)

where γ1 and γ2 are bulk Lorentz factors in the

pre-shock and post-shock regions in the lab frame.

The equation above can be extended to non-

relativistic case by setting the Lorentz factors

to unity.

6. We can now compute the shock compression ratio,

r, i.e., ratio of upstream β′1 and downstream β′2
velocities in the shock rest frame:

r =
β′1 · n̂s
β′2 · n̂s

(20)

The estimated shock speeds and its normal are in-

tegral properties required to transform from the

fluid frame to the frame at which the shock is

at rest. For the non-relativistic case, the shock

rest frame can be trivially obtained using Galilean

transformation. In this case, the compression ra-

tio can also be obtained from the ratio of densities

across the shock (see Eq. B11). However, this is

not true in case of relativistic shocks. The ref-

erence frame transformation is not trivial for rel-

ativistic flows and one can define multiple shock

rest frames. In our approach, we transform the

lab frame to the Normal Incidence Frame, NIF

(see Appendix B) to estimate the compression ra-

tio using Eq. B13.

7. The compression ratio, r and the orientation ΘB

of magnetic field B with respect to shock n̂s in

the shock rest frame is used to obtain the particle

distribution at point (d), N (d)
p (E, t) in the post-

shock region. In particular, we inject a power-

law spectrum in the post-shock region following

N (d)
p (E, t) = N (ε0)(E/ε0)−q+2 where ε0 is the

minimum bound of the injected spectra and N (ε0)

is the normalization constant. These two quanti-

ties depends on two user-defined parameters viz.,

the ratio of non-thermal to thermal (real) parti-

cles, δn and the ratio of total energy of the injected

real particles to the fluid internal energy density δe
(see e.g., Mimica et al. 2009; Böttcher & Dermer

2010; Fromm et al. 2016). Therefore, we solve

Np(ε0)

∫ ε1

ε0

(
E

ε0

)−q+2

dE = δn
ρ

mp
(21)

and

Np(ε0)

∫ ε1

ε0

(
E

ε0

)−q+2

EdE = δeE (22)

to obtain the value of N (ε0) and ε0. In Eq. (21),

ρ is the value of fluid density interpolated at the

macro-particle’s position and mp is the mass of

proton as the thermal (real) particle fraction is

dominated by protons in the background fluid. E
is the fluid internal energy density interpolated

at the particle position. Finally, the high energy

cut-off, ε1 is estimated using the balance of syn-

chrotron time scale, τsy, to the acceleration time

scale τacc (Böttcher & Dermer 2010; Mimica &

Aloy 2012).

ε1 =

(
9c4m2

e

8πBλeffe3

)1/2

mec
2 (23)

where, the acceleration efficiency λeff is given by,

λeff =


r(r + 1)β−2

2 (r − 1)−1, if 0 ≤ θB ≤ π/4

2ηrβ−2
2 (1 + η2)−1(1 + r)−1, otherwise

where the dimensionless free parameter η > 1 is

the ratio of gyro-frequency to collision frequency

and chosen to be a constant (Takamoto & Kirk

2015). We treat shocks to be quasi-parallel for

θB ≤ π/4 and quasi-perpendicular otherwise, here

θB is angle between the magnetic field vector and

shock normal in the NIF.

8. The power-law index, q for non-relativistic shocks

used in our model is that obtained from steady

state theory of DSA (Drury 1983),

q = qNR =
3r

r − 1
(24)
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In case of relativistic shocks, power law index q is

obtained using analytical estimates from Keshet &

Waxman (2005) particularly under the assumption

of isotropic diffusion,

q=
3β′1 − 2β′1β

′2
2 + β′32

β′1 − β′2

=
3r

r − 1
+

(
1− 2r

r − 1

)
β′22

= qNR +

(
1− 2r

r − 1

)
β′22 (25)

where β′1 and β′2 are the upstream and downstream

velocity components along the shock normal in

NIF. In our test-particle framework, we assume

isotropic diffusion for values of θB ≤ π/4 and use

the spectral index from Eq. 25. While for more

oblique shocks we adopt the analytic estimate ob-

tained by (Takamoto & Kirk 2015) for perpendic-

ular shocks,

q=
3r

r − 1
+

9

20

r + 1

r(r − 1)
η2β′21

q= qNR +
9

20

r + 1

r(r − 1)
η2β′21 (26)

9. The updated spectra N (d)(E, t) for the macro-

particle that continues to travel along the fluid -

point (e) in the Fig. 1 - will be further evolved at

each advection time based on local fluid conditions

using Eq. 17.

3. EMISSION AND POLARISATION SIGNATURES

In the previous sections we described the framework

and the methods used for following the temporal evolu-

tion of the distribution function of the ensemble of NTP

attached to each Lagrangian macro-particle. The knowl-

edge of the distribution function allows to compute the

non-thermal radiation emitted by each macro-particle

and from the spatial distribution of macro-particles we

can reconstruct the spatial distribution of non-thermal

radiation. The non-thermal processes that we will con-

sider are synchrotron and IC emission on a given radi-

ation field and we will then be able to obtain intensity

and polarization maps for each temporal snapshot. In

the next subsection we describe synchrotron emission,

while subsection 3.2 will be devoted to IC radiation.

3.1. Synchrotron Emission

The synchrotron emissivity, in the direction n̂′, per

unit frequency and unit solid angle, by an ensemble of

⇢2, P2

⇢1, P1

~B2

~B1

V sh
k
n̂ s

�2

�1

Figure 1. Cartoon figure showing the different positions of
the particle and corresponding diagnostics

ultra-relativistic particles is given by (see Ginzburg &

Syrovatskii 1965):

J ′syn(ν′, n̂′) =

∫
P ′(ν′, E′, ψ′)N ′(E′, τ̂ ′)dE′dΩ′τ (27)

where all primed quantities are evaluated in the local

co-moving frame, which has a velocity β = v/c with re-

spect to the observer. Here, P ′(ν′, E′, ψ′) is the spectral

power per unit frequency and unit solid angle emitted

by a single ultra-relativistic particle, with energy E′ and

whose velocity makes an angle ψ′ with the direction n̂′,

while N ′(E′, τ̂ ′)dE′dΩ′τ represents the number of par-

ticles with energy between E′ and E′ + dE′ and whose

velocity is inside the solid angle dΩ′τ around the direc-

tion τ̂ ′. In performing the integrals, we can take into

account that the particle radiative power, in the ultra-

relativistic regime, is strongly concentrated around the

particle velocity and therefore only the particles with

velocity along n̂′ contribute to the integral, we can then

set N ′(E′, τ̂ ′) = N ′(E′, n̂′) and the integration over dΩ′τ
corresponds to the integration over dψ′. Inserting in Eq.

(27) the expression for P, that can be found in Ginzburg
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& Syrovatskii (1965), we then get

J ′syn(ν′, n̂′los,B
′) =

√
3e3

4πmec2
|B′×n̂′los|

∫ Ef

Ei

N ′(E′)F (x)dE′

(28)

where the direction individuated by n̂′los is the direction

of the line of sight, we assumed that the radiating par-

ticles are electrons and we took a particle distribution

that is isotropic and covers an energy range between a

minimum energy Ei and a maximum energy Ef . From

the isotropy condition we can also write

N ′(E′) = 4πN ′(E′, n̂′).

Finally, the function F (x) is the usual Bessel function

integral given by

F (x) = x

∫ ∞
x

K5/3(z)dz (29)

where the variable x is

x =
ν′

ν′cr
=

4πm3
ec

5ν′

3eE′2|B′ × n̂′los|
(30)

and ν′cr is the critical frequency at which the function,

F (x) peaks. Similarly, the linearly polarised emissivity

is given by

J ′pol(ν
′, n̂′los,B

′) =

√
3e3

4πmec2
|B′×n̂′los|

∫ Ef

Ei

N ′(E′)G(x)dE′

(31)

where, the Bessel function G(x) = xK2/3(x).

Eqs. (28) and (31) give the emissivities in the co-

moving frame as functions of quantities measured in the

same frame, we need however the emissivities in the

observer frame as functions of quantities in the same

frame, these can be obtained by applying the appropri-

ated transformations:

Jsyn(ν, n̂los,B) = D2J ′syn(ν′, n̂′los,B
′), (32)

Jpol(ν, n̂los,B) = D2J ′pol(ν
′, n̂′los,B

′) (33)

where the Doppler factor D is given by

D(β, n̂los) =
1

γ(1− β · n̂los)
, (34)

γ is the bulk Lorentz factor of the macroparticle, while

ν′, n̂′los and B′ can be expressed as functions of ν, n̂los
and B through the following expressions:

ν′=
1

D
ν (35)

n̂′los=D
[
n̂los +

(
γ2

γ + 1
β · n̂los − γ

)
β

]
(36)

B′=
1

γ

[
B +

γ2

γ + 1
(β ·B)β

]
(37)

Using Eqs. (32) and (33), we can get for each

macro-particle the associated total and polarized emis-

sivities, at any time. The values are then deposited

from the macro-particle on to the grid cells so as to

give grid distributions of total and polarised emissivi-

ties, Jsyn(ν, n̂los, r) and Jpol(ν, n̂los, r), as functions of

the position r.

Specific intensity maps can now be obtained by inte-

grating the synchrotron emissivity, Jsyn(ν, r) along the

line of sight, in the direction n̂los,

Iν(ν,X, Y ) =

∫ ∞
−∞
Jsyn(ν,X, Y, Z)dZ, (38)

where we introduced a cartesian observer’s frame where

the axis Z is taken along the line of sight and the axes X

and Y are taken in the plane of the sky. The total inten-

sity represents the first Stokes parameter. To compute

the other Stokes parameters, Qν and Uν (neglecting cir-

cular polarisation), we need to estimate the polarisation

angle, χ. Such an estimate would require to account

for proper relativistic effects like position angle swings

(Lyutikov et al. 2003; Del Zanna et al. 2006). The two

Stokes parameter in the plane of sky are given by (see,

Del Zanna et al. 2006)

Qν(ν,X, Y ) =

∫ ∞
−∞
Jpol(ν,X, Y, Z)cos 2χdZ (39)

Uν(ν,X, Y ) =

∫ ∞
−∞
Jpol(ν,X, Y, Z)sin2χdZ (40)

where (see Del Zanna et al. 2006):

cos(2χ) =
q2
X − q2

Y

q2
X + q2

Y

, sin(2χ) = − 2qXqY
q2
X + q2

Y

(41)

and

qX = (1−βZ)BX−βXBZ , qY = (1−βZ)BY −βYBZ
(42)

and the polarization degree is

Π =

√
Q2
ν + U2

ν

Iν
. (43)

3.2. Inverse Compton Emission

The other important emission mechanism that we con-

sider is the Inverse Compton Effect due to the interac-

tion of relativistic electrons with a given radiation field.

In the present work, we will focus on the IC emission on

seed photons due to the isotropic CMB radiation.

The co-moving IC photon emissivity ṅ′IC(ν′, n̂′) =

j′IC/hν
′(number of photons per frequency interval per

unit solid angle around the direction n′) is given by

ṅ′IC(ν′, n̂′) =

∫ ∞
0

dε′ph

∫
dΩ′ph

∫
dE′

∫
dΩ′τ c(1− βe · l′)(44)

n′ph(ε′ph, l
′)N(E′, τ )σ(ε′ph, l

′, ν′, n̂′)



Non-thermal emission from Magnetised Flows 9

where n′ph(ε′ph, l
′) and N ′(E′, τ ) are, respectively, the

spectral density distribution of the seed photons, in the

co-moving frame, as a function of photon energy ε′ph and

photon direction l′ and the electron distribution as a

function again of energy E′ and direction τ . The factor

c(1−βe · l′) arises from the differential velocity between

the photon and the electron, and βe is the scattering

electron velocity vector in units of c. The scattering

cross-section, σ, depends, in principle, on the directions

and energies of incident and out-going photons.

The seed photons are the CMB photons, then in the

observer frame have a black-body distribution with en-

ergy density

uCMB = 4
σB
c

[
TCMB(1 + z)4

]
(45)

where σB is the Stefan-Boltzmann constant, TCMB =

2.728K is the CMB temperature and z is the redshift

of the source we study. We approximate the black-

body distribution with a monochromatic distribution

with energy equal to the peak energy of the blackbody,

εCMB = kBTCMB , where kB is the Boltzmann constant.

If the flow moves at relativistic bulk speed (γ >> 1), the

seed photons in the co-moving frame are bunched in the

direction opposite to the macro-particle velocity. The

photon spectral energy distribution can be written as

n′ph(ε′ph, l
′) =

γuCMB

εCMB
δ(l′ − β̂)δ(ε′ph − γεCMB), (46)

where β̂ is the unit vector in the direction of the macro-

particle velocity and δ represents the Dirac function.

The electron distribution is assumed to be isotropic

N ′(E′, τ ) = N ′(E′)/4π
The scattered photons are beamed along the direction

of the scattering electron so that n̂′ = τ and emerge

after scattering with average final energy

hν′ ≈
(

E′

mec2

)2

ε′ph(1 + τ ′ · β̂). (47)

Using the Thomson cross section, which is justified

when the incident photon energy, in the electron frame,

is much less than the electron rest mass energy, i.e. as-

suming σ(ε′ph, l
′, ν′, n̂′) = σT , inserting Eqs. (45), (46),

and (47) in Eq. (44) and taking into account the appro-

priated Lorentz transformations, we can finally express

the IC emissivity in the observer frame for each macro-

particle as

JIC(ν, n̂los) =

(
D2mec

2

2πkB

)
σBσTT

3
CMB(1 + z)3 (48)

(DΛχ)
1/2N

(√
χ

DΛ

)
,

where D is the Doppler factor,

Λ =
1 + n̂los · β̂

1 + β
(49)

and

χ =
hν

kBTCMB(1 + z)
. (50)

As we do for the synchrotron emissivity, we can deposit

the IC emissivity on to the grid cells so as to give the

grid distribution of JIC(ν, n̂los, r) and finally we can

obtain specific intensity maps by integrating along the

line of sight.

4. NUMERICAL BENCHMARKS

In this section we report a suite of numerical bench-

marks aimed at validating the correctness of our numer-

ical implementation.

4.1. Classical Planar Shock

In the first test problem we asses the accuracy of our

method in verifying that the shock properties (such as

compression ratio, mass flux, etc), are sampled correctly

as macro-particles cross the discontinuity.

We solve the classical MHD equation with an ideal

equation of state (Γ = 5/3) on the Cartesian box x ∈
[0, 4], y ∈ [0, 2] using a uniform resolution of 512 × 256

grid zones. The initial condition consists of a planar

shock wave initially located at xs(0) = 1 and moving

to the right with speed vs. We work in the upstream

reference frame where the gas is at rest with density

and pressure equal to ρ1 = 1, p1 = 10−4. Here the

magnetic field lies in the x − y plane and it is given by

B = B1(cos θB , sin θB) where θB = 30◦ is the angle

formed by B and the x axis while B1 is computed from

the plasma beta, βp1 = 2p1/B
2
1 = 102. The downstream

state is computed by explicitly solving the MHD jump

conditions once the upstream state and the shock speed

vs are known. Zero-gradient boundary conditions are set

on all sides. We place a total of Np = 16 macro-particles

in the region 1.5 < x < 3 in the pre-shock medium and

perform six different runs by varying the shock speed

vs ∈ [0.01, 1] on a logarithmic scale.

While crossing the shock, fluid quantities are inter-

polated at each macro-particle position following the

guidelines described in Sec 2.4. From these values we

compute, for each macro-particle, the mass flux Jp and

the compression ratio rp in the shock rest frame for each

macro-particle. As all macro-particles experience the

same shock, we compute the average value

〈J〉 =
1

Np

∑
p

Jp (51)
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Figure 2. Analytical (red dots) and simulated (green stars) values of the mass flux in shock rest frame J (left panel) and compression

ratio r (right panel) for the classical MHD planar shock test with θB = 30◦.

and similarly for the compression ration 〈r〉. In the

left and right panel of Fig. 2 we compare, respectively,

〈J〉 and 〈r〉 with the analytical values obtained from

the computations at different shock velocities. Our re-

sults are in excellent agreement with the analytic values

thereby demonstrating the accuracy of steps i) to vi)

of the algorithm described in section 2.4 in the non-

relativistic case.

4.2. Relativistic Planar Shock

Next, we extend the previous problem to the relativis-

tic regime with the aim to further describe the spectral

evolution of macro-particles as they cross the disconti-

nuity. The initial conditions is similar to the previous

test case but the upstream medium has now a trans-

verse velocity β = 0.99ŷ and the magnetic field has a

different strength given by βp1 = 0.01. We solve the rel-
ativistic MHD equation with the TM equation of state

(Taub 1948; Mathews 1971) and repeat the computation

considering different values of the shock speed vs. The

magnetic field is oriented at an angle θB = 30◦ with re-

spect to x axis in the lab frame. Like the classical case,

we introduce Np = 16 macro-particles in the upstream

reference frame in the region 1.5 < x < 3.

As explained in section 2.4, we estimate relevant quan-

tities such as the mass flux J and compression ratio r

by transforming to the Normal Incidence Frame (NIF)

where the upstream velocity is normal to the shock front.

The strategy used for frame transformation is more in-

volved than its classical counterpart and it is illustrated

in Appendix B.

The left panel of Fig. 3 shows the analytical mass

flux J in the lab frame (see Eq. 19) as red dots and the

average value of the mass flux 〈J〉 obtained from the par-

ticles in the NIF frame as green stars. A good agreement

between the analytical and numerical results highlight

the accuracy of our method in sampling the shock and

the subsequent frame transformation required to quan-

tify the compression ratio. A comparison between the

analytical values (red dots) for the compression ratio, r

with that obtained from macro-particles (green stars) is

shown in the right panel of Fig. 3. We observe that

the average compression ratio, 〈r〉 estimated as the ra-

tio of upstream and downstream velocities in NIF using

macro-particles agrees with analytical values for varying

shocks speeds. The compression ratio value approaches,

r = 4.0 for smaller shock speeds as expected from the

non-relativistic limit.

Next we focus on the evolution of the spectral energy

distribution and, to this purpose, appropriate physical

scales must be introduced. We set the unit length scale

L0 = 102 pc and the speed of light as the reference ve-

locity, i.e. V0 = c. The energy distribution for each

macro-particle is initialized as a power law with m = 9

(see Eq. 18) with the initial number density of real

particles N0 = 10−4cm−3. The initial spectral energy

ranges from Emin = 10−4Esc to Emax = 102Esc, with

nE = 500 bins and Esc = 0.01 ergs. The energy bounds

of the spectral distribution as the macro-particles cross

the shock are estimated from Eqns. (21) and (22) with

δn = 0.9 and δe = 0.5. The shock compression ratio for

both cases is set to r = 3.3.

We consider both quasi-parallel and quasi-perpendicular

shocks where the angle between the shock normal and

magnetic field vector is θB = 3◦ and θB = 83◦, re-

spectively. In both cases the shock speed is set to be

vs = 0.25c and the shock moves in the positive x direc-

tion. The density map and magnetic field orientation at
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Figure 3. Left panel : Analytical mass flux J in the lab frame (or NIF) estimated from Eq. (19) is shown as (red dots), whereas its

average value 〈J〉 obtained from macro-particles are shown as green stars. In the right panel, the analytical (red dots) and simulated values

of compression ratio, r (green stars) estimated using Eq. (B13) are shown. The simulated values are obtained as macro-particles traverse

the relativistic planar shock and the sampled quantities across the shock are transformed to a shock rest frame (see text).

Figure 4. Top panels Density distribution in color at time t = 2.4 kyr along with magnetic field vectors shown as white arrows for

quasi- parallel case θB = 3◦ (left) and quasi-perpendicular case θB = 83◦ (right) for the relativistic planar shock test. Bottom panels The

corresponding evolution of normalized spectral distribution of a representative macro-particle.
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t = 2.4 kyr are shown in the top panels of Fig 4 for the

two cases.

The spectral evolutions of a representative macro-

particle are shown in the bottom panel of Fig. 4 for

the quasi-parallel (left panel) and quasi-perpendicular

(right panel) cases. For the quasi-parallel case, the ini-

tial spectra steepens at high energies in presence of losses

due to synchrotron emission. At time t = 1.37 kyr the

macro-particle crosses the shock from the upstream re-

gion and the distribution function flattens its slope yield-

ing a spectral index q = 2.15 as estimated from Eq. (25).

Due to large acceleration time scale for quasi-parallel

case, a high energy cutoff Emax ∼ 6.25× 106 GeV is ob-

tained as seen by the light green curve in the left panel.

Subsequently, the high energy part cools down due to

synchrotron emission reaching an energy of ∼ 103 GeV

(red curve). On the other hand, in the case of quasi-

perpendicular shock, we obtain a steeper distribution

owing to the dependence of the spectral index (q = 5.46)

on η2 (Eq. 26). Also, the high energy cutoff lessens

due to the inefficiency of quasi-perpendicular shocks in

accelerating particles to high energy. The subsequent

evolution of the particle spectrum is then governed by

radiation losses due to synchrotron and inverse Compton

cooling and lead to a similar steepening at high energies

in both cases. This test clearly shows the validity of our

method in estimating the compression ratio r and the

change in the spectral slope under the DSA approxima-

tion.

4.3. Relativistic Magnetized Spherical Blast wave

In the next test case, we test our numerical approach

on curved shock fronts to assess the accuracy of the

method in the case where shock propagation is not grid-

aligned.

The initial conditions consists of a relativistic magne-

tized blast wave centered at the origin with density and

pressure given by

(ρ, p) =


(1, 1) for R < 8 pc

(10−2, 3× 10−5) otherwise

(52)

where R =
√
x2 + y2. The above values are in units of

ρ0 = 1.66 × 10−27gcm−3 and unit pressure p0 = ρ0c
2,

with c being the speed of light. The magnetic field is

perpendicular to the plane: B = B0ẑ withB0 = 13.7 nG

while an ideal EoS with Γ = 5/3 is used.

For symmetry reasons, we consider only one quad-

rant using 5122 computational zones on a square Carte-

sian domain of side 6l0, where the scale length, l0 =

10 pc. Reflecting conditions are applied at x = y = 0

while outflow boundaries hold elsewhere. The HLL Rie-

mann solver, linear interpolation and a second-order

Runge-Kutta are used to evolve the fluid. We em-

ploy 360 macro-particles uniformly distributed between

0 < φ < π/2 and placed at the cylindrical radius

Rp =
√
x2
p + y2

p = 20 pc. Associated with each macro-

particle is an initial power-law spectra with index m = 9

covering an energy range of [10−6Esc, 104Esc] with 500

logarithmically spaced uniform bins and the scale energy

Esc = 0.01 ergs.

The over-pressurized regions develops a forward mov-

ing cylindrical shock that propagates along the radial

direction. The shock velocity vs computed by differ-

ent macro-particles (see Sec. 2.4) is shown in the top

panel of Fig 5 as a function of the angular position

and compared to a semi-analytical value vs ≈ 0.885 ob-

tained from a highly resolved 1D simulation. The nu-

merical estimate of the shock speeds is consistent with

the semi-analytical value within 1% relative error. Ad-

ditionally, its value remains the same independent of

the angular position of the macro-particle. This clearly

demonstrates the accuracy of over hybrid shock tracking

method for curvilinear shock.

This shock speed is then used to perform a Lorentz

transformation to the NIF in order to obtain the com-

pression ratio, shown in the middle panel of Fig.5, from

macro-particle initially lying at different angles. Simi-

lar to the shock velocity estimate, the compression ra-

tio (middle panel) also agrees very well with the semi-

analytical estimate r ≈ 2.473 shown as a red dashed

line.

The bottom panel of the Fig. 5 shows the relative

error in the estimate of mass flux, JNIF in the normal

incidence frame. The relative error in the mass-flux is

estimated as,

∆JNIF[%] = 100

(
JNIF − JrefNIF

JrefNIF

)
. (53)

where, the numerical mass flux down-stream of the

shock in the NIF, JNIF is estimated from quantities in-

terpolated on the macro-particles from the fluid. The

reference value, JrefNIF , is estimated using the semi-

analytical shock velocity and quantities across the shock

from a highly resolved 1D simulation. The color rep-

resents the value of the compression ratio as indicated

from the color-bar.

4.4. Sedov - Taylor Explosion

In the next test we verify the accuracy of our method

in computing the radiative loss terms by focusing on

the adiabatic expansion term alone, for which an ana-

lytical solution is available. The fluid consists of a pure
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Figure 5. The variation of shock properties with angular posi-

tion for the RMHD blast wave test. The shock velocity obtained

from a single representative macro-particle is shown as black cir-

cles and the semi-analytical estimate from a very high resolution

1D run is shown as a red dash line in the top panel. The middle

panel shows the variation of compression ratio obtained from the

particles. The relative error in the estimate of mass flux, JNIF

in the normal incidence frame is shown in the bottom panel, the

colors here indicate the value of compression ratio.

hydrodynamical (B = 0) Sedov-Taylor explosion in 2D

Cartesian coordinates (x,y) on the unit square [0, 1] dis-

cretised with 5122 grid points. Density is initially con-

stant ρ = 1. A circular region around the origin (x=0,

y=0) with an area ∆A = π (∆r)
2

is initialized with a

high internal energy (or pressure), where ∆r = 3.5/512.

While the region outside this circle has a lower internal

energy (or pressure). Using an ideal equation of state

with adiabatic index 5/3 we have,

ρe =


E

∆A , for r ≤ dr

1.5× 10−5, otherwise

where r =
√
x2 + y2 and input Energy, E = 1.0. There-

fore we have contrast of ≈ 4.54× 108 in ρe.

For this test problem we have used the standard HLL

Reimann solver with Courant number CFL = 0.4. Re-

flective boundary conditions are set around the axis

while open boundary conditions are imposed elsewhere.

Using the dimensional analysis, the self-similar solu-

tion for the Sedov-Taylor blast can be derived. In terms

of the scaled radial co-ordinate η ≡ r(Et2/ρ)−1/5, the

shock location is obtained by:

rs(t) = ηs

(
Et2

ρ

)1/5

∝ t2/5 (54)

where ηs is a constant of the order of unity and r is the

spherical radius. The shock velocity follows via time

differentiation as,

vs(t) =
drs
dt

=
2

5

rs(t)

t
∝ t−3/5 (55)

Due to self-similar nature, we can further relate the flow

velocity at any spherical radius r to that of the shock

velocity obtained from Eq. 55:

v(r, t) ≡ vs(t)

rs(t)
r ≡ 2

5
rt−1 (56)

Thus, we have ∇·v ∝ t−1. To estimate the evolution of

spectral energy for a single macro-particle due to adia-

batic expansion we have to solve Eq. (12)

E(t) = E0exp

(
−
∫ t

t0

c1(t)dt

)
(57)

where c1(t) = 1
3∇ · v ∝ t−1. Plugging Eq. (57) into

Eq. (17) gives the temporal dependence of an initial

power-law spectral density N (E, t):

N (E, t) ∝ E−m
(
t0
t

)m+2

∝ E−m0

(
t0
t

)2

, (58)

a result already known by Kardashev (1962).

In order to compare the above analytical result with

simulations, we initialise a total of 1024 macro-particles

that are placed uniformly within the domain of unit

square. Each particle is initialised with a power-law

spectrum N ∝ E−m (see Eq. 18) with m = 3 covering

a range of 6 orders of magnitude in the actual particle

energy with a total of 250 equally spaced logarithmic

energy bins. As the aim of this test is to study solely

the effects due to adiabatic expansion, we switch off (by

hand) the impact of shock acceleration due to forward

moving spherical shock. Quantitatively, we then obtain

the spectral evolution using Eq. 17 by taking into ac-

count losses due to adiabatic expansion only (Eq. 12

with c2(τ) = 0 as B = 0).

Eq. (58) indicates that the ratio of spectral density

varies with the inverse square law of time and does not
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Figure 6. Left panel: particle distribution (black points) along with the fluid density (in color) for the Sedov Taylor explosion test at

time t = 0.85 with a resolution of 5122. Right panel: temporal spectral evolution for the macro-particle that is marked as white star in the

left panel.

affect the initial distribution slope m. This implies that

losses due to adiabatic expansion modify all energy bins

in the same way and the resulting spectral evolution in-

volves a parallel shift of the spectrum. Such an evolution

of spectrum for a representative particle is shown in the

right panel of Fig. 6.

Particle Distribution along with fluid density (in

color) at time t = 0.85 is shown in the left panel of

Fig. 6. The particles that were initially placed uni-

formly have expanded with the flow as expected from

their Lagrangian description. Also, at the regions of

high density just behind the shock, a large concentra-

tion of particles is seen. The spectral evolution of the

particle marked with white color is shown in the right

panel of the same figure. Radiative losses due to adia-

batic cooling affect all energy bins uniformly as a result

the spectra shifts towards the lower energy side keeping

the same value of initial spectral power i.e., m = 3.

In order to test the accuracy of the numerical method

applied, we have done a convergence study by varying

the grid resolution of the unit square domain.

In the top panel of Fig. 7, we compare the spectral

distribution for a particular energy bin (E = Emin(t))

of a single particle under consideration with the analyt-

ical solution described above. We observe that for run

with 5122 resolution, the simulated values are in perfect

agreement with the analytical estimates. However, the

errors in the estimate of the slope becomes as large as

10-15% with low resolution. The bottom panel of Fig.

7 shows the relative error in % for the estimate of the

slope for different grid resolution. The error is visibly

large for grid resolution < 100 points. However, having

Figure 7. Top Comparing the temporal evolution of normalized

spectral distribution, N (Emin, t) (red squares) with analytical so-

lution obtained from Eq. 58 shown as black dashed line. Bottom

Results from the convergence study with different resolution are

shown in this panel. The green triangles represent the relative

errors (%) in estimating the analytical slope for the variation of

N (Emin, t) with respect to time. The two black dashed line marks

the ± 2% error.

more than 128 points in the domain results in reduc-

ing the error within the ±2% band as indicated by two

black dashed lines and if fully converged for runs with

512 grid points.
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4.5. Relativistic Spherical Shell

In this test, we verify our numerical implementation to

estimate synchrotron emissivities (Eqns 32 and 33) and

the polarisation degree from stokes parameters (Eqns 39

and 40) specifically testing the changes due to relativis-

tic effects.

4.5.1. In co-moving frame

We initialize a magnetized sphere in a three dimen-

sional square domain of size L = 40 pc. The sphere has

a constant density (ρ0 = 1.66×10−25 g cm−3) and pres-

sure (P0 = 1.5 × 10−4 dyne cm−2 ) and is centred at

the origin and has a radius of Rs = 10 pc. The three

components of the velocity are given such that,

v = β
R

Rs
{sin(θ) cos(φ), sin(θ) cos(φ), cos(θ)} (59)

where β =
√

1− 1/γ2 with bulk Lorentz factor γ and

R, θ and φ are spherical co-ordinates expressed using

Cartesian components.

The cartesian components of the purely toroidal mag-

netic fields are set as follows,

Bx=−B0 sin(φ)
√
x2 + y2

By =B0 cos(φ)
√
x2 + y2

Bz = 0.0 (60)

where B0 ∼ 60 mG is the magnitude of magnetic field

vector.

A total of 100 Macro-particles with an initial power-

law spectral distribution are randomly placed on the

shell of width 0.1Rs. For each particle, the spectral

range from Emin = 10−8 ergs to Emax = 102 ergs is

sampled by a total of 250 logarithmically spaced energy

bins. The synchrotron emissivity, Jsy(ν) and linearly

polarized emissivity Jpol(ν) from each of this macro-

particle is estimated numerically using Eqs. 32 and 33

for an observed frequency ν = 1010GHz with the ini-

tial power-law spectral distribution. Their ratio gives a

value of polarisation fraction Πi, for ith macro-particle.

We compute the arithmetic average of numerically esti-

mated polarization degree and is denoted by 〈Π〉
In the co-moving frame, the theoretical value expected

for the polarisation degree, on the shell is simply given

by (e.g. Longair 1994)

Π =
m+ 1

m+ 7/3
. (61)

In figure Fig. 8, we have compared the numerical av-

eraged value (in co-moving frame) for different initial

power-law spectral slope, m with the above theoretical

estimate (Eq. 61)

Figure 8. Comparison of the numerically estimated averaged

ratio of Jsy(ν) with Jpol(ν) for ν = 1010GHz (red squares) with

the theoretical values obtained from Eq.61 shown as black dashed

line.

4.5.2. In observers frame

To obtain the polarisation degree, Πobs in the ob-

servers frame, Stokes parameters given by Eqns 39 and

40 have to be computed along with polarisation angle

χ. Relativistic effects like position angle swing must be

taken into account In order to calculate χ (e.g. Lyutikov

et al. 2003; Del Zanna et al. 2006). Due to relativistic

motion the emission is boosted resulting in a rotation

of linear polarisation angle in the n̂− v plane. Though

the value of fractional polarisation is same, the rotation

of polarisation angle is different for different elements of

the emitting object These relativistic kinematic effects

can therefore result in maximum observed polarisation

to be smaller than the theoretical upper limit given by

Eq. 61. This crucial ingredient has been implemented

in our hybrid framework to compute the Stokes parame-

ters and thereby the corrected fractional polarisation in

case of macro-particles moving in relativistic flow. Here,

we verify our numerical implementation by replicating

the calculation of averaged value of Stokes parameter

done by Lyutikov et al. (2003) for a quasi-spherical thin

emitting shell.

In our case, emitting element is represented by a

macro-particle that is moving with the spherical shell

with velocity that depends two co-ordinates of spherical

co-ordinates - θ and φ -

v = β{sin θ cosφ, sin θ cosφ, cos θ} (62)
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, where β is a related to Lorentz γ. The observer is set

to be in the x-z plane with

n̂ = {sin θobs, 0, cos θobs} (63)

as the unit vector along the line of sight and θobs is

the angle with respect to vertical z-axis. The shell is

magnetized with field that lies along -

B̂ = {− sin Ψ′ sinφ,− sin Ψ′ cosφ, cos Ψ′} (64)

where Ψ′ is the magnetic pitch angle. Macro-particles

that are placed uniformly on such a shell will emit syn-

chrotron emission based on their initial power-law spec-

tra govern by the index m (same for all macro-particles).

The dependence of volume averaged stokes parameters

obtained from our numerical implementation for two val-

ues of Lorentz γ = 10 (solid lines) and γ = 50 (dashed

lines) of the shell and three values of initial power-law

index (i.e., m = 1, 2 and 3) of the emitting macro-

particles is shown in Fig. 9. The left panel of the figure

is for a value of magnetic pitch angle Ψ′ = 45◦ and the

right panel is for a purely toroidal field Ψ′ = 90◦.

For the case of purely toroidal magnetic field, we

observe the value of polarization degree saturates for

θobs > 1/γ consistent with electro-magnetic model pro-

posed to explain large values of polarisation reported in

GRB Lyutikov et al. (2003). As expected, the polarisa-

tion fraction saturates at a smaller θobs for γ = 50 as

compared to runs with γ = 10. The asymptotic value,

Π ≈ 56% obtained for m = 3(blue) is less than the max-

imum upper limit of 75% (using Eq. 61) in agreement

with the estimates from Lyutikov et al. (2003). The ef-

fect of depolarization is further enhanced if the magnetic

field distribution is changed using the value of Φ′ = 45◦

(left panel). In this case, the asymptotic value of polar-

ization degree for m = 3 is ≤ 30%. This clearly shows

the vital role of (de)-polarization degree in determining

the magnetic field structure in the flow.

5. ASTROPHYSICAL APPLICATION

In this section, we describe couple of astrophysical ap-

plications of the hybrid framework.

5.1. Supernova Remnant SN1006

The first application is to study classical DSA and

properties of non-thermal emission from a historical

Type IA Supernova remnant (SNR), SN1006. The nu-

merical setup chosen for this problem is identical to

Schneiter et al. (2010). We perform axi-symmetric

magneto-hydrodynamic simulation with numerical grid

of physical size of 12 and 24 pc in the r- and z-

directions, respectively. The grid has a spatial resolu-

tion of 1.56×10−2 pc. The ambient ISM has a constant

number density, namb = 0.05 cm−3. The initial magnetic

field is chosen to be constant with a value of 2µG and

parallel to the z-axis. To numerically model the Type

Ia SNR, we initialize a sphere with radius of 0.65pc at

the center of the domain such that it contains an ejecta

mass of 1.4M�. Within the sphere, inner most region

has a constant mass equivalent to 0.8M� while rest of

the mass is in the outer region. This outer region has

an initial power-law density profile, ρ ∝ R−7
sph, where the

spherical radius Rsph =
√
r2 + z2.

Figure 10 shows the fluid density for the SNR at time

τ = 1008yr. The magnetic fields are represented by

red arrows. We see the formation of Rayleigh-Taylor in-

stabilities at the contact wave. The forward spherical

shock traverses across the magnetic fields thereby mod-

ifying the vertical alignment of fields. Due to compres-

sion from the shock, the magnetic flux just ahead of the

shock is also enhanced and follows the curved shock as

evident from the magnetic field vectors (shown in red).

A total of 2.5× 104 macro-particles are randomly ini-

tialized in the ambient medium. The initial macro-

particle distribution is identified by a scalar quantity

”color” and its value is set to be -2 for each. However,

as the simulations progress in time these macro-particles

enter the shock and are used to estimate the compres-

sion ratio as described in Sec 2.4. The scalar ”color”

for each macro-particle is then replaced by the value

of compression ratio of the shock it experiences. This

helps to separate the particle population for further di-

agnostics. The initial population of particles (for e.g.

electrons) have a steep power-law spectral distribution

with an index m = 3 covering a range Emin = 10−6

ergs to Emax = 104 ergs. This initial spectral distri-

bution is evolved accounting for radiative losses due to

synchrotron and IC effects.

The macro-particle distribution (as scalar ”color”) at

time τ = 1008yr is shown in the left panel of Fig.

10. This distribution evidently shows that most num-

ber of macro-particles have a compression ratio close to

4.0 indicating a strong adiabatic shock. For all macro-

particles that are shocked, we estimate the spectral en-

ergy index, m using the shock compression ratio. We

assume isotropic injection whereby the spectral index

depends solely on the compression ratio and is indepen-

dent of the orientation of magnetic field with respect to

the shock normal (see Eq. 24). The histogram of the

spectral energy index showing a distinct peak around

m ≈ 2.05 is shown in the middle panel of Fig. 10. Due

to the skewness in the distribution an arithmetic av-

erage of spectral energy indices gives an average value

< m >= 2.1. This is equivalent to spectral frequency

index 0.55, a value that is slightly flatter as compared
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Figure 9. Left: Dependence of Observed polarisation fraction, Πobs with observation angle, θobs for a magnetic pitch Ψ′ = 45◦ and two

values of Lorentz factor for the shell, γ = 10 (solid line) and 50 (dashed line). The macro-particles distribution (radiating elements) is set

to be a power law with three different spectral slope, m = 1(red), 2(green) and 3(blue). Right : Same as the left panel but for a purely

toroidal field (Ψ′ = 90◦).

to observed estimate of 0.6 at radio wavelengths. Note

that the value of m obtained here is immediately af-

ter the particle has traversed the shock. However, the

subsequent evolution in magnetised environments will

result in radiative losses both due to adiabatic expan-

sion and synchrotron and IC losses which will effectively

steepen the spectrum specially at high energies. Such a

spectral evolution is shown in the right panel of Fig. 10

for a representative single macro-particle. This macro-

particle experiences the shock around 400 years due to

which its spectral energy distribution is flattened and

also extended to higher energy. Before the shock, the

initial power-law spectrum undergoes losses at very high

energy bands. As the shock passes, the losses due to adi-

abatic expansion are evident from a uniform downward

shift over time. Additionally, the higher energy bands

suffer prominent losses due to synchrotron effects in re-

gion of shock-compressed magnetic field.

5.2. Shocks in Relativistic Slab Jets

The second application studies the particle accelera-

tion at shocks in two-dimensional relativistic slab jets.

The initial condition consists of a cartesian domain

having a spatial extends of (0, D = 10πa) and (-D/2,

D/2) along the x and y plane respectively. The do-

main is discretized with 3842 grid cells. The slab jet

is centered at y=0 and has a vertical extent of length

a = 200pc on both sides of the central axis. The slab jet

has a flow velocity given by bulk Lorentz factor γ = 5

along the x axis while the ambient medium is static.

In order to avoid excitation of random perturbation due

to steep gradient in velocity at the interface we convolve

the jet velocity with a smoothening function as described

in Bodo et al. (1995). Additionally, a uniform magnetic

field with a plasma β = 103 along the x axis correspond-

ing to a field strength of ≈ 6mG is introduced. As the

main goal of this application is to model interaction of

under-dense AGN jets with the ambient, we choose the

jet with a density ratio of η = 10−2,

ρ(y; η)

ρ0
= η − (η − 1)sech

[(y

a

)6
]

(65)

where ρ0 = 10−4 cm−3 is the density of jet at the cen-

tral axis (i.e., y = 0). The jet is set to be in pres-

sure equilibrium with the ambient i.e., Pjet = Pamb =

1.5 × 10−9dyne cm−2 Periodic boundary conditions are

imposed along the X axis and free boundary conditions

are imposed at the top and bottom boundaries.

This initial configuration at time τ = 0.0 is perturbed

with a functional form that can excite a wide range of
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Figure 10. Evolution of fluid density at time τ ≈ 1008yr along

with magnetic field vectors shown as red arrows

modes. We perturb the y component of the velocity

using the anti-symmetric perturbation described by Eq.

2b of the Bodo et al. (1995) paper. The amplitude of

the perturbation is chosen to be 1% of the initial bulk

flow velocity. The wavelength of the fundamental mode,

k0 is set to correspond the longest wavelength along x

axis (i.e., the size of numerical domain), thus, we have

k0 = 2π/D implies k0 = 0.2. These perturbations grow

with time and develop into shocks as they steepen due to

Kelvin Helmholtz instability. These oblique shocks are

typically seen in AGN jets as the bulk jet flow interacts

with surrounding ambient.

In order to study the effects of such shocks on the

process of particle acceleration via DSA, we introduce

2 macro-particles per cell (∼ 3 × 105 particles) at the

initial time. Macro-particles are initialized with a very

steep initial power-law spectrum (m = 15 see Eq. 18)

covering a wide spectral energy range of 10 orders of

magnitude with Emin = 6.3 keV to Emax = 63 TeV

with 250 bins. The initial number density of real parti-

cles is set to be N0 = 10−3ρ0. During the early stages

of evolution when the shocks are yet to form, particles

experiences radiative losses due to synchrotron and IC

processes. After these perturbations steepen to form

shocks, particles are accelerated via DSA and their spec-

tral distribution is modified described in Sec. 2.4. The

obliquity of magnetic fields with respect to shock nor-

mal is also accounted for in the estimate of post-shock

electron spectral slope q of the particle using Eqs. 25

and 26. The free parameters used to determine the en-

ergy bounds of the shock modified spectral distribution

are chosen as δn = 0.01 and δe = 0.5.

During the simulation run of 0.3 Myr, we record a to-

tal of 18370 events when the spectral distribution of the

macro-particles is altered on passing through the shock.

The normalized probability distribution function (PDF)

of the modified spectral slope q is shown in Fig. 12 The

PDF shows a reasonable spread in the shock modified

spectral slope q. We observe that about 80% of the

events of spectral modification results in a slope between

3 ≤ q ≤ 4. This spread arises due to our consistent ap-

proach of estimating the value of q based on the com-

pression ratio of the shock and the obliquity of magnetic

fields with respect to shock normal. With our approach

we relax the approximation of treating every shock as

a strong shock with a fixed spectral slope of q = 2.23

(Mimica et al. 2009; Fromm et al. 2016) or q = 2.0 (de

la Cita et al. 2016). The fixed choice of spectral index

(q ≈ 2) would result in an overestimate of emissivity as

the majority of shocks formed in our simulations have

either lower strengths or are quasi-perpendicular result-

ing to a steeper spectral distribution.

We use the instantaneous spectral distribution of each

macro-particle and local orientation of magnetic field

with respect to a chosen line of sight, θlos = 20◦ (in

the x− z plane) and estimate the synchrotron emission

Jsy(ν, n̂los, r) along with fractional polarization, Π (see

Eqs. 32, 33) and also the IC emissivity JIC(ν, n̂los, r)

(Eq. 48). The value obtained for each macro-particle is

then deposited onto the fluid grid. Normalized gaussian

convolved emissivity (with standard deviation σg = 9)

is shown in the panels of Fig 13 for three different ob-

served frequencies at time τ = 0.137 Myr. The line of

sight is chosen to be θlos = 20◦ with respect to the z-

axis (pointing out of the plane) The left panel shows the

emission at ν = 150 MHz in low frequency radio band

using spectral colors. The emissivity in the X-ray band

corresponding to an peak energy of 10 keV is shown in

the middle panel and the IC emissivity at an energy of

0.5 MeV representing soft-gamma band is shown in the

right panel. In each of these panels, we also show the

fluid density ρ in the background with copper colors. We
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Figure 11. (Left panel) Particle distribution at time τ = 1008yr. The colors represent the compression ratio due to shock while the

negative values represent initial particles in the domain that have not interacted with shock. (Middle Panel) Histogram showing the

electron spectral index m for all the particles that have been shocked. (Right Panel) Evolution of spectral energy distribution for a single

representative macro-particle.

Figure 12. Normalized PDF of the modified spectral slope q as

the particle crosses the shock during the evolution of slab jet un

till 0.3 Myr.

observe a co-relation between high emissivity regions in

the radio band with that of shocks formed as the jet in-

teracts with the ambient medium. Further, the emission

features observed in the right panel in the soft-gamma

band are co-related with those seen in the left panel.

This can be understood from the fact that, the particles

responsible to produce low frequency radio emission are

being up-scattered due to CMB photons (TCMB(z) =

2.728 K) to give rise to IC emission around 0.5 MeV.

The X-ray emission at 10 keV is interesting and very

distinct from the left and right panel. We observe X-ray

emission as localized bright knots in regions where there

has been recent interactions of merging shocks as seen

in the background fluid density.

To better compare the distinct nature of radio and

X-ray synchrotron emission, we overlap the normalized

X-ray emission corresponding to an energy of 3 keV with

normalized radio (ν = 15 GHz) contours in the left panel

of Fig.14. The X-ray emission is convolved with a beam

that is 2.5 times broader than that used to obtain the

radio contours. Though our emissivity estimates from

the slab jet are not integrated along the line of sight,

we do see clear evidence of knotty emission in the X-ray

bands that is offset from the radio peaks. The reason for

this offset lies in the fact that they originate from dif-

ferent regions associated with the structure of oblique

shocks. Radio emission is mainly forming due to large

scale long lived shocks as the jet flow interacts with the

ambient. Additionally, the radio electrons have a much

longer synchrotron time scale allowing them to produce

bright emission in low frequencies. As the large scale

forward moving shocks interact, they also result in for-

mation of reverse shocks which eventually are merged.

Bright X-rays knots are produced where such a recent

merging of reserve shocks takes place and are short lived

due to very short synchrotron cooling time of high en-

ergy electrons. Muti-wavelength observations for a kpc-

scale jet in the powerful radio galaxy 3C 346 have shown

signatures of offset of 0.8 kpc between the radio and X-

ray emission (Worrall & Birkinshaw 2005; Dulwich et al.

2009). The synthetic emissivity map obtained from our

simulations of oblique shocks is able to very well repro-

duce such offsets.

Additionally, the magnetic obliquity plays a crucial

role in determining the spectral index which further es-
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Figure 13. Multi-wavelength emission signatures from slab jet simulation run at time τ = 0.137Myr. Every panel shows the fluid density

ρ (as copper colors). The emissivities shown in each panel are obtained from instantaneous spectral distribution of particles and deposited

on the grid. They are shown in spectral colors for three different observed frequencies viz., ν = 150 MHz (left), 10 k̇eV (middle) due to

synchrotron processes and 0.5 MeV (right) due to Inverse Compton.

timates the lower and upper bounds of injected spec-

trum at shocks. The magnetic fields at oblique shocks

typically become perpendicular to the jet flow there-

fore would result in steeper spectral slope. This can

been understood from the distribution of fractional po-

larization shown in the right panel of Fig. 14. We have

overlaid contours (spectral colors) of Π for radio band

ν = 15GHz on the copper background of fluid den-

sity. The contour levels vary from 20% (black) to 70%

(white). Regions of high degree of polarization > 50%

is seen at the merging large scale shocks indicating

strong polarization of synchrotron emission at shocks.

In these regions, we see faint emission in radio bands

with no counter-parts in X-rays. Multi-wavelength spec-

tral studies of typical AGN jets like M87 and 3C 264

have shown evidences of X-ray synchrotron emission and

harder spectral indices towards the edge of the jet (Perl-

man et al. 1999; Worrall & Birkinshaw 2005; Perlman

et al. 2010). A consequence of this is presence of high

degree of polarization at the edges of interface between

the jet bulk flow and ambient medium. Optical and ra-

dio polarization studies in 3C 264 as well show a similar

high degree > 45% close to edges (e.g., Perlman et al.

2006, 2010).

Thus, our implementation of DSA at relativistic

shocks for the case of slab jets shows similar quali-

tative features as observed for typical AGN jets. A

one to one comparison with observed flux estimates will

be taken up in subsequent paper using 3D RMHD jet

simulations.

6. DISCUSSION & CONCLUSION

We have developed a state-of-the-art hybrid frame-

work that incorporates particle as Lagrangian entities

(passive tracers) along with fluid on an Eulerian grid.

The main aim of this framework is to combine micro-

physical processes with the macroscopic bulk fluid flow.

In particular, our focus has been to study particle ac-

celeration at shocks for both relativistic and classical

magnetised flows seen typically in astrophysical envi-

ronments. In all the simulations described in this work,

we have represented the Lagrangian particles as macro-

particles and each macro-particle is associated with a

spectral distribution, Np(E, t). The radiative losses due

to synchrotron, adiabatic expansion and Inverse Comp-

ton effects are taken into account along with the diffusive

shock acceleration process to update Np(E, t) based on

local fluid quantities. The evolved spectral distribution

from each macro-particle are further used to compute

observables like emissivity and degree of polarisation due

to synchrotron processes. Additionally, we estimate the

emissivity due to IC effects due to scattering of high

energy particles with CMB photons.

The main features that characterise this hybrid frame-

work are listed below -

• A novel technique of estimating the compression

ratio at relativistic shocks during simulation runs

have been described. This involves sampling the

shock to estimate the its normal and the veloc-

ity, which are critical to perform the frame trans-

formation into the Normal Incidence frame. The

upstream and downstream plasma velocity in this

frame are then used to compute the compression

ratio. We have verified our approach using theo-

retical estimates from 2D planar shock test.

• Knowledge of the shock normal and local magnetic

field direction from fluid gives an added advantage

to incorporate obliquity dependence in the esti-

mate of post-shock power-law index for the spec-

tral of injected particles. Thus, our model has the

ability to distinguish between the more efficient
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Figure 14. Multiwavelength observation of 3C 346

quasi-parallel shocks with shocks in the quasi-

perpendicular case which results in steeper spec-

trum and depends on amount of parameterised

(unresolved) turbulence. Also, the estimate of ac-

celeration time scale derived consistently using dif-

fusion along and across the magnetic fields is used

to estimate the high energy cutoff.

• The emissivity and maximum degree of polarisa-

tion obtained using a power-law spectral profile

in relativistically expanding shell is in agreement

with analytical estimates demonstrating the accu-

racy of our implementation. We adopt appropriate

relativistic kinematic effects to estimate observed

degree of polarisation and study its variation with

viewing angles, θobs. We observe that the value

of polarisation degree saturates for larger viewing

angles. For gamma ray energies, Π ≈ 56% for a

power-law distribution with m = 3 is smaller than

the theoretical upper limit of 75%. This effect of

depolarisation is consistent with values estimated

by Lyutikov et al. (2003).

Further, we have applied our framework to study

synchrotron emission from astrophysical problems both

involving classical MHD and relativistic magnetised

shocks.

• SN 1006 : Our study of particle acceleration

at classical MHD shocks using axisymmetric SNR

simulations have shown that an average spectral

index for particles obtained is around m = 2.1

consistent with values obtained for strong shocks

in this case.

• Slab Jet : The importance of treating quasi

parallel and quasi-perpendicular shocks is demon-

strated by comparing our model runs with that

using a constant spectral index for shock injected

particles. We obtain knotty emission features for

X-ray energies and mis-aligned emissivity features

indicating effects of oblique shocks. The polariza-

tion degree also is found to be higher at these edges
in agreement with radio and optical polarisation

signatures from 3C 264 Perlman et al. (2010).

In conclusion, we have presented a detailed hybrid

model of treating diffusive shock acceleration along with

important radiative loss mechanisms both for classical

and relativistic MHD. In our subsequent papers, we

will apply this framework to model multi-wavelength

emission from AGN jets using three dimensional sim-

ulations.
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Aloy, M.-A., Gómez, J.-L., Ibáñez, J.-M., Mart́ı, J.-M., &

Müller, E. 2000, ApJL, 528, L85



22 Vaidya et. al

Ballard, K. R., & Heavens, A. F. 1991, MNRAS, 251, 438

Blandford, R. D., & Königl, A. 1979, ApJ, 232, 34

Blandford, R. D., & Ostriker, J. P. 1978, ApJL, 221, L29

Bodo, G., Massaglia, S., Rossi, P., et al. 1995, A&A, 303,

281
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APPENDIX

A. COMPLETE ANALYTIC SOLUTION FOR RMHD SHOCKS.

Here we describe the steps used to derive the analytic solution that completely describes the RMHD shock with

arbitrary orientation of magnetic fields. For the tests of planar shocks described in this paper, the inputs are the

pre-shock conditions (region where the particle is initialized) and the shock speed, (treated as input parameter). Our

aim is obtain the scalar and vector quantities in the post-shock region (where the particle moves on crossing the shock).

Without the loss of generality we will assume here that the shock moves along the positive X axis.

Let us denote input quantities, Ua in pre-shock region with sub-script a and the unknown post-shock quantities,

Ub with sub-script b. In the lab frame, these quantities are related via the following jump condition across a fast

magneto-sonic shock with speed vs,

vs [U ] = [F (U)] . (A1)

Here, [q] = qb − qa denotes the jump across the wave and F (q) is the flux for any quantity q. The set of above

jump conditions can be reduced to the following five positive-definite scalar invariants (Lichnerowicz 1976; Mignone &

McKinney 2007) -

[J ] = 0 (A2)

[hη] = 0 (A3)

[H] =

[
η2

J2
− b2

ρ2

]
= 0 (A4)

J2 +

[
p+ b2/2

]
[h/ρ]

= 0 (A5)

[
h2
]

+ J2

[
h2

ρ2

]
+ 2H [p] + 2

[
b2
h

ρ

]
= 0, (A6)

where, J = ργsγ(vs − βx) is the mass flux, γs being the Lorentz factor of the shock and

η = −J
ρ

(v ·B) +
γs
γ
Bx. (A7)

The specific gas enthalpy h is related to the gas pressure p and density ρ via an equation of state. The magnetic

energy density, b2 is related to the magnetic field B in lab frame as,

|b|2 =
|B|2

γ2
+ (v ·B)2 (A8)

Following Mignone & McKinney (2007), we numerically solve the set of 3 × 3 non-linear equations A4, A5 and A6

using the expression for the post-shock ηb = ηaha/hb from equation A3. The solution of this closed set of equations,

gives us the three unknown scalars viz., the gas pressure pb, density ρb and magnetic energy density b2b in the post-shock

region.

The next step in describing the shock completely is to estimate the post-shock vector quantities, i.e., velocities βb and

magnetic fields Bb. To estimate them, we use the exact Riemann solution for full set of RMHD equations Giacomazzo

& Rezzolla (2006). In particular, we obtain the tangential components of the velocity (βyb , β
z
b ) in the post-shock

region using the expressions presented in Appendix A of their paper. These expressions relate the tangential velocity

components to the pre-shock quantities and only the post-shock pressure, pb. Further, using the estimated tangential

velocity components, we obtain the normal velocity βxb in the post-shock region using Eq. 4.25 in Giacomazzo &

Rezzolla (2006). With the knowledge of post-shock velocity field, the magnetic fields in the post-shock region can be

easily derived from the following jump conditions Giacomazzo & Rezzolla (2006),

J

γs

[
By

D

]
+Bx [βy] = 0 (A9)

J

γs

[
Bz

D

]
+Bx [βz] = 0, (A10)
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where, D = ργ is the proper gas density. Note that the magnetic field component normal to the shock front does not

jump across the shock, i.e, Bxa = Bxb . The Python code written to derive the analytic solutions for RMHD shock

conditions will be made available upon request from the author.

B. FRAME TRANSFORMATION TO NORMAL INCIDENCE FRAME (NIF)

In order to compute the spectral index of particle energy distribution as it passes the shock, one has to estimate the

compression ratio in the shock rest frame. The compression ratio, r, is defined as the ratio of upstream to downstream

velocities normal to the shock, and since the mass flux is conserved across the shock, it is also equivalent to ratio of

as the ratio of densities across the shock for non-relativistic MHD.

r =
ρ2

ρ1
=
v1 · n̂s
v2 · n̂s

, (B11)

where the velocities v1,2 are obtained in shock rest frame which is defined in a unique way for non-relativistic MHD

case.

However, while treating relativistic MHD shocks, one can have multiple shock rest frames (Ballard & Heavens 1991;

Summerlin & Baring 2012). The Normal Incidence Frame or NIF is the shock rest frame where the upstream velocity

is normal to the shock front. The other often used shock rest frame in case of RMHD flows is the Hoffmann-Teller

Frame (HTF) wherein the upstream velocity and magnetic fields are aligned with the shock at rest. Since the HTF is

usually defined for sub-luminal shocks and does not exist for super-luminal shocks, we choose to work with the NIF

as our preferred shock rest frame.

Given the shock speed, vs, normal to the shock direction, n̂s and both upstream and downstream states across the

shock in the lab frame, we can transform to NIF in a two step process. The first step involves a Lorentz boost equal

to shock velocity and along the direction of shock. Mathematically, any general four vector, u in lab frame is related

to u′ in Lorentz boosted frame as follows,

u′ = L(βbst, n̂bst)u, (B12)

For the first step, βbst = vs and n̂bst = n̂s. The second transformation requires another Lorentz boost to transform the

intermediate primed frame of reference to obtain the NIF. In this case, the boost has to be in the transverse direction

to the shock and with a boost velocity βbst = v′t, where, v′t is the tangential velocity in the primed frame of reference.

For two-dimensional tests with planar shocks propagating along the X axis, the tangential velocity is the velocity along

Y axis obtained in the intermediate prime frame.

With these two Lorentz boost, we obtain the quantities across the shock in NIF and then we can estimate the

compression ratio as,

r=
βNIF1 · n̂NIF

βNIF2 · n̂NIF
(B13)

=
ρ2γ

NIF
2

ρ1γNIF1

(B14)


