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ABSTRACT
A new fully non-linear reconstruction algorithm for the accurate recovery of the baryonic
acoustic oscillations (BAO) scale in two-point correlation functions is proposed, based on
the least action principle and extending the Fast Action Minimisation method by Nusser &
Branchini (2000). Especially designed for massive spectroscopic surveys, it is tested on dark
matter halo catalogues extracted from the DEUS-FUR Lambda cold dark matter simulation
(Reverdy et al. 2015) to trace the trajectories of up to ∼207 000 haloes backward in time, well
beyond the first-order Lagrangian approximation. The new algorithm successfully recovers
the BAO feature in real and redshift space in both the monopole and the anisotropic two-point
correlation function, also for anomalous samples showing misplaced or absent signature of
BAO. In redshift space, the non-linear displacement parameter �NL is reduced from 11.8 ±
0.3 h−1 Mpc at redshift z= 0 to 4.0 ± 0.5 h−1 Mpc at z� 37 after reconstruction. A comparison
with the first-order Lagrangian reconstruction is presented, showing that these techniques
outperform the linear approximation in recovering an unbiased measurement of the acoustic
scale.

Key words: methods: numerical – cosmological parameters – large-scale structure of Uni-
verse.

1 IN T RO D U C T I O N

Before recombination and on small scales, the acoustic oscillations
of the primordial baryon–photon plasma propagate at relativistic
speed driven by photon pressure. On large scales they are standing
waves with the fundamental mode set by the sound horizon rs

(Peebles & Yu 1970; Sunyaev & Zeldovich 1970) and overtones
damped on scales �8 h−1 Mpc because of the non-perfect coupling
between baryons and photons (Silk 1968). At recombination and
afterwards, while photons freely stream, the residual baryonic
fluctuations play as additional seeds of clustering at the char-
acteristic scale r∗

s � 150 Mpc, progressively driving an excess
of clustering of the dominant, collisionless dark matter (Hu &
Sugiyama 1996; Eisenstein et al. 1998; Eisenstein & Hu 1998).
On these scales the gravitational clustering is well described by
the linear approximation until today. Moreover, r∗

s depends on
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the primordial baryon-to-photon ratio and on the matter density,
extremely well constrained by the cosmic microwave background
observations (Planck Collaboration et al. 2018). The baryonic
acoustic oscillations (BAO) scale r∗

s therefore provides a powerful
and robust standard ruler to strongly constrain the expansion rate
of the Universe and dark energy (Blake & Glazebrook 2003;
Hu & Haiman 2003; Seo & Eisenstein 2003; White 2005), though
requiring large volumes to be convincingly measured (Cole et al.
2005; Eisenstein et al. 2005).

At low redshift the non-linear evolution of structures, the bias of
tracers, and their peculiar velocities determine a mild degradation
of the acoustic signature in the two-point correlation functions
(Eisenstein, Seo & White 2007a; Mehta et al. 2011) that must be
reduced in order to enhance the signal-to-noise ratio and achieve
sub- per cent precision cosmology goals. The resulting broadening
and shift of the acoustic peak in the correlation function, or
equivalently the damping and phase shift of the higher harmonics in
the power spectrum, can indeed be alleviated by means of so-called
reconstruction techniques designed to recover the initial, linear
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density field using a Lagrangian perturbative scheme (Eisenstein
et al. 2007b; Padmanabhan, White & Cohn 2009), which provides
a good reconstruction also when applied to biased mass tracers
such as galaxies (Noh, White & Padmanabhan 2009). The most
widely used technique (Padmanabhan et al. 2012) is based on the
displacement of the tracers backward in time using the Zel’dovich
approximation calculated from the local density field, in which
a linear correction is applied to remove redshift-space distortion
(RSD) that actually occurs on both small and large scales (Kaiser
1987). Since its first application on the Sloan Digital Sky Survey
(SDSS) DR7 LRG sample at redshift z � 0.35 (Padmanabhan et al.
2012), this reconstruction technique has been routinely adopted for
BAO studies based on the data releases DR9 to DR12 using both
the LOWZ and CMASS galaxy samples across the redshift range
z = 0.34–0.7 (Anderson et al. 2012; Anderson et al. 2014a, b; Ross
et al. 2014; Burden et al. 2014; Tojeiro et al. 2014; Cuesta et al.
2016; Gil-Marı́n et al. 2016) and with the WiggleZ galaxies up to
redshift z � 1 (Kazin et al. 2014; Beutler et al. 2016), resulting
in a substantial improvement on the measurement of the BAO
scale.

The main limitation of this technique is the approximate treatment
of the non-linear dynamics that may degrade the quality of the
reconstruction. More sophisticated techniques are required in next-
generation redshift surveys, such as those realized by PFS-SuMIRe
(Takada et al. 2014), eBOSS (Dawson et al. 2016), 4MOST (de
Jong et al. 2016), DESI (Martini et al. 2018), Euclid (Laureijs
et al. 2011), or WFIRST (Doré et al. 2018), which will sample a
large range of galaxy overdensities within cosmological volumes.
Indeed, in large overdensity regions (i.e. small scales) the linear
approximation for the RSD correction adopted so far fails, the
Zel’dovich approximation not being an exact solution (Nusser
et al. 1991; Burden, Percival & Howlett 2015). Moreover, although
optimal in recovering the BAO signature in the monopole of the
correlation function or in the power spectrum also from large
realistic samples (Keselman & Nusser 2017), the efficiency of
the Lagrangian perturbative schemes to recover the BAO feature
from higher order multipoles and from the full two-dimensional
correlation functions, and simultaneously to account for the small
scales for biased tracers, is less evident (White 2014).

Several reconstruction techniques that adopt different approaches
alternative to the standard one have been proposed. One group is
represented by methods that still rely on (higher order) Lagrangian
perturbation theory. They implement iterative schemes, such as PIZA

(Croft & Gaztanaga 1997) or ZTRACE (Monaco & Efstathiou 1999),
include the gravitational tidal-field tensor and some linearization
scheme (Kitaura et al. 2012; Kitaura & Angulo 2012), apply a
local transform to the density field (Falck et al. 2012; McCullagh
et al. 2013), Wiener filtering to the large-scale forward displacement
(Tassev & Zaldarriaga 2012), or an iterative fast Fourier trans-
form method (Burden et al. 2015). The second group is that of
reconstruction methods based on Bayesian theory, which have been
tested on galaxy mock catalogues (Kitaura & Enßlin 2008; Jasche &
Wandelt 2013; Wang et al. 2013). Finally, there are the fully non-
linear techniques, in which simplifying assumptions are not made
on the dynamical state of the system but rather of the orbits of
the objects. One example is based on the optimal Monge–Ampère–
Kantorovic (MAK) mass transportation problem (Frisch et al. 2002;
Brenier et al. 2003; Mohayaee et al. 2003). Successfully applied to
reconstruct the peculiar velocity field of the Two Micron All-Sky
Redshift Survey catalogue (Lavaux et al. 2010), the MAK technique
is however computationally expensive and therefore very likely
limited to reconstructions within few hundreds Mpc (Mohayaee

et al. 2006). Recently, an efficient non-linear reconstruction method
has been proposed by Keselman & Nusser (2017), based on a
forward iterative scheme that uses standard N-body techniques for
exactly solving the equation of motions.

In this paper, we shall focus on the non-linear method based on
the cosmological least action principle (LAP; Peebles 1989), which
yield the full trajectory of tracers along with their velocities as a
byproduct. Further developed by Peebles (1994, 1995) and Shaya,
Peebles & Tully (1995) to trace the dynamics of galaxies in the
Local Universe, the LAP has been investigated against cold dark
matter N-body simulations to estimate the collapsing history of
haloes by Branchini & Carlberg (1994) and Dunn & Laflamme
(1995). An efficient version dubbed Fast Action Minimization
(FAM) method has been then implemented by Nusser & Branchini
(2000, hereafter NB00) to reconstruct the dynamics of galaxies in
the nearby Universe, finally accounting for RSD (Branchini, Eldar &
Nusser 2002) and tidal-field effects (Romano-Dı́az, Branchini & van
de Weygaert 2005).

In this paper, we present an extended version of the original FAM
algorithm, dubbed eFAM, coded in C++ language and designed for
massive spectroscopic surveys such as Euclid, able to reconstruct the
trajectories of O(106) objects in generic background cosmologies
and that we specifically apply to BAO reconstructions. Since the
method provides multiple solutions for the orbits of the particles
in virialized regions, the impact of non-linearities is minimized by
reconstructing the trajectories of only collapsed haloes considered
as point-like tracers, hence neglecting their internal structure alto-
gether.

The plan of the paper is as follows: in the next section, we
present the eFAM algorithm. Section 3 describes the analysis of
large dark matter halo catalogues extracted from DEUS-FUR Lambda
cold dark matter (�CDM) simulations and the modelling of the
RSD. The analysis of reconstructed haloes’ orbits is performed and
discussed in Section 4, focusing on the monopole moment of the
two-point correlation function in real- and redshift space and the
anisotropic correlation function in redshift space. The efficiency of
the eFAM algorithm to recover the BAO scale and a comparison
with a reconstruction based on the simple Zel’dovich approximation
is also discussed. Section 5 is dedicated to the conclusions.

2 TH E R E C O N S T RU C T I O N ME T H O D

2.1 The extended Fast Action Minimisation (eFAM) method

The original FAM algorithm (NB00) has been developed to recover
the past orbits of point-like particles both in real- and redshift space
in an Einstein-De Sitter universe. Here, FAM is extended to a generic
cosmology defined by the Hubble parameter H and the linear growth
factor D or the linear growth rate f, as functions of the scale factor a.
The action of a set of N collisionless equal-mass point-like particles
with comoving coordinates {xi}i=1,...,N sampling in an unbiased
way a volume V and interacting only by gravity is, in the weak-field
limit,

S =
N∑

i=1

∫ Dobs

0
dD

[
f EDa2 1

2

(
dxi

dD

)2

+ 3�m0

8πf EDa

⎛
⎝ 1

n̄obsa
3
obs

1

2

N∑
j �=i,j=1

1

|xi − xj | + 2

3
πx2

i

⎞
⎠
⎤
⎦ , (1)

where D is used as time variable and E = H/H0 the dimensionless
Hubble parameter. Here the subscript ‘0’ denotes quantities at
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present time and ‘obs’ at redshift z = zobs. The mean number density
of objects n̄obs = N/V determines the mean mass density in the
volume, ρ̄, and its mass density parameter �m0. The trajectories of
objects are the solutions of the equations of motion deduced from a
stationary action, δS = 0, subject to mixed boundary conditions as
in FAM.

Differently from the original FAM algorithm that used a tree-
code to calculate the gravitational force-field, eFAM uses FALCON

(Dehnen 2002), a very efficient Poisson solver that optimally
combines a tree-code and the fast multipole method (FMM).
The FMM implements an improved multipole-acceptance criterion
for the splitting or execution of the cell–cell interaction, and a
symmetric calculation of the cell–cell interactions that conserves the
total momentum. The computational complexity is finally reduced
to O(N). This is the major improvement of eFAM over FAM since
it allows its application to larger data sets than its predecessor and,
more specifically, capable of targeting the BAO reconstruction goal.

2.2 Orbits parametrization in generic cosmology

As in NB00, the trajectories {xi(D)}i are described by a linear
combination of M time-dependent basis functions {qn(D)}n with
unknown coefficients Ci,n, viz.

xi(D) = xi,obs +
M∑

n=0

Ci,nqn(D). (2)

The qn(D) are polynomials defined such that their derivatives
pn(D) ≡ dqn(D)/dD are the Jacobi polynomials satisfying the
orthogonality condition∫ Dobs

0
dD w(D)pnpm = δK

nmAn, (3)

with δK
nm the Kronecker delta and An determined by the recurrence

relations. Different from NB00, the weight function w(D) ≡ fEDa2

can fit a generic background cosmology reasonably close to �CDM
(see Appendix A); a wrong guess does not bias the trajectories,
which are almost independent of the cosmological parameters
(Nusser & Colberg 1998).

For every term n, the mixed boundary conditions deduced from
δxi(Dobs) = 0 and limD→0 Ḋθ i(D) = 0 are

qn(Dobs) = 0 , lim
D→0

af HDpn(D) = 0 , (4)

in which the dependence on D is omitted for clarity for all but
the basis functions and their derivatives. Denoting θ i ≡ dxi/dD =
vi/f DH the rescaled peculiar velocity of the i-th particle and

gi ≡ − 1

n̄obsa
3
obs

1

2

N∑
j �=i,j=1

xi − xj

|xi − xj |3 + 4

3
xi (5)

its peculiar acceleration, the stationary variations of the action with
respect to Ci,n give

0 = ∂S

∂Ci,n

=
∫ Dobs

0
dD wθ ipn +

∫ Dobs

0
dD

3�m,0

8πf EDa
giqn

= [wθ iqn]Dobs
0 −

∫ Dobs

0
dD

[
d(wθ i)

dD
− 3�m0

8πf EDa
gi

]
qn. (6)

With the boundary conditions (equation 4), these N × M equa-
tions correspond to the Euler-Lagrange equations obtained from
δS(x1, . . . , xN, θ1, . . . , θN ) = 0. This assures that the search for
the stationary point of the action with respect to the coefficients
Ci,n is equivalent to the one with respect to the whole trajectories.

2.3 Redshift space

In redshift space we introduce the comoving redshift coordinates of
the i-th object as

si,obs = H0a0

c
xi,obs + a0(f DH )obs

c
θ

‖
i,obs, (7)

in which θ
‖
i denotes the component of the peculiar velocity along

the line of sight. The additional term proportional to θ
‖
i,obs, absent in

real-space, breaks the isotropy of the si,obs introducing a preferential
direction along the line of sight; a Cartesian decomposition of the
orbits coefficients Ci,n is therefore not convenient anymore. Instead,
the coefficients Ci,n can be split into two components perpendicular
and parallel to the line of sight. In the extended version of FAM we
implemented the approach illustrated in Schmoldt & Saha (1998) by
assigning to each object a Cartesian coordinate system with one axis
aligned to the line of sight and the observer’s position as the common
origin of the galaxies’ frames. In this way, the correction for the RSD
is confined to one single axis, parallel to the radial velocity. Note
that although the objects move, their coordinate frames do not.

We adopted the orbits parametrization introduced in NB00 [see
their equation (20) and Appendix B] with

Qn(Dobs) = −(f DE)obspn(Dobs), n = 1, . . . , M. (8)

To preserve the time-averaged equations of motion, a kinetic energy
term corresponding to a degree of freedom parallel to the line of
sight is added to the action of the system; the resulting action in
redshift space to be minimized is

S = S + 1

2
(wf DE)obs

(
θ

‖
i,obs

)2
. (9)

2.4 Minimization procedure and first guess

The very hard minimization problem in 3N × M dimensions,
which can be as large as 107 for several millions of objects and
M � 10 polynomials, is carried out using the same non-linear
conjugate gradient method with the Polak-Ribière formula as in
NB00. However, this method is locally optimal while the action
S can have many minima corresponding to different solutions of
the time-averaged equations of motion. Indeed, as pointed out by
Peebles (1989) and Giavalisco et al. (1993) the solution of this
mixed boundary-value problem is not unique, because the boundary
conditions prescribe the time dependence of the velocities near
the initial time D = 0 but do not specify their amplitude. Since
we are here interested in the large-scale dynamics, the minimum
should correspond to orbits that do not significantly deviate from
the Zel’dovich approximation. The first guess of the iterative
minimization is then chosen as the one prescribed by the Zel’dovich
approximation: the peculiar gravitational acceleration (equation 5)
linearly scales with the growth factor, gi(D) = D/Dobs

a/aobs
gi(Dobs), and

all but the zeroth-order coefficient are vanishing, i.e. Ci,n = 0 for
all n > 0, corresponding to straight-line orbits.

For both the real-space (r-space) and the perpendicular compo-
nents in the redshift space, the orthogonality condition (equation 3)
yields

Cr−space
i,n = C⊥

i,n = − 1

An

aobs

Dobs
gi(Dobs)

∫ Dobs

0
dD

3�m0

8πf Ea2
qn, (10)

while for the parallel component in redshift space

C‖
i,n = −aobsg

‖
i (Dobs)

[An + (wf DEp2
n)obs]Dobs

∫ Dobs

0
dD

3�m0

8πf Ea2
qn. (11)
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3 BAO R E C O N S T RU C T I O N

3.1 DEUS Full Universe Run haloes

The eFAM method is formulated to reconstruct the complete
trajectory of objects potentially well into the non-linear regime.
Accordingly, its accuracy needs then to be tested using simulated
catalogues produced by fully non-linear N-body experiments rather
than those obtained with approximated schemes like PTHALOS

(Scoccimarro & Sheth 2002; Manera et al. 2013), COLA (Tassev,
Zaldarriaga & Eisenstein 2013; Howlett, Manera & Percival 2015),
PINOCCHIO (Monaco, Theuns & Taffoni 2002; Munari et al. 2017),
PATCHY (Kitaura, Yepes & Prada 2014), EZMOCKS (Chuang et al.
2015), or HALOGEN (Avila et al. 2015), which are less accurate on
small scales. Moreover, all these algorithms add random peculiar
velocities to galaxies, typically drawn from a Maxwellian distribu-
tion scaled on the underlying matter density; this stochastic recipe is
not compatible with the deterministic nature of the eFAM algorithm.

Aiming at assessing the quality of the reconstruction on large
scales in the presence of significant non-linear effects, we have
considered various sets of dark matter haloes at redshift z =
0, extracted from the Dark Energy Universe Simulation – Full
Universe Run (DEUS-FUR; Reverdy et al. 2015), a flat �CDM
simulation set on the WMAP-7 best-fitting cosmology (Spergel
et al. 2007)1 employing 81923 dark matter particles with formal
mass and spatial resolution, respectively, of 1.2 × 1012 h−1 M� and
40 h−1 kpc, in a cubic volume of (21 h−1 Gpc)3. The friend-of-
friend (FoF) halo catalogue includes only haloes with more than
100 particles, amounting to more than 144 millions haloes at z =
0. We stress that this is a demanding but somewhat unrealistic test,
since next generation surveys will probe higher redshifts where
non-linear effects are less prominent.

The large volume of DEUS-FUR, which encompasses the Hubble
horizon thus enabling cosmic-variance limited predictions at the
BAO scale (Rasera et al. 2014), allows us to extract 512 cubic
sub-volumes of length 2 h−1 Gpc separated by a buffer region of
500 h−1 Mpc, a distance above the scale of homogeneity (see e.g.
Ntelis et al. 2017). The sub-volumes can therefore be considered as
effectively independent, allowing for a Monte Carlo estimation of
the covariance (Norberg et al. 2009).

The peculiar velocities of haloes are not supplied with the
DEUS-FUR FoF catalogue. To emulate the RSD and perform the
reconstruction in redshift-space, eFAM is run first time on every
sub-volume to assign the peculiar velocities to haloes. Then for
every sub-volume a reference frame is fixed in its centre of mass,
the redshift coordinates of haloes are computed using equation (7),
and the action (9) is minimized. The accuracy of this procedure is
discussed and quantitatively assessed in Section 4.4.

3.2 Gravitational tidal field

In its basic formulation the FAM method does not assume any
external gravitational field, treating the sampled density field as an
isolated system. This assumption does not apply in a cosmological
context, however the impact of the external density field can be
minimized by choosing a spherical geometry for the sample. Here
the reconstruction is applied to spherical domains D of radius
990 h−1 Mpc extracted from each sub-volume, each containing
about 56 000 haloes on average.

1Cosmological parameters: �b = 0.04356, �m = 0.2573, �r = 0.000049,
h = 0.72, ns = 0.9630, σ 8 = 0.8010.

A direct computation of the external gravitational field �tidal(x)
affecting the dynamics inside the sub-region Dint can be performed
by extending the reconstruction to a larger domain D embedding
Dint, as done by Shaya et al. (1995). To assess the impact of �tidal(x),
we applied eFAM to haloes in several concentric spherical domains
with radius ranging from 100 to 300 h−1 Mpc, extracted from
DEUS-648, a smaller simulation for which the peculiar velocities
are provided. We then performed a point-wise comparison between
the Cartesian components of reconstructed and real velocities of the
haloes that are in the common domain Dint of radius 100 h−1 Mpc,
and assessed the impact of �tidal(x) by the offset q of the linear
regression vFoF = mveFAM + q. It turns out that the reconstruction
withinDint is improved by the inclusion of a buffer region consisting
of a spherical shell of at least 200 h−1 Mpc, reducing the offset
from q ∼ 100 km s−1 when no external field is considered to q
∼ 10 km s−1, regardless of the Cartesian component. Therefore, in
the DEUS-FUR-based BAO reconstruction, we shall only analyse the
regions within 700 h−1 Mpc, each containing about 23 000 haloes
on average, and ignore the outskirts that extend to 990 h−1 Mpc.

4 FI TTI NG THE AC OUSTI C FEATURE

4.1 Measuring, modelling, and fitting the correlation function

For each sub-sphere Dint the monopole of the two-point correlation
function ξ (r) is computed in the separation range 30–200 h−1 Mpc
with linear binning of 10 h−1 Mpc using the minimum variance
Landy & Szalay (1993) estimator, with 50 times random objects
homogeneously distributed within Dint. The measurement is re-
peated for all sources at their pre- and post-reconstructed positions
at 14 different redshifts, starting from z = 0 and up to the maximum
redshift zmax allowed by reconstruction, defined as the redshift for
which �NL attains the minimum positive value.

The results are fitted using the Xu et al. (2012) model

ξ (r; z) = B2ξm(αr; z) + A(r), (12)

where B is a multiplicative constant bias and ξm(r) is the Fourier
transform of

P (k) = [Plin(k) − Psmooth(k)] e−k2�2
NL/2 + Psmooth(k), (13)

with Plin(k) the actual linear power spectrum and Psmooth(k) its de-
wiggled limit, both computed by CAMB (Lewis & Bridle 2002) using
the same cosmological model adopted in the DEUS-FUR simulations.
The broad-band term

A(r) = A0 + A1

r
+ A2

r2
(14)

can be interpreted as an effective description of mode-coupling
(e.g. Crocce & Scoccimarro 2008) not affecting the BAO scale
but biasing its measurement if not accounted for properly. This
additive term can also help to alleviate the effects of assuming a
wrong cosmological model. The broadening and shift of the BAO
feature due to the non-linear growth of structures are described by
the parameter �NL, accounting for the Lagrangian displacements,
and by the scale dilation parameter α. The model has therefore six
free parameters, (B2, α, �NL, A0, A1, A2), and fixed cosmological
parameters.

The data are fitted using a Markov chain Monte Carlo technique
with Gaussian likelihood and flat priors. The covariance matrix is
calculated from the Nmocks = 512 mocks as

Ci,j = 1

Nmocks − 1

Nmocks∑
n=1

[ξn(ri) − ξ̄ (ri)][ξn(rj ) − ξ̄ (rj )] (15)
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Figure 1. Rescaled two-point correlation function in real-space of DEUS-
FUR �CDM dark-matter haloes before and after reconstruction by eFAM
(M = 10), averaged over the 512 mocks. Before reconstruction at redshift
z = 0 (circles/blue line) the acoustic feature is broadened by non-linear
evolution and peculiar velocities. After reconstruction at z = 2.7 and z = 6.5
(squares/green and triangles/red lines, respectively) the measured correlation
function gets progressively closer to the linear prediction (black-dashed),
indicating the quality of the eFAM algorithm. The error bars from the
diagonal of the covariance matrix.

where ξ̄ (r) = ∑Nmocks
n=1 ξ (r)/(Nmocks − 1) is the mean two-point

correlation function.
Measurements, modelling, and fitting are performed using

the routines implemented in the COSMOBOLOGNALIB (Marulli,
Veropalumbo & Moresco 2016).

4.2 Monopole in real space

An ideal reconstruction pushed at early time, before the non-
linear clustering became effective, would yield �NL → 0 and α

→ 1. As shown in Fig. 1, using the eFAM algorithm with M =
10 basis functions (hereafter quoted as eFAM10) the template
model ξm(r) based on the linear theory is closely approached
at redshift z = 2.7 and almost fully restored at z = 6.5 (to
ease the comparison between the correlation functions at different
redshifts and enhance the acoustic feature, the rescaled monopole
r2ξ̃ (r; z) = r2 [ξ (r; z) − A(r))] [B2D(z)2]−1 is plotted). The error

bars are the rms-variance obtained from the diagonal elements
of the covariance matrix (15). Remarkably enough, the errors on
the monopole calculated pre-reconstruction do not increase after
reconstruction. More interestingly, the correlation matrix becomes
definitely more diagonal going towards higher redshift; see Fig. 2.
This indicates that the reconstruction de-correlates the signal in all
bins.

The fact that the linear regime is almost fully restored already
at z = 6.5 rather than at higher redshifts, as expected, reflects that
eFAM overestimates the amplitude of peculiar velocities of objects
in high-density environments (small scales), where linear theory
fails, but predicts their correct direction. As a result, the back in
time displacement of these objects is overestimated, the density
contrast is more efficiently reduced and, consequently, linear theory
restored at lower redshifts than expected. Such overcorrection does
not affect the quality of the BAO reconstruction as long as it does
not lead to an unphysical compression of the BAO peak, namely
below the Silk scale.

To estimate the impact of the reconstruction on the dilation α

and its error, we performed the same analysis as in Padmanabhan
et al. (2012): the two-point correlation function is fitted for every
mock, using flat priors for all the parameters but �NL, for which a
Gaussian prior centred on the best fit obtained for the average ξ̄ (r)
and with the same variance. The scatterplot in the left-hand panel of
Fig. 4 compares the values of α pre- and post-reconstruction for all
the 512 halo catalogues. The non-linear eFAM method improves the
measurement of the BAO scale reducing the standard deviation of
the probability distribution function of α, without introducing any
statistical bias. The improvement of the precision on α (right-hand
panel) is significant, the eFAM algorithm yielding σα, rec < σα, unrec

for the 69 per cent of mocks.
The eFAM reconstruction is superior to the standard Zel’dovich

one. To quantify the improvement we repeated the reconstructions
using eFAM with M = 1 (i.e. eFAM1), that is forcing straight
orbits. This is not strictly Zel’dovich approximation since velocities
change along the orbit, but is a good approximation to it. As shown
in Fig. 3, the averaged correlation function has a very large variance,
with the acoustic peak systematically shifted towards larger values,
α = 0.98 ± 0.01. The poor reliability of the results achieved by
eFAM1 is mainly due to the low value of its maximum allowed
redshift, z = 3.7, above which the best-fitting value of �NL becomes
unphysical; see table 1. This also explains why the results obtained
at z = 2.7 are better than those at z = 6.5, which is the maximum
allowed redshift for eFAM10. Instead, owing to the larger number of
degrees of freedom, at the same redshift the fully non-linear eFAM10

Figure 2. Correlation matrix of the two-point correlation function (monopole, real space) around the BAO scale. Left: from non-reconstructed halo catalogues.
Middle and right: from reconstructed haloes, using eFAM10, at z = 2.7 and z = 6.5, respectively. The correlation matrix becomes more diagonal at higher
redshifts, proving that the correlation functions of the different mocks tend to converge to the mean form when reconstructed.
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Figure 3. Similar to Fig. 1 (real-space), but with reconstruction by the
Zel’dovich approximation as provided by the eFAM with M = 1. The very
large errors indicate the non-reliability of this method, which moreover
returns a biased estimation of the acoustic scale towards larger values.

Table 1. Fit results to the average correlation function before and after
reconstruction in real-space by eFAM10 and eFAM1. The parameters not
shown are marginalized over. A negative (unphysical) best-fitting value of
�NL indicates that zmax has been attained, values for z > zmax (marked by
∗) are shown just for comparison.

Method Redshift α �NL ( h−1 Mpc)

pre-recon z = 0 1.007 ± 0.002 9.0 ± 0.2
eFAM10 z = 2.7 0.999 ± 0.001 3.5 ± 0.4

z = 3.7 0.998 ± 0.001 2.3 ± 0.7
z = 4.3 0.999 ± 0.001 1.6 ± 0.7
z = 6.5 1.000 ± 0.001 1.2 ± 0.7

eFAM1 z = 2.7 0.996 ± 0.003 3.8 ± 1.2
z = 3.7 0.997 ± 0.003 2.0 ± 1.4
z = 4.3∗ 0.927 ± 0.018 −3.4 ± 4.3
z = 6.5∗ 0.980 ± 0.010 2.0 ± 2.1

method ensures a non-biased measurement of the acoustic scale,
α = 1.000 ± 0.001, and a non-linear broadening reduced to �NL =
1.2 ± 0.7 h−1 Mpc. This value is smaller by a factor ∼1.7 than the
one obtained with eFAM1, which is moreover totally dominated by
errors.

4.3 Recovering the BAO signal in statistically anomalous
samples

The analysis of the two-point correlation function before recon-
struction shows that, in some sample, the scale of the BAO is badly
constrained. We identified two types of samples: those returning a
wrong best-fitting αunrec typically deviating from the actual value
α = 1 more than σα (dubbed type-I samples), with a corresponding
χ2(α) with a minimum significantly shifted from the true value; and
samples without a clear acoustic feature (type-II samples), often
yielding a χ2(α) with a very shallow minimum. The eFAM method
is remarkably able to recover the correct α value from both types of
anomalous samples.

For illustrative purposes, two representative examples of type-I
anomalous samples are shown in Fig. 5. The correct shift of the

BAO peak in the two-point correlation function from its incorrect
position pre-reconstruction (left column) to the right position around
∼110 h−1 Mpc post-reconstruction (central column) is obtained,
and consequently the correct value of α is measured. Also, the
precision of the α estimate increases after the reconstruction. The
shift of the minimum χ2 (right column) clearly illustrates and
quantifies the de-biasing effect of the reconstruction. Analogously
for type-II anomalous samples, three typical examples are shown in
Fig. 6. Here the eFAM algorithm displays its remarkable ability to
sharpen and shift the minimum, and consequently to significantly
increase the statistical significance of the BAO peak, the ability to
reconstruct it at its expected position, and to improve the precision of
the measured α value. The sharpening of the BAO peak is paralleled
by the decrease of the χ2 minimum, which was either not present
or not unique before the reconstruction. BAO false positive are not
produced, as tested by applying eFAM on Poisson samples.

4.4 RSD modelling: consistency tests

The velocities of DEUS-FUR haloes are not supplied. Since these are
necessary to set the initial condition of the eFAM reconstruction in
redshift space, we use the velocity predicted by eFAM itself. There
is of course a certain degree of circularity in this procedure that may,
in principle, artificially increase the accuracy of the reconstruction
itself. To investigate this issue we run a specific test in which we
considered a set of haloes extracted from the DEUS-648 simulation
already used in Section 3.2 using a standard FoF algorithm that
returns mass, position, and centre of mass velocity of each object.
In the test we run two FAM reconstructions: one in which FoF
velocities are used to set the initial conditions and the other in
which we use FAM velocities. We then compared the monopole
of the two-point correlation function computed from the haloes
with known velocities, with the one obtained using the output of
the reconstruction; see top panel of Fig. 7. At small separation
the strong two-point correlation between the velocities of particles
increases the amplitude of the correlation function in redshift-space,
ξ (s). This effect is artificially magnified when eFAM velocities are
considered. However, this effect decreases with increasing relative
separation when the velocities of the pairs become less correlated,
asymptotically tending to zero at large scales; see bottom panel of
Fig. 7. We therefore expect to obtain unbiased correlation functions
at the BAO scale, which supports the robustness of our procedure.
It is worth noticing that the number density of haloes in this test is
approximately 100 times higher than in the BAO reconstructions,
making this a very demanding consistency test. Moreover, no
additional smoothing has been applied to mitigate non-linear effects
and the same geometry and treatment of the tidal field as in the BAO
tests has been adopted.

A more demanding test consists of comparing halo-by-halo the
Cartesian components of the true velocities vi,Nbody with those
reconstructed by eFAM10, vi,eFAM. In real space (Fig. 8, left-hand
panel), regardless of the Cartesian component, the reconstructed
velocities are typically overestimated by 20−25 per cent irrespec-
tive of the extension of the outskirt accounting for the tidal field,
with small and constant dispersion for velocities � 1000 km s−1.
This is a well-known effect, already pointed out by Branchini et al.
(2002) due to the biased density field that we use to compute the
gravitational potential. While in linear theory this overestimation
can be approximately undone by normalizing the reconstructed
velocities by a factor 1/b, with b the effective halo bias at z =
0, the correction for FAM velocities is more complicated since
this method goes beyond the linear theory. To correct for this
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Figure 4. Comparison of scale dilation parameter α (left-hand panel) and its error (right-hand panel) estimated from the real-space mocks pre- (‘unrec’)
and post-reconstruction (‘rec’), together with the marginalized histograms, for the 512 mocks. Left: the black-dotted lines show the true values (α = 1), the
diagonal black-dashed line marks the perfect reconstruction (αrec = αunrec); the eFAM reconstruction reduces the scatter in these values without introducing
any statistical bias. Right: short dashed line marks the equality of errors on the scale dilation parameter pre- and post-reconstruction, σα, rec = σα, unrec, the
black-dotted lines correspond to the median values for the marginalized distributions; for 69 per cent of mocks the error σα decreases after reconstruction.

Figure 5. Fit results from the fiducial model for two type-I anomalous samples. Left column: Monopole of the two-point correlation function before
reconstruction; the acoustic peak is shifted towards small scales. Middle column: Correlation function after reconstruction; the peak location is now
compatible with the expected value within one standard deviation σα . Right column: �χ2(α) = χ2(α) − χ2

min before reconstruction (blue-dashed line)
and after reconstruction (red-solid line); the shift of the best-fitting α towards the expected value α = 1 reflects the shift of the peak in the correlation function.

effect, we weighted each halo mass by the number of dark matter
particles within it. Though not accurate, this recipe does provide
an approximate correction accounting for the haloes as biased
tracers of the mass distribution. Besides, note that N-body velocities
contain incoherent non-linear components that are not captured
by the FAM reconstructed velocities. The small amplitude of the
offset, reduced to about 10 km s−1 after considering an external
buffer of thickness 200 h−1 Mpc, indicates a not exact though
largely sufficient modelling of the negligible bulk-flow offset. It

is worth noting that an overestimation of velocities by ∼20 per cent
in amplitude shall result in an error on the redshift coordinate of
about �s = 0.2vNbody/c ∼ 2.7 × 10−4 for the typical value vNbody =
400 km s−1, which is less than the usual error on the spectroscopic
measurement of redshift.

In redshift space (Fig. 8, right-hand panel) the overestimation of
reconstructed velocities is reduced to ∼8 per cent but slightly more
scattered, with similar bulk flow as in real space. This is an effect of
the Fingers-of-God, which act as a natural smoothing of the density
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Figure 6. Fit results from the fiducial model for the type-II anomalous samples. Left column: Monopole of the two-point correlation function before
reconstruction; the acoustic peak is not visible. Middle column: Correlation function after reconstruction; the peak is now clearly visible and the fit returns an
unbiased value of α. Right column: �χ2(α) = χ2(α) − χ2

min before reconstruction (blue-dashed line) and after reconstruction (red-solid line); the minimum
of χ2(α) curve that pre-reconstruction was either unclear or not unique becomes well defined post-reconstruction.

field dumping the amplitudes of peculiar velocities. Accordingly,
smaller peculiar velocities allow a reconstruction pushed at earlier
time, from z ∼ 7 in real space to z ∼ 40 in redshift space using
eFAM10.

4.5 Monopole, quadrupole, and anisotropic correlation
function in redshift space

The attractive feature of the eFAM technique is to recover the
peculiar velocities of objects at their observed redshift, allowing for
a non-parametric modelling of the RSD. This is illustrated in Fig. 9,
which shows the density plots of the rescaled anisotropic two-point
correlation function s2ξ̄ (s‖, s⊥) as function of the longitudinal (s�)
and transverse (s⊥) components of the separation vector s, averaged
over the 512 mocks. If the reconstruction is successful, s represents
the cosmological redshift with no peculiar velocity component
in it. Before reconstruction (left-hand panel), the isotropy of the
correlation function is broken by the RSD, which compresses the
BAO ring at ∼110 h−1 Mpc along the line of sight and split it
into two arcs. This deformation is almost completely removed
after correcting the density field in redshift space by subtracting

the longitudinal displacement due to the peculiar velocities, as
estimated by eFAM at the same redshift of objects (middle panel).
The BAO ring is further sharpened by reconstructing the density
field at higher redshift (right-hand panel).

The power of the eFAM technique to improve the measurements
of the acoustic scale enhancing the BAO signature becomes glaring
looking at the monopole of the correlation function, ξ̃ (s) after the
non-linear evolution is maximally reversed; see Fig. 10 top panel.
This can be achieved with eFAM at order M = 10, reaching z =
36.6 (red line) when the monopole substantially matches the linear
model (dashed line). If only the monopole is considered, the eFAM
success to correct for RSD at z = 0 results limited (green line),
only slightly improving the measurement of the acoustic scale,
moderately sharpening and shifting the BAO peak towards the
expected value. The results of the model fitting listed in Table 2
show that this reconstruction does not bias the measurements of the
acoustic scale and reduces the value of the non-linear broadening
�NL by 66 per cent. The efficiency of the reconstruction in the
redshift-space, smaller than in real-space case, could be the result
of the lack of precision in the assignment of the initial comoving
redshift coordinates, as described in subsection 3.1
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Figure 7. Accuracy test of eFAM10 for the clustering statistics in redshift-
space. Top: Rescaled monopole of the two-point correlation function
computed from the haloes with known velocities (circles/blu line) and
with eFAM peculiar velocities (triangles/red line). Bottom: Residuals of the
correlation function. Assigning eFAM velocities to build the halo catalogues
in redshift space results in an overestimation of the amplitudes of the
correlation function, which decreases with increasing separation.

Although not fully recovering the clustering signal at the BAO
scale at z = 0, eFAM efficiently restores statistical isotropy already
at this redshift, as shown by the vanishing quadrupole of the correla-
tion function after reconstruction; see Fig. 10, bottom panel. To ease

the comparison at different redshifts pre- and post-reconstruction,
the rescaled quadrupole of the two-point correlation function is
shown, ξ̃2(s) = 5[BD(z)]−2

∫ 1
0 L2(μ)ξ (s, μ)dμ, with μ the cosine

of the angle between the separation vector and the line of sight and
L2 the Legendre polynomial of order two. Before reconstruction,
the RSD brake the isotropy of the correlation function returning a
non-zero value for ξ̃2. The deviation from the isotropy is almost
completely restored after correcting for the peculiar velocities at
the observed redshift z = 0 and is further improved at small scales
when the density field is reconstructed at higher redshift, z = 36.6.

As done for the real-space analysis, the impact of the recon-
struction on the dilation parameter and its error is estimated by a
point-wise comparison between the fitted values of α pre- and post-
reconstruction from the 512 mocks; see Fig. 11. The distribution
of αrec is more centred on the actual value, though its dispersions
is only mildly improved. The improvement of the precision of α is
less significant in redshift space, here the eFAM algorithm yielding
σα, rec < σα, unrec for the 61 per cent of mocks.

5 C O N C L U S I O N S

An extended version of the Fast Action Minimisation method
(Nusser & Branchini 2000), dubbed eFAM, is presented, intended
for applications with the next-generation massive spectroscopic
surveys designed to observe billions of objects. Based on the Peebles
(1989) LAP, the new algorithm coded in C++ reconstructs the
trajectories of collisionless mass tracers in generic background
cosmologies, owing to a parametrization of the orbits based on
Jacobi polynomials, and works both in real and redshift-space with
a new implementation. It further implements the powerful Poisson
solver FALCON (Dehnen 2002), whose linear scaling with the number
of particles realistically allows for application to large spectroscopic
samples with O (106) objects (eventually per redshift bin in deep
surveys).

For the first time a numerical action method is used for BAO
reconstruction. Primarily interested in large scales, where the

Figure 8. Accuracy tests of eFAM10 in real space (left) and redshift space (right). Reconstructed versus true peculiar velocities of haloes at z = 0 for one
Cartesian component (results are similar for other components). A perfect reconstruction would give a linear regression VeFAM = mVNbody + q with slope
m = 1 (solid line), no residual bulk velocity (q = 0), and no scatter. The reconstructed peculiar velocities in real space are slightly overestimated though well
correlated with the true ones. In redshift space the reconstructed peculiar velocities are definitely less biased but more scattered as expected.
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Figure 9. Rescaled two-point correlation function in redshift-space, averaged over the 512 mocks, as function of the transverse (s⊥) and line-of-sight (s�)
separation. Left-hand panel: Before reconstruction, from objects at z = 0; the isotropy of the acoustic feature, which should be visible as a ring in the (s�, s⊥)
plane, is broken by RSD. Middle panel: Correlation function after correcting the density field for the RSD, again at the observed redshift z = 0; the isotropy
of the acoustic feature is almost completely restored. Right-hand panel: Correlation function after reconstruction at z = 33.6; the BAO feature is sharper and
symmetric, indicating the quality of the reconstruction.

Figure 10. Rescaled monopole (top) and quadrupole (bottom) of the two-
point correlation function in redshift-space pre- and post-reconstruction by
eFAM10, averaged over the 512 mocks; error bars from the diagonal of
the covariance matrix. Before reconstruction at observed redshift z = 0
(circles/blue line) the acoustic feature in the monopole is broadened by non-
linear evolution and peculiar velocities. The correction for RSD is effective
at z = 0 (squares/green line) as shown in the quadrupole, but the BAO peak
is only slightly enhanced. Pushing the reconstruction at the highest redshift
possible, z = 33.6 (triangles/red line), the monopole well approximates the
linear model (dashed line) and the quadrupole is still consistent with zero,
showing the efficiency of the eFAM method in both sharpening the peak and
correcting for RSD.

Table 2. Fit results to average mock correlation functions in redshift space
using eFAM10.

Type α �NL ( h−1 Mpc)

pre-recon, z = 0 1.007 ± 0.002 11.8 ± 0.3
post-recon, z = 0 1.005 ± 0.002 11.0 ± 0.3
post-recon, z = 36.6 0.997 ± 0.001 4.0 ± 0.5

complexities of galaxy formation and fully non-linear clustering
are mitigated, eFAM is probed with mock haloes whose large-scale
(quasi-Newtonian) dynamics only mildly deviate from the Hubble
flow. A future study will extend this method to mock and real galaxy
(rather than halo) catalogues, accounting for the bias and selection
function of tracers as done in NB00.

We have tested the eFAM algorithm on 512 independent halo
catalogues extracted from the DEUS-FUR �CDM simulation in real
space, each with about 56 000 dark matter haloes of mass larger than
1.2 × 1014 h−1 M�, typical value for galaxy clusters, in a spherical
volume of radius ∼1 h−1 Gpc. Because of the petabyte size of the
parent catalogue, the peculiar velocities of the FoF haloes were
not available. The catalogues in redshift space are therefore built
by modelling the comoving redshift coordinates from the peculiar
velocities as reconstructed by eFAM in real-space. Both in real and
redshift-space, the reconstructed trajectories are finally trusted only
in spheres of radius ∼700 h−1 Mpc, each containing about 23 000
haloes, using the mass in the external shell to model the tidal forces
by direct computation; this assures a correct estimation of velocities
within a ∼10 per cent error in redshift space.

We first evaluated the performances of the fully non-linear
reconstruction by eFAM, namely using an orbit expansion at 10th
order (eFAM10), in recovering the linear model of the monopole
of the two-point correlation function in real space. The eFAM10

algorithm successfully recovers the linear correlation function at
the BAO scale, reducing the non-linear broadening of the acoustic
feature �NL by 87 per cent from 9.0 ± 0.2 h−1 Mpc at z = 0
to 1.2 ± 0.7 h−1 Mpc at z = 6.5. Moreover, eFAM10 returns an
unbiased and improved position of the acoustic scale as measured
by the dilation parameter, αrec = 1.000 ± 0.001, reducing its
associated error σα in 69 per cent of the mocks. Instead, the
reconstruction achieved by the Zel’dovich approximation obtained
from the first guess, i.e. eFAM1, is not equally powerful; the huge
errors in the average correlation function post-reconstruction yields
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Figure 11. As Fig. 4 but in redshift space. The quality of the reconstruction mildly worsen with respect to real space, however this data analysis is based
non-informative flat priors.

a value of �NL larger by a factor ∼1.7 and a biased estimation
of the BAO scale with 3–10 times larger error. Moreover, this
first-order approximation eFAM1 only allows for linear trajectories
that quickly undergo unphysical crossing, limiting the reconstruc-
tion at much lower redshift than eFAM10, which more easily
removes the effects of non-linear clustering.

Allowing for a reconstruction pushed to very high redshift, the
eFAM algorithm is extremely powerful in recovering the BAO
feature from anomalous samples that, without reconstruction, would
show a wrong location of the BAO peak in monopole of the two-
point correlation function (real-space), or no BAO signal at all.
Using eFAM10 the BAO feature is correctly restored and the signal
increased with high statistical significance.

In redshift space, the fully non-linear eFAM algorithm success-
fully corrects for the RSD. By correcting the comoving redshift
coordinates of objects using the reconstructed peculiar velocities,
eFAM10 already restores the isotropy of the two-dimensional
correlation function at the observed redshift, here z = 0. Performing
the non-linear reconstruction at the highest redshift possible before
shell-crossing, here z = 33.6, the acoustic ring is efficiently restored.
The BAO feature in the azimuthally averaged two-point correlation
function ξ (s) is correspondingly well sharpened, with a 66 per cent
reduction of the �NL broadening parameter from 11.8 ± 0.3 to
4.0 ± 0.5 h−1 Mpc. Although not reproducing the internal dynamics
in virialized haloes, the fully non-linear eFAM technique achieves a
very good accuracy in reconstructing the dynamics down to scales
comparable to the mean inter-halo separation, i.e. ∼10 h−1 Mpc,
as shown by point-wise comparison of real (simulated) and re-
constructed velocities of haloes from small DEUS simulations.
This opens the possibility of a non-parametric modelling of
RSD, possibly exploring the effect of local environment on the
reconstruction (Achitouv & Blake 2015); this is left for a future
study.

A final remark on the computational load. The CPU time is driven
by the force computation, which scales linearly with the number of
particles N, and not by the minimization procedure. Indeed, the
computational efficiency of the code is almost independent of the
dimension M of the basis set; for DEUS-648 M = 4 is large enough
to reliably reconstruct the orbits from the linear to the non-linear

regime. The computational complexity increases by a factor of ∼5
in redshift space; eFAM being an iterative reconstruction algorithm,
the number of iteration required to relax to a minimum of the action
is significantly larger in redshift space, where the initial conditions
of the particles are set by the observed redshifts rather than
positions.
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APPENDI X A : BASI S FUNCTI ONS AND
JAC O B I P O LY N O M I A L S

The Jacobi polynomials p(α,β)
n (x), defined for n = 0, 1, ... and α, β

> 1, satisfy the orthogonality condition∫ 1

−1
dx(1 − x)α(1 + x)βp(α,β)

n (x)p(α,β)
m (x) = hnδnm (A1)

that can be determined using the recurrence relation

p
(α,β)
n+1 (x) = (Anx + Bn)p(α,β)

n (x) − Cnp
(α,β)
n−1 (x). (A2)

For the expression of the coefficients hn, An, Bn, and Cn, see
Abramowitz & Stegun (1970).

For �CDM and closer cosmologies the weight function w(D) =
f(D)E(D)Da2(D) in equation (3) is almost indistinguishable from a
power law. Defining x = 2(D/Dobs) − 1, w(D) can be fitted by the
weight function K(1 − x)α(1 + x)β = K(2D/Dobs − 2)α(2D/Dobs)β

that settles the orthogonality condition (A2). The best-fitting values
for K, α, and β only mildly depend on the specific background
cosmology; for a standard cold dark matter model the exact values
(α, β) = (0, 3/2) are recovered, while for the WMAP-7 �CDM
model the best fit is (α, β) ≈ (0, 1.53).

Once the values of α and β are fixed, the functions q (α,β)
n for n ≥

1 are given by

q (α,β)
n (D) =

∫ Dobs

0
dD p(α,β)

n (D) = Dobs

n + α + β
p

(α−1,β−1)
n+1 , (A3)

where the relation

dp(α,β)
n

dx
= 1

2
(n + α + β + 1)p(α+1,β+1)

n−1 (A4)

has been used. The asymptotic limit of the p(α,β)
n (x)’s for x → −1,

i.e. D → 0, guarantees the vanishing of the initial peculiar velocities
while the constraints on the observed positions is satisfied choosing
the integration constant in (A3).
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APPENDIX B: PARAMETRIZATION O F
ORBITS IN REDSHIFT SPAC E

The parametrization of the i-th particle’s trajectory parallel and
perpendicular to the line of sight, explicitly accounting for the
cosmological dependence, in redshift space reads

x‖
i (D) = csi,0

H0a0
+

M∑
n=0

C‖
i,nQn(D) (B1)

x⊥
i (D) =

M∑
n=0

C⊥
i,nqn(D) (B2)

where Qn(D) ≡ qn(D) − (fDE)obspn, obs.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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