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ABSTRACT
We here propose a new model-independent technique to overcome the circularity problem
affecting the use of gamma-ray bursts (GRBs) as distance indicators through the use of
Ep−Eiso correlation. We calibrate the Ep−Eiso correlation and find the GRB distance moduli
that can be used to constrain dark energy models. We use observational Hubble data to
approximate the cosmic evolution through Bézier parametric curve obtained through the
linear combination of Bernstein basis polynomials. In doing so, we build up a new data set
consisting of 193 GRB distance moduli. We combine this sample with the supernova JLA
data set to test the standard �CDM model and its wCDM extension. We place observational
constraints on the cosmological parameters through Markov Chain Monte Carlo numerical
technique. Moreover, we compare the theoretical scenarios by performing the Akaike and
Deviance Information statistical criteria.the 2σ level, while for the wCDM model we obtain
�m = 0.34+0.13

−0.15 and w = −0.86+0.36
−0.38 at the 2σ level. Our analysis suggests that �CDM model

is statistically favoured over the wCDM scenario. No evidence for extension of the �CDM
model is found.
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1 IN T RO D U C T I O N

The cosmic speed up is today a consolidate experimental evidence
confirmed by several probes (Haridasu et al. 2017). Particularly,
Type Ia Supernovae (SNe Ia) have been employed as standard
candles (Phillips 1993) to check the onset of cosmic acceleration
(Perlmutter et al. 1998, 1999; Riess et al. 1998; Schmidt et al.
1998). Their importance lies in the fact that they may open a
window into the nature of the constituents pushing up the universe
to accelerate. Even though SNe Ia are considered among the most
reliable standard candles, they are detectable at most at redshifts
z � 2 (Rodney et al. 2015). Thus, at intermediate redshifts the
standard cosmological model, dubbed the �CDM paradigm, cannot
be tested with SNe Ia alone. Consequently, higher redshift distance
indicators, such as Baryon Acoustic Oscillations (Percival et al.
2010; Aubourg et al. 2015; Luković, D’Agostino & Vittorio 2016),
have been used to alleviate degeneracy among the �CDM paradigm
and dark energy scenarios. In these respects, a relevant example if
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offered by gamma-ray bursts (GRBs), which represent the most
powerful cosmic explosions detectable up to z = 9.4 (Salvaterra
et al. 2009; Tanvir et al. 2009; Cucchiara et al. 2011). Attempts to use
GRBs as cosmic rulers led cosmologists to get several correlations
between GRB photometric and spectroscopic properties (Amati
et al. 2002; Ghirlanda et al. 2004; Schaefer 2007; Amati et al. 2008;
Capozziello & Izzo 2008; Dainotti, Cardone & Capozziello 2008;
Bernardini et al. 2012; Amati & Della Valle 2013; Wei et al. 2014;
Izzo et al. 2015; Demianski et al. 2017a,b). The most investigated
correlations involve the rest-frame spectral peak energy Ep, i.e.
the rest-frame photon energy at which the νFν spectrum of the
GRB peaks, and the bolometric isotropic-equivalent radiated energy
Eiso, or peak luminosity Lp (Amati et al. 2002; Yonetoku et al.
2004; Amati et al. 2008; Amati & Della Valle 2013; Demianski
et al. 2017a,b). However, the use of GRBs for cosmology is still
affected by some uncertainties due to selection and instrumental
effects and the so-called circularity problem (see e.g. Kodama
et al. 2008). The former issue has been investigated in several
studies, with the general, even though still debated, conclusion that
these effects should be minor (see e.g. Amati 2006; Ghirlanda,
Ghisellini & Firmani 2006; Nava et al. 2012; Amati & Della
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Valle 2013; Demianski et al. 2017a). The circularity problem arises
from the fact that, given the lack of very low-redshift GRBs, the
correlations between radiated energy or luminosity and the spectral
properties are established assuming a background cosmology. For
example, calibrating GRBs through the standard �CDM model, the
estimate of cosmological parameters of any dark energy framework
inevitably returns an overall agreement with the concordance model.

In this paper, we propose a new model-independent calibration
of the Ep−Eiso correlation (the Amati relation; see e.g. Amati
et al. 2008; Amati & Della Valle 2013). We take the most recent
values of observational Hubble Data (OHD), consisting of 31
points of Hubble rates got at different redshifts (see Capozziello,
D’Agostino & Luongo 2018, and references therein). These data
have been obtained through the differential age method applied
to pairs of nearby galaxies, providing model-independent mea-
surements (Jimenez & Loeb 2002). We follow the strategy to fit
OHD data using a Bézier parametric curve obtained through the
linear combination of Bernstein basis polynomials. This treatment
is a refined approximated method and reproduces Hubble’s rate at
arbitrary redshifts without assuming an a priori cosmological model.
We thus use it to calibrate the Eiso values by means of a data set made
of 193 GRBs (with firmly measured redshift and spectral parameters
taken from Demianski et al. 2017a, and references therein), and
compute the corresponding GRB distance moduli μGRB and the 1σ

error bars, depending upon the uncertainties on GRB observables.
Detailed discussions of possible biases and selection effects can be
found, e.g. in Amati & Della Valle (2013), Demianski et al. (2017a),
and Dainotti & Amati (2018). From the above model-independent
analysis over OHD data, we obtain H0 = 67.74 km s−1 Mpc−1,
compatible with the current estimates by the Planck Collaboration
VI (2018) and Riess et al. (2018).

As a pure example of fitting procedure, we analyse our data
by means of Markov Chain Monte Carlo (MCMC) technique and
compare them with the standard cosmological paradigm and its
simplest extension, namely the wCDM model. We discuss the limits
over our technique in view of the most recent bias and problems
related to SN Ia and GRBs. Afterwards, using the above value of
H0 got from our parametric fit analysis, we show that our results are
in tension with the concordance paradigm (Planck Collaboration
VI 2018) at ≥3σ . However, we propose that such results may be
affected by systematics and how these limits may be reconsidered
in view of future developments. Finally, we compare the statistical
performance of the cosmological models through the Bayesian
selection criteria.

The paper is divided into four sections. After this Introduction,
in Section 2 we describe the main features of our treatment, using
OHD data surveys over the Amati relation. In Section 3, we discuss
our numerical outcomes concerning the use of our new data set.
We thus get constraints over the free parameters of the �CDM and
wCDM models. In Section 4, we draw conclusions and identify the
perspectives of our work.

2 MODEL-INDEPENDENT CALIBRATION O F
THE A MATI RELATION

Calibrating the Amati relation represents a challenge due to the
problem of circularity (see e.g. Ghirlanda et al. 2004; Ghirlanda et al.
2006; Kodama et al. 2008; Amati & Della Valle 2013). In fact, in the
Ep−Eiso correlation, the cosmological parameters �i and the Hubble
constant H0 enter in the Eiso definition through the luminosity
distance dL, i.e. Eiso (z, H0,�i) ≡ 4πd2

L (z, H0, �i) Sbolo/(1 + z),
where Sbolo is the observed bolometric GRB fluence and the factor

Figure 1. OHD data (31 black points with the vertical error bars), their
best-fitting function (the solid thick blue curve), and its 1σ (the blue curves
and the light blue shaded arc) and 3σ (the blue dashed curves) confidence
regions.

(1 + z)−1 transforms the observed GRB duration into the source
cosmological rest frame one. The most quoted approach to the
calibration of the Amati relation uses the SN Ia Hubble diagram,
directly inferred from the observations, and interpolate it to higher
redshift using GRBs (see e.g. Kodama et al. 2008; Liang et al. 2008;
Demianski et al. 2017a,b). However, this method biases the GRB
Hubble diagram by introducing the systematics of the SNe Ia.

Here, we propose an alternative calibration that uses the differ-
ential age method based on spectroscopic measurements of the age
difference �t and redshift difference �z of couples of passively
evolving galaxies that formed at the same time (Jimenez & Loeb
2002). This method implies that �z/�t ≡ dz/dt and hence the
Hubble function can be computed in a cosmology-independent way
as H(z) = −(1 + z)−1�z/�t. The updated sample of 31 OHD (see
Capozziello et al. 2018) is shown in Fig. 1. To avoid the circularity
problem, we approximate the OHD data by employing a Bézier
parametric curve1 of degree n:

Hn(z) =
n∑

d=0

βdh
d
n(z) , hd

n(z) ≡ n!(z/zm)d

d!(n − d)!

(
1 − z

zm

)n−d

, (1)

where βd are coefficients of the linear combination of Bernstein
basis polynomials hd

n(z), positive in the range 0 ≤ z/zm ≤ 1, where
zmax is the maximum z of the OHD data set. For d = 0 and z = 0,
we easily identify β0 ≡ H0. Besides the simple cases with n =
0 and n = 1 leading to a constant value and a linear growth
with z of H(z), respectively, the only case providing a monotonic
growing function over the limited range in redshift of the OHD
data is n = 2; higher values lead to oscillatory behaviours of the
approximating function. Therefore, in the following we use n = 2
in fitting the OHD data. The best fit with its 1σ and 3σ confidence
regions are shown in Fig. 1. The best-fiting parameters are H0 =
67.76 ± 3.68, β1 = 103.34 ± 11.14, and β2 = 208.45 ± 14.29
(all in units of km s−1 Mpc−1). The value of H0 so obtained is
compatible with the current estimate of the Planck Collaboration
(Planck Collaboration VI 2018) and in agreement at the 1.49σ level
with the value measured by Riess et al. (2018).

1Bézier curves are easy to use in computation, are stable at the lower
degrees of control points, and can be rotated and translated by performing
the operations on the points.
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Figure 2. GRB calibrated distribution in the Ep–Ecal
iso plane (black data

points), the best-fitting function (red solid line) and the 1σ ex and 3σ ex limits
(dark-grey and light-grey shaded regions, respectively).

Once the function H2(z) is extrapolated to redshift z > zm, the
luminosity distance is (see e.g. Goobar & Perlmutter 1995)

dL (�k, z) = c

H0

(1 + z)√|�k|
Sk

[√
|�k|

∫ z

0

H0dz′

H2(z′)

]
, (2)

where �k is the curvature parameter, and Sk(x) = sinh (x) for �k >

0, Sk(x) = x for �k = 0, and Sk(x) = sin (x) for �k < 0. We note that
dL in equation (2) is not completely independent of cosmological
scenarios since it depends upon �k. However, supported by the most
recent Planck results (Planck Collaboration VI 2018), which find
�k = 0.001 ± 0.002, we can safely assume �k = 0. In doing so, the
dependence upon �k identically vanishes and equation (2) becomes
cosmology independent:

dcal(z) = c(1 + z)
∫ z

0

dz′

H2(z′)
. (3)

We are now in the position to use dcal(z) to calibrate the isotropic
energy Ecal

iso for each GRB fulfilling the Amati relation:2

Ecal
iso (z) ≡ 4πd2

cal(z)Sbolo(1 + z)−1 , (4)

where the respective errors σEcal
iso depend upon the GRB systematics

on the observables and the fitting procedure (see confidence regions
in Fig. 1). The corresponding Ep–Ecal

iso distribution is displayed
in Fig. 2. Following the method by D’Agostini (2005), we fit
the calibrated Amati relation using a linear fit log(Ep/1keV) =
q + m[log(Ecal

iso/erg) − 52]. We find the best-fitting parameters q =
2.06 ± 0.03, m = 0.50 ± 0.02, and the extra-scatter σ ex =
0.20 ± 0.01 dex (see Fig. 2). The corresponding Spearman’s rank
correlation coefficient is ρs = 0.84 and the p-value from the two-
sided Student’s t-distribution is p = 2.42 × 10−36.

We can then compute the GRB distance moduli from the standard
definition μGRB = 25 + 5log (dcal Mpc−1). Using the fit of the
calibrated Amati relation, we obtain

μGRB = 25 + 5

2

[
log Ep − q

m
− log

(
4πSbolo

1 + z

)
+ 52

]
, (5)

2Recent works claim that our universe has non-zero curvature and that �k

represents at most the 2 per cent of the total universe energy density (see
e.g. Ooba, Ratra & Sugiyama 2018, and references therein). Relaxing the
assumption �k = 0 since its value is still very small, the circularity problem
is not completely healed, but it is only restricted to the value of �k since
H(z) can be still approximated by the function H2(z).

Figure 3. Upper plot: GRB distance moduli μGRB distribution compared to
the �CDM model μ�CDM with H0 = 67.36 km s−1 Mpc−1, �m = 0.3166,
and �� = 0.6847 as in Planck Collaboration VI (2018; the solid red curve),
and two wCDM models with the above �CDM parameters and w = −0.90
(the dashed blue curve) and w = −0.75 (the dot–dashed green curve). Lower
plot: the deviations of the above three models μX from μ�CDM computed
as (μX−μ�CDM)/μ�CDM (curves retain the same meaning as before).

where now Sbolo has been normalized to erg Mpc−2 to obtain dcal

in the desired units of Mpc. The attached errors on μGRB take into
account the GRB systematics and the statistical errors on q, m, and
σ ex. The distribution of μGRB with z is shown in Fig. 3.

We note that the statistical method adopted for the GRBs
calibration may be in principle used also for the analysis of the
SN data. This would in fact reduce the propagation errors when the
combined fit of both data sets is performed, making the joint sample
homogeneous for the cosmological studies. It will be interesting to
analyse the impact of such a procedure in a forthcoming study,
where the Philips relation of SN will be calibrated in the way we
attempted with GRBs prior to performing the cosmological fit.

3 N U M E R I C A L R E S U LT S

We here use our sample of GRBs to test cosmological models. In
particular, we assume standard barotropic equation of state (EoS).
Thus, for each fluid the pressure Pi is a one-to-one function of the
density ρ i: Pi = wiρ i. As a consequence of Bianchi’s identity,
one gets ρ̇i + 3Hρi(1 + wi) = 0 for each species entering the
Einstein equations. Following the standard recipe, we here consider
pressureless matter with negligible radiation and define current total
density as �i = ρ i/ρc, with ρc ≡ 8πG/(3H 2

0 ) is the critical density,
one can reformulate the Hubble evolution as

H (z) = H0

√
�m(1 + z)3 + �DE(1 + z)3(1+w) . (6)

In the above relation, dark energy takes a net density given by
�DE = 1 − �m to guarantee that H(z = 0) = H0, and w is the
dark energy EoS parameter. In particular, equation (6) reduces
to the �CDM model as w = −1, whereas to the wCDM model
when w is free to vary. The distance modulus is given by μth(z) =
25 + 5log [dL(z) Mpc−1], where dL(z) is given by equation (2) with
�k = 0. Thus, the likelihood function of the GRB data can be written
as

LGRB =
NGRB∏
i=1

1√
2πσμGRB,i

exp

[
−1

2

(
μth(zi) − μGRB,i

σμGRB,i

)2
]

, (7)

MNRASL 486, L46–L51 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article/486/1/L46/5481031 by C
N

R
 BO

LO
G

N
A AR

EA D
ELLA R

IC
ER

C
A user on 03 February 2022



Addressing the GRB circularity problem L49

Table 1. Priors used for parameters estimate in the MCMC analysis.

w �m M �M α β

(−0.5, −1.5) (0,1) (−20, −18) (−1, 1) (0,1) (0,5)

where NGRB = 193 is the number of GRB data points. To obtain
more robust observational bounds on cosmological parameters, we
consider a complete Hubble diagram by complementing the GRB
measurements with the SN JLA sample (Betoule et al. 2014). The
latter consists of 740 SN Ia in the redshift range 0.01 < z < 1.3.
The distance modulus of each SN is parametrized as

μSN = mB − MB + αX1 − βC , (8)

where mB is the B-band apparent magnitude, while C and X1 are the
colour and the stretch factor of the light curve, respectively; MB is
the absolute magnitude defined as

MB =
{

M if Mhost < 1010MSun ,

M + �M otherwise ,
(9)

where Mhost is the host stellar mass, and M, α, and β are nuisance
parameters that enter the fits along with cosmological parameters.
The likelihood function of the SN data is given as

LSN = 1

|2πM|1/2 exp

[
−1

2
(μth−μSN)T M−1 (μth−μSN)

]
, (10)

where M is the 3NSN × NSN = 2220 × 2200 covariance matrix
with the statistical and systematic uncertainties on the light-curve
parameters given in Betoule et al. (2014).

We thus perform an MCMC integration on the combined likeli-
hood function L = LSNLGRB by means of the Metropolis–Hastings
algorithm implemented through the MONTE PYTHON code (Audren
et al. 2013). In the numerical procedure, we assume uniform priors
on the fitting parameters (see Table 1) and we take H0 as the
best-fitting value obtained from the model-independent analysis
of the OHD data: H0 = 67.74 km s−1 Mpc−1. We summarize the
results for the �CDM and wCDM models in Table 2. We show
the marginalized 1σ and 2σ confidence contours in Fig. 4. One
immediately sees that �m in the �CDM model is unusually high
compared to previous findings that use SNe Ia and other surveys
different from GRBs. In fact, our result is in tension with Planck’s
predictions (Planck Collaboration VI 2018) at ≥3σ . However, our
outcome is well consistent within 1σ with previous analyses that
used GRBs (see. e.g. Amati & Della Valle 2013 for a review, and Izzo
et al. 2015, Haridasu et al. 2017, and Demianski et al. 2017a,b for
recent results). In addition, the tension is reduced as one considers
the wCDM model, enabling w to vary. This does not indicate that
wCDM is favoured with respect to the standard cosmological model.
In fact, we immediately notice that w is consistent within 1σ with
the �CDM case, i.e. w = −1.

We note that the numerical approach using the Metropolis-–
Hasting algorithm may suffer from some issues related to random
walk behaviour. In the case of highly correlated statistical models,
the use of more robust integration methods could alleviate many of
those issues. Alternative approaches for the multilevel structure of
the proper Bayesian model are left for a future study.

3.1 Statistical performances with GRBs

To test the statistical performance of the models under study, we
apply the AIC criterion (Akaike 1974):

AIC ≡ 2p − 2 lnLmax,

where p is the number of free parameters in the model and Lmax

is the maximum probability function calculated at the best-fitting
point. The best model is the one that minimizes the AIC value. We
also use the DIC criterion (Kunz, Trotta & Parkinson 2006) defined
as

DIC ≡ 2peff − 2 lnLmax ,

where peff = 〈−2 lnL〉 + 2 lnLmax is the number of parameters that
a data set can effectively constrain. Here, the brackets indicate the
average over the posterior distribution. Unlike the AIC and BIC
criteria, the DIC statistics does not penalize for the total number of
free parameters of the model, but only for those that are constrained
by the data (Liddle 2007). We thus computed the differences with
respect to the reference �CDM flat scenario. Both the AIC and DIC
results indicate that the �CDM model is only slightly favoured with
respect to the wCDM model (see Table 2).

4 FI NA L O U T L O O K S A N D P E R S P E C T I V E S

In this work, we faced out the circularity problem in using GRBs
as distance indicators. To do so, we employed the Ep−Eiso (Amati)
correlation and we proposed a new technique to build dL in a model-
independent way, using the OHD measurements. In particular, we
considered the OHD data points and we approximated the Hubble
function by means of a Bézier parametric curve obtained from
the linear combinations of Bernstein’s polynomials. Assuming
vanishing spatial curvature as suggested by Planck’s results, we
were able to calibrate the Amati relation in a model-independent
way. We thus obtained a new sample of distance moduli for 193
different GRBs (see Table A1).

We then used the new data sample to constrain two different
cosmological scenarios: the concordance �CDM model, and the
wCDM model, with the dark energy EoS parameter is free to
vary. Hence, we performed a Monte Carlo integration through
the Metropolis–Hastings algorithm on the joint likelihood function
obtained by combining the GRB measurements with the SNe JLA
data set. In our numerical analysis, we fixed H0 to the best-fitting
value obtained from the model-independent analysis over OHD
data, i.e. H0 = 67.74 km s−1 Mpc−1. Our results for �m and w agree
with previous findings using GRBs and our treatment candidates
as a severe alternative to calibrate the Amati relation in a model-
independent form. Finally, we employed the AIC and BIC selection
criteria to compare the statistical performance of the investigated
models. We found that the �CDM model is preferred with respect
to the minimal wCDM extension. Although a pure �CDM model
is statistically favoured, we note that the values of �m and w for the
wCDM model are remarkably in agreement with those obtained by
the Dark Energy Survey (Abbott et al. 2018). We can then conclude
that no modifications of the standard paradigm are expected as
intermediate redshifts are involved.

Future efforts will be dedicated to the use of our new technique
to fix refined constraints over dynamical dark energy models. Also,
we will compare our outcomes with respect to previous model-
independent calibrations.
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Table 2. 95 per cent confidence level results of the MCMC analysis for the SN + GRB data. The AIC and DIC differences
are intended with respect to the �CDM model.

Model w �m M �M α β �AIC �DIC

�CDM −1 0.397+0.040
−0.039 −19.090+0.037

−0.037 −0.055+0.043
−0.043 0.126+0.011

−0.012 2.61+0.13
−0.13 0 0

wCDM −0.86+0.36
−0.38 0.34+0.13

−0.15 −19.079+0.046
−0.046 −0.055+0.042

−0.042 0.126+0.011
−0.012 2.61+0.13

−0.13 1.44 1.24

Figure 4. Marginalized 1σ and 2σ contours, and posterior distributions
from the MCMC analysis of SN + GRB data for the �CDM model (top)
and for the wCDM model (bottom).
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APPENDI X A :

Table A1. List of the full sample of GRBs used in this work and their redshift z and calibrated μGRB.

GRB z μGRB ± σμ, GRB GRB z μGRB ± σμ, GRB GRB z μGRB ± σμ, GRB GRB z μGRB ± σμ, GRB

970228 0.695 43.76 ± 0.77 051109A 2.346 47.73 ± 0.89 090323 3.57 47.08 ± 0.53 120909A 3.93 48.20 ± 0.93
970508 0.835 44.64 ± 0.73 060115 3.5328 47.67 ± 1.07 090328 0.736 45.47 ± 0.36 121128A 2.2 45.56 ± 0.30
970828 0.958 43.87 ± 0.51 060124 2.296 46.47 ± 0.88 090418A 1.608 48.05 ± 0.64 130408A 3.758 48.55 ± 0.46
971214 3.42 47.97 ± 0.51 060206 4.0559 49.11 ± 1.22 090423 8.1 50.05 ± 0.67 130420A 1.297 42.87 ± 0.29
980613 1.096 46.06 ± 1.11 060210 3.91 47.52 ± 0.79 090424 0.544 42.67 ± 0.30 130427A 0.3399 41.59 ± 0.41
980703 0.966 45.09 ± 0.37 060218 0.03351 34.60 ± 0.42 090516 4.109 47.93 ± 1.00 130505A 2.27 46.27 ± 0.39
981226 1.11 44.03 ± 1.13 060306 3.5 47.48 ± 1.04 090618 0.54 40.54 ± 0.30 130518A 2.488 46.31 ± 0.37
990123 1.6 45.37 ± 0.70 060418 1.489 45.89 ± 0.64 090715B 3. 47.01 ± 0.78 130701A 1.155 44.69 ± 0.30
990506 1.3 43.74 ± 0.57 060526 3.22 45.97 ± 0.50 090812 2.452 48.61 ± 0.88 130831A 0.4791 41.24 ± 0.30
990510 1.619 45.14 ± 0.34 060607A 3.075 47.57 ± 0.65 090902B 1.822 46.04 ± 0.40 131011A 1.874 44.68 ± 0.39
990705 0.842 43.51 ± 0.73 060614 0.125 38.88 ± 2.58 090926 2.1062 44.75 ± 0.35 131030A 1.295 43.82 ± 0.31
990712 0.434 41.85 ± 0.44 060707 3.424 47.74 ± 0.68 090926B 1.24 44.51 ± 0.30 131105A 1.686 45.26 ± 0.59
991208 0.706 41.98 ± 0.31 060729 0.543 42.55 ± 1.22 091003 0.8969 45.53 ± 0.52 131108A 2.4 47.08 ± 0.36
991216 1.02 43.36 ± 0.52 060814 1.9229 45.63 ± 0.79 091018 0.971 42.94 ± 1.05 131117A 4.042 46.99 ± 0.46
000131 4.5 47.18 ± 1.04 060908 1.8836 47.14 ± 1.18 091020 1.71 46.52 ± 0.39 131231A 0.642 41.55 ± 0.30
000210 0.846 44.82 ± 0.34 060927 5.46 47.84 ± 0.70 091024 1.092 43.92 ± 0.32 140206A 2.73 46.07 ± 0.33
000418 1.12 43.97 ± 0.35 061007 1.262 44.36 ± 0.41 091029 2.752 46.12 ± 0.68 140213A 1.2076 43.72 ± 0.30
000911 1.06 45.76 ± 0.58 061121 1.314 46.73 ± 0.40 091127 0.49 39.90 ± 0.31 140419A 3.956 47.83 ± 0.84
000926 2.07 44.62 ± 0.37 061126 1.1588 46.15 ± 0.76 091208B 1.063 45.18 ± 0.30 140423A 3.26 47.24 ± 0.40
010222 1.48 44.52 ± 0.34 061222A 2.088 46.87 ± 0.51 100414A 1.368 45.92 ± 0.37 140506A 0.889 45.78 ± 0.99
010921 0.45 42.29 ± 0.49 070125 1.547 45.08 ± 0.44 100621A 0.542 41.88 ± 0.41 140508A 1.027 43.69 ± 0.32
011121 0.36 44.03 ± 0.70 070521 1.35 45.67 ± 0.36 100728A 1.567 44.83 ± 0.34 140512A 0.725 44.31 ± 1.41
011211 2.14 45.34 ± 0.35 071003 1.604 47.79 ± 0.45 100728B 2.106 47.03 ± 0.39 140515A 6.32 49.32 ± 0.71
020124 3.198 46.59 ± 0.79 071010B 0.947 42.48 ± 0.59 100814A 1.44 43.93 ± 0.36 140518A 4.707 47.58 ± 0.46
020405 0.69 43.02 ± 0.31 071020 2.145 48.45 ± 0.66 100816A 0.8049 45.58 ± 0.31 140620A 2.04 45.44 ± 0.30
020813 1.25 43.73 ± 0.67 071117 1.331 46.77 ± 1.30 100906A 1.727 43.93 ± 0.41 140623A 1.92 48.26 ± 1.12
020819B 0.41 41.07 ± 0.75 080207 2.0858 45.41 ± 1.78 101213A 0.414 43.63 ± 1.00 140629A 2.275 46.46 ± 0.50
020903 0.25 39.31 ± 1.38 080319B 0.937 44.01 ± 0.36 101219B 0.55 42.89 ± 0.31 140801A 1.32 44.79 ± 0.30
021004 2.3 46.86 ± 1.06 080411 1.03 44.50 ± 0.38 110106B 0.618 44.31 ± 0.68 140808A 3.29 48.53 ± 0.45
021211 1.01 44.21 ± 0.97 080413A 2.433 47.75 ± 0.78 110205A 2.22 46.20 ± 0.98 140907A 1.21 45.20 ± 0.30
030226 1.98 45.23 ± 0.55 080413B 1.1 44.63 ± 0.70 110213A 1.46 44.71 ± 0.79 141028A 2.33 46.12 ± 0.35
030323 3.37 48.08 ± 1.06 080603B 2.69 46.77 ± 1.02 110213B 1.083 43.79 ± 0.43 141109A 2.993 47.27 ± 0.71
030328 1.52 43.58 ± 0.43 080605 1.64 46.00 ± 0.65 110422A 1.77 43.76 ± 0.32 141220A 1.3195 43.78 ± 0.33
030329 0.1685 38.28 ± 0.30 080607 3.036 47.24 ± 0.44 110503A 1.613 45.56 ± 0.34 141221A 1.452 46.71 ± 0.47
030429 2.65 46.09 ± 0.50 080721 2.591 47.33 ± 0.46 110715A 0.82 43.42 ± 0.30 141225A 0.915 45.43 ± 0.41
030528 0.78 41.06 ± 0.41 080804 2.2045 47.83 ± 0.35 110731A 2.83 47.76 ± 0.37 150206A 2.087 45.71 ± 0.44
040912B 1.563 42.91 ± 2.16 080913 6.695 50.73 ± 1.26 110801A 1.858 45.94 ± 1.06 150301B 1.5169 46.73 ± 0.52
040924 0.859 43.48 ± 0.81 080916A 0.689 44.44 ± 0.30 110818A 3.36 48.79 ± 0.56 150314A 1.758 45.62 ± 0.35
041006 0.716 41.64 ± 0.57 080928 1.6919 43.64 ± 0.62 111107A 2.893 48.38 ± 0.72 150323A 0.593 44.32 ± 0.40
041219 0.31 40.24 ± 0.65 081007 0.5295 42.92 ± 0.59 111228A 0.716 40.63 ± 0.34 150403A 2.06 46.20 ± 0.42
050318 1.4436 44.22 ± 0.52 081008 1.9685 45.26 ± 0.49 120119A 1.728 45.22 ± 0.34 150413A 3.139 45.92 ± 0.98
050401 2.8983 46.12 ± 0.61 081028 3.038 45.51 ± 0.95 120326A 1.798 45.04 ± 0.30 150514A 0.807 43.47 ± 0.43
050416A 0.6535 41.8 ± 0.54 081118 2.58 45.21 ± 0.30 120624B 2.1974 45.89 ± 0.47 150821A 0.755 44.07 ± 1.20
050525A 0.606 42.13 ± 0.36 081121 2.512 46.48 ± 0.34 120711A 1.405 46.00 ± 0.40 151021A 1.49 43.82 ± 0.36
050603 2.821 47.76 ± 0.37 081203A 2.05 47.99 ± 1.28 120712A 4.1745 48.38 ± 0.53 151027A 0.81 44.57 ± 1.31
050820 2.615 47.03 ± 0.55 081221 2.26 44.55 ± 0.31 120716A 2.486 45.60 ± 0.32 151029A 1.423 45.24 ± 0.51
050904 6.295 50.94 ± 0.88 081222 2.77 47.00 ± 0.34 120724A 1.48 44.25 ± 0.68
050922C 2.199 47.20 ± 0.73 090102 1.547 47.01 ± 0.37 120802A 3.796 46.82 ± 0.84
051022 0.809 43.30 ± 0.82 090205 4.6497 49.78 ± 0.88 120811C 2.671 45.95 ± 0.30
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