MNRAS **486**, L46–L51 (2019) Advance Access publication 2019 April 27

Addressing the circularity problem in the $E_p - E_{iso}$ correlation of gamma-ray bursts

Lorenzo Amati,¹ Rocco D'Agostino,² Orlando Luongo[®],^{3,4}* Marco Muccino³ and Maria Tantalo⁵

¹INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna, Via Gobetti 101, I-40129 Bologna, Italy ²Sezione INFN, Università di Roma 'Tor Vergata', Via della Ricerca Scientifica 1, I-00133 Roma, Italy ³Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, I-00044 Frascati, Italy ⁴NNLOT, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040 Almaty, Kazakhstan ⁵Dipartimento di Fisica, Università di Roma 'Tor Vergata', Via della Ricerca Scientifica 1, I-00133 Roma, Italy

Accepted 2019 April 15. Received 2019 April 3; in original form 2019 March 14

ABSTRACT

We here propose a new model-independent technique to overcome the circularity problem affecting the use of gamma-ray bursts (GRBs) as distance indicators through the use of E_p-E_{iso} correlation. We calibrate the E_p-E_{iso} correlation and find the GRB distance moduli that can be used to constrain dark energy models. We use observational Hubble data to approximate the cosmic evolution through Bézier parametric curve obtained through the linear combination of Bernstein basis polynomials. In doing so, we build up a new data set consisting of 193 GRB distance moduli. We combine this sample with the supernova JLA data set to test the standard Λ CDM model and its *w*CDM extension. We place observational technique. Moreover, we compare the theoretical scenarios by performing the Akaike and Deviance Information statistical criteria.the 2σ level, while for the *w*CDM model we obtain $\Omega_m = 0.34^{+0.13}_{-0.15}$ and $w = -0.86^{+0.36}_{-0.38}$ at the 2σ level. Our analysis suggests that Λ CDM model is statistically favoured over the *w*CDM scenario. No evidence for extension of the Λ CDM model is found.

Key words: cosmology: observations – dark energy – gamma-rays: general.

1 INTRODUCTION

The cosmic speed up is today a consolidate experimental evidence confirmed by several probes (Haridasu et al. 2017). Particularly, Type Ia Supernovae (SNe Ia) have been employed as standard candles (Phillips 1993) to check the onset of cosmic acceleration (Perlmutter et al. 1998, 1999; Riess et al. 1998; Schmidt et al. 1998). Their importance lies in the fact that they may open a window into the nature of the constituents pushing up the universe to accelerate. Even though SNe Ia are considered among the most reliable standard candles, they are detectable at most at redshifts $z \simeq 2$ (Rodney et al. 2015). Thus, at intermediate redshifts the standard cosmological model, dubbed the ACDM paradigm, cannot be tested with SNe Ia alone. Consequently, higher redshift distance indicators, such as Baryon Acoustic Oscillations (Percival et al. 2010; Aubourg et al. 2015; Luković, D'Agostino & Vittorio 2016), have been used to alleviate degeneracy among the ΛCDM paradigm and dark energy scenarios. In these respects, a relevant example if

offered by gamma-ray bursts (GRBs), which represent the most powerful cosmic explosions detectable up to z = 9.4 (Salvaterra et al. 2009; Tanvir et al. 2009; Cucchiara et al. 2011). Attempts to use GRBs as cosmic rulers led cosmologists to get several correlations between GRB photometric and spectroscopic properties (Amati et al. 2002; Ghirlanda et al. 2004; Schaefer 2007; Amati et al. 2008; Capozziello & Izzo 2008; Dainotti, Cardone & Capozziello 2008; Bernardini et al. 2012; Amati & Della Valle 2013; Wei et al. 2014; Izzo et al. 2015; Demianski et al. 2017a,b). The most investigated correlations involve the rest-frame spectral peak energy $E_{\rm p}$, i.e. the rest-frame photon energy at which the νF_{ν} spectrum of the GRB peaks, and the bolometric isotropic-equivalent radiated energy E_{iso} , or peak luminosity L_p (Amati et al. 2002; Yonetoku et al. 2004; Amati et al. 2008; Amati & Della Valle 2013; Demianski et al. 2017a,b). However, the use of GRBs for cosmology is still affected by some uncertainties due to selection and instrumental effects and the so-called circularity problem (see e.g. Kodama et al. 2008). The former issue has been investigated in several

Published by Oxford University Press on behalf of the Royal Astronomical Society

Valle 2013; Demianski et al. 2017a). The circularity problem arises from the fact that, given the lack of very low-redshift GRBs, the correlations between radiated energy or luminosity and the spectral properties are established assuming a background cosmology. For example, calibrating GRBs through the standard Λ CDM model, the estimate of cosmological parameters of any dark energy framework inevitably returns an overall agreement with the concordance model.

In this paper, we propose a new model-independent calibration of the E_p -E_{iso} correlation (the Amati relation; see e.g. Amati et al. 2008; Amati & Della Valle 2013). We take the most recent values of observational Hubble Data (OHD), consisting of 31 points of Hubble rates got at different redshifts (see Capozziello, D'Agostino & Luongo 2018, and references therein). These data have been obtained through the differential age method applied to pairs of nearby galaxies, providing model-independent measurements (Jimenez & Loeb 2002). We follow the strategy to fit OHD data using a Bézier parametric curve obtained through the linear combination of Bernstein basis polynomials. This treatment is a refined approximated method and reproduces Hubble's rate at arbitrary redshifts without assuming an a priori cosmological model. We thus use it to calibrate the E_{iso} values by means of a data set made of 193 GRBs (with firmly measured redshift and spectral parameters taken from Demianski et al. 2017a, and references therein), and compute the corresponding GRB distance moduli μ_{GRB} and the 1σ error bars, depending upon the uncertainties on GRB observables. Detailed discussions of possible biases and selection effects can be found, e.g. in Amati & Della Valle (2013), Demianski et al. (2017a), and Dainotti & Amati (2018). From the above model-independent analysis over OHD data, we obtain $H_0 = 67.74 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$, compatible with the current estimates by the Planck Collaboration VI (2018) and Riess et al. (2018).

As a pure example of fitting procedure, we analyse our data by means of Markov Chain Monte Carlo (MCMC) technique and compare them with the standard cosmological paradigm and its simplest extension, namely the wCDM model. We discuss the limits over our technique in view of the most recent bias and problems related to SN Ia and GRBs. Afterwards, using the above value of H_0 got from our parametric fit analysis, we show that our results are in tension with the concordance paradigm (Planck Collaboration VI 2018) at $\geq 3\sigma$. However, we propose that such results may be affected by systematics and how these limits may be reconsidered in view of future developments. Finally, we compare the statistical performance of the cosmological models through the Bayesian selection criteria.

The paper is divided into four sections. After this Introduction, in Section 2 we describe the main features of our treatment, using OHD data surveys over the Amati relation. In Section 3, we discuss our numerical outcomes concerning the use of our new data set. We thus get constraints over the free parameters of the Λ CDM and wCDM models. In Section 4, we draw conclusions and identify the perspectives of our work.

2 MODEL-INDEPENDENT CALIBRATION OF THE AMATI RELATION

Calibrating the Amati relation represents a challenge due to the problem of circularity (see e.g. Ghirlanda et al. 2004; Ghirlanda et al. 2006; Kodama et al. 2008; Amati & Della Valle 2013). In fact, in the E_p-E_{iso} correlation, the cosmological parameters Ω_i and the Hubble constant H_0 enter in the E_{iso} definition through the luminosity distance d_L , i.e. $E_{iso}(z, H_0, \Omega_i) \equiv 4\pi d_L^2(z, H_0, \Omega_i) S_{bolo}/(1+z)$, where S_{bolo} is the observed bolometric GRB fluence and the factor

Figure 1. OHD data (31 black points with the vertical error bars), their best-fitting function (the solid thick blue curve), and its 1σ (the blue curves and the light blue shaded arc) and 3σ (the blue dashed curves) confidence regions.

 $(1 + z)^{-1}$ transforms the observed GRB duration into the source cosmological rest frame one. The most quoted approach to the calibration of the Amati relation uses the SN Ia Hubble diagram, directly inferred from the observations, and interpolate it to higher redshift using GRBs (see e.g. Kodama et al. 2008; Liang et al. 2008; Demianski et al. 2017a,b). However, this method biases the GRB Hubble diagram by introducing the systematics of the SNe Ia.

Here, we propose an alternative calibration that uses the *differ*ential age method based on spectroscopic measurements of the age difference Δt and redshift difference Δz of couples of passively evolving galaxies that formed at the same time (Jimenez & Loeb 2002). This method implies that $\Delta z/\Delta t \equiv dz/dt$ and hence the Hubble function can be computed in a cosmology-independent way as $H(z) = -(1 + z)^{-1}\Delta z/\Delta t$. The updated sample of 31 OHD (see Capozziello et al. 2018) is shown in Fig. 1. To avoid the circularity problem, we approximate the OHD data by employing a Bézier parametric curve¹ of degree *n*:

$$H_n(z) = \sum_{d=0}^n \beta_d h_n^d(z) , \quad h_n^d(z) \equiv \frac{n!(z/z_m)^d}{d!(n-d)!} \left(1 - \frac{z}{z_m}\right)^{n-d}, \quad (1)$$

where β_d are coefficients of the linear combination of Bernstein basis polynomials $h_n^d(z)$, positive in the range $0 \le z/z_m \le 1$, where z_{max} is the maximum z of the OHD data set. For d = 0 and z = 0, we easily identify $\beta_0 \equiv H_0$. Besides the simple cases with n =0 and n = 1 leading to a constant value and a linear growth with z of H(z), respectively, the only case providing a monotonic growing function over the limited range in redshift of the OHD data is n = 2; higher values lead to oscillatory behaviours of the approximating function. Therefore, in the following we use n = 2in fitting the OHD data. The best fit with its 1σ and 3σ confidence regions are shown in Fig. 1. The best-fitting parameters are $H_0 =$ 67.76 ± 3.68 , $\beta_1 = 103.34 \pm 11.14$, and $\beta_2 = 208.45 \pm 14.29$ (all in units of km s⁻¹ Mpc⁻¹). The value of H_0 so obtained is compatible with the current estimate of the Planck Collaboration (Planck Collaboration VI 2018) and in agreement at the 1.49σ level with the value measured by Riess et al. (2018).

¹Bézier curves are easy to use in computation, are stable at the lower degrees of control points, and can be rotated and translated by performing the operations on the points.

Figure 2. GRB calibrated distribution in the $E_p - E_{iso}^{cal}$ plane (black data points), the best-fitting function (red solid line) and the $1\sigma_{ex}$ and $3\sigma_{ex}$ limits (dark-grey and light-grey shaded regions, respectively).

Once the function $H_2(z)$ is extrapolated to redshift $z > z_m$, the luminosity distance is (see e.g. Goobar & Perlmutter 1995)

$$d_{\rm L}\left(\Omega_k, z\right) = \frac{c}{H_0} \frac{(1+z)}{\sqrt{|\Omega_k|}} S_k \left[\sqrt{|\Omega_k|} \int_0^z \frac{H_0 dz'}{H_2(z')}\right],\tag{2}$$

where Ω_k is the curvature parameter, and $S_k(x) = \sinh(x)$ for $\Omega_k > 0$, $S_k(x) = x$ for $\Omega_k = 0$, and $S_k(x) = \sin(x)$ for $\Omega_k < 0$. We note that d_L in equation (2) is not completely independent of cosmological scenarios since it depends upon Ω_k . However, supported by the most recent Planck results (Planck Collaboration VI 2018), which find $\Omega_k = 0.001 \pm 0.002$, we can safely assume $\Omega_k = 0$. In doing so, the dependence upon Ω_k identically vanishes and equation (2) becomes cosmology independent:

$$d_{cal}(z) = c(1+z) \int_0^z \frac{dz'}{H_2(z')}.$$
(3)

We are now in the position to use $d_{cal}(z)$ to calibrate the isotropic energy E_{cal}^{cal} for each GRB fulfilling the Amati relation:²

$$E_{\rm iso}^{\rm cal}(z) \equiv 4\pi d_{\rm cal}^2(z) S_{\rm bolo}(1+z)^{-1} , \qquad (4)$$

where the respective errors σE_{iso}^{cal} depend upon the GRB systematics on the observables and the fitting procedure (see confidence regions in Fig. 1). The corresponding $E_p-E_{iso}^{cal}$ distribution is displayed in Fig. 2. Following the method by D'Agostini (2005), we fit the calibrated Amati relation using a linear fit $\log(E_p/1\text{keV}) =$ $q + m[\log(E_{iso}^{cal}/\text{erg}) - 52]$. We find the best-fitting parameters q = 2.06 ± 0.03 , $m = 0.50 \pm 0.02$, and the extra-scatter $\sigma_{ex} =$ 0.20 ± 0.01 dex (see Fig. 2). The corresponding Spearman's rank correlation coefficient is $\rho_s = 0.84$ and the *p*-value from the twosided Student's *t*-distribution is $p = 2.42 \times 10^{-36}$.

We can then compute the GRB distance moduli from the standard definition $\mu_{\text{GRB}} = 25 + 5\log (d_{\text{cal}} \,\text{Mpc}^{-1})$. Using the fit of the calibrated Amati relation, we obtain

$$\mu_{\rm GRB} = 25 + \frac{5}{2} \left[\frac{\log E_{\rm p} - q}{m} - \log \left(\frac{4\pi S_{\rm bolo}}{1 + z} \right) + 52 \right], \tag{5}$$

²Recent works claim that our universe has non-zero curvature and that Ω_k represents at most the 2 per cent of the total universe energy density (see e.g. Ooba, Ratra & Sugiyama 2018, and references therein). Relaxing the assumption $\Omega_k = 0$ since its value is still very small, the circularity problem is not completely healed, but it is only restricted to the value of Ω_k since H(z) can be still approximated by the function $H_2(z)$.

Figure 3. Upper plot: GRB distance moduli μ_{GRB} distribution compared to the Λ CDM model $\mu_{\Lambda\text{CDM}}$ with $H_0 = 67.36 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_m = 0.3166$, and $\Omega_{\Lambda} = 0.6847$ as in Planck Collaboration VI (2018; the solid red curve), and two wCDM models with the above Λ CDM parameters and w = -0.90 (the dashed blue curve) and w = -0.75 (the dot–dashed green curve). *Lower* plot: the deviations of the above three models μ_X from $\mu_{\Lambda\text{CDM}}$ computed as $(\mu_X - \mu_{\Lambda\text{CDM}})/\mu_{\Lambda\text{CDM}}$ (curves retain the same meaning as before).

where now S_{bolo} has been normalized to erg Mpc⁻² to obtain d_{cal} in the desired units of Mpc. The attached errors on μ_{GRB} take into account the GRB systematics and the statistical errors on *q*, *m*, and σ_{ex} . The distribution of μ_{GRB} with *z* is shown in Fig. 3.

We note that the statistical method adopted for the GRBs calibration may be in principle used also for the analysis of the SN data. This would in fact reduce the propagation errors when the combined fit of both data sets is performed, making the joint sample homogeneous for the cosmological studies. It will be interesting to analyse the impact of such a procedure in a forthcoming study, where the Philips relation of SN will be calibrated in the way we attempted with GRBs prior to performing the cosmological fit.

3 NUMERICAL RESULTS

We here use our sample of GRBs to test cosmological models. In particular, we assume standard barotropic equation of state (EoS). Thus, for each fluid the pressure P_i is a one-to-one function of the density ρ_i : $P_i = w_i\rho_i$. As a consequence of Bianchi's identity, one gets $\dot{\rho}_i + 3H\rho_i(1 + w_i) = 0$ for each species entering the Einstein equations. Following the standard recipe, we here consider pressureless matter with negligible radiation and define current total density as $\Omega_i = \rho_i/\rho_c$, with $\rho_c \equiv 8\pi G/(3H_0^2)$ is the critical density, one can reformulate the Hubble evolution as

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_{\rm DE} (1+z)^{3(1+w)}} .$$
(6)

In the above relation, dark energy takes a net density given by $\Omega_{\text{DE}} = 1 - \Omega_m$ to guarantee that $H(z = 0) = H_0$, and w is the dark energy EoS parameter. In particular, equation (6) reduces to the Λ CDM model as w = -1, whereas to the wCDM model when w is free to vary. The distance modulus is given by $\mu_{\text{th}}(z) = 25 + 5\log [d_{\text{L}}(z) \text{ Mpc}^{-1}]$, where $d_{\text{L}}(z)$ is given by equation (2) with $\Omega_k = 0$. Thus, the likelihood function of the GRB data can be written as

$$\mathcal{L}_{\text{GRB}} = \prod_{i=1}^{N_{\text{GRB}}} \frac{1}{\sqrt{2\pi} \sigma_{\mu_{\text{GRB},i}}} \exp\left[-\frac{1}{2} \left(\frac{\mu_{\text{th}}(z_i) - \mu_{\text{GRB},i}}{\sigma_{\mu_{\text{GRB},i}}}\right)^2\right], \quad (7)$$

Table 1. Priors used for parameters estimate in the MCMC analysis.

w	Ω_m	М	Δ_M	α	β
(-0.5, -1.5)	(0,1)	(-20, -18)	(-1, 1)	(0,1)	(0,5)

where $N_{\text{GRB}} = 193$ is the number of GRB data points. To obtain more robust observational bounds on cosmological parameters, we consider a complete Hubble diagram by complementing the GRB measurements with the SN JLA sample (Betoule et al. 2014). The latter consists of 740 SN Ia in the redshift range 0.01 < z < 1.3. The distance modulus of each SN is parametrized as

$$\mu_{\rm SN} = m_B - M_B + \alpha X_1 - \beta C , \qquad (8)$$

where m_B is the *B*-band apparent magnitude, while *C* and X_1 are the colour and the stretch factor of the light curve, respectively; M_B is the absolute magnitude defined as

$$M_B = \begin{cases} M & \text{if } M_{\text{host}} < 10^{10} M_{\text{Sun}} ,\\ M + \Delta_M & \text{otherwise} , \end{cases}$$
(9)

where M_{host} is the host stellar mass, and M, α , and β are nuisance parameters that enter the fits along with cosmological parameters. The likelihood function of the SN data is given as

$$\mathcal{L}_{\rm SN} = \frac{1}{|2\pi \mathcal{M}|^{1/2}} \exp\left[-\frac{1}{2} \left(\mu_{\rm th} - \mu_{\rm SN}\right)^{\rm T} \mathcal{M}^{-1} \left(\mu_{\rm th} - \mu_{\rm SN}\right)\right], \quad (10)$$

where \mathcal{M} is the $3N_{\rm SN} \times N_{\rm SN} = 2220 \times 2200$ covariance matrix with the statistical and systematic uncertainties on the light-curve parameters given in Betoule et al. (2014).

We thus perform an MCMC integration on the combined likelihood function $\mathcal{L} = \mathcal{L}_{SN} \mathcal{L}_{GRB}$ by means of the Metropolis–Hastings algorithm implemented through the MONTE PYTHON code (Audren et al. 2013). In the numerical procedure, we assume uniform priors on the fitting parameters (see Table 1) and we take H_0 as the best-fitting value obtained from the model-independent analysis of the OHD data: $H_0 = 67.74 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$. We summarize the results for the Λ CDM and wCDM models in Table 2. We show the marginalized 1σ and 2σ confidence contours in Fig. 4. One immediately sees that Ω_m in the Λ CDM model is unusually high compared to previous findings that use SNe Ia and other surveys different from GRBs. In fact, our result is in tension with Planck's predictions (Planck Collaboration VI 2018) at $\geq 3\sigma$. However, our outcome is well consistent within 1σ with previous analyses that used GRBs (see. e.g. Amati & Della Valle 2013 for a review, and Izzo et al. 2015, Haridasu et al. 2017, and Demianski et al. 2017a,b for recent results). In addition, the tension is reduced as one considers the wCDM model, enabling w to vary. This does not indicate that wCDM is favoured with respect to the standard cosmological model. In fact, we immediately notice that w is consistent within 1σ with the Λ CDM case, i.e. w = -1.

We note that the numerical approach using the Metropolis— Hasting algorithm may suffer from some issues related to random walk behaviour. In the case of highly correlated statistical models, the use of more robust integration methods could alleviate many of those issues. Alternative approaches for the multilevel structure of the proper Bayesian model are left for a future study.

3.1 Statistical performances with GRBs

To test the statistical performance of the models under study, we apply the AIC criterion (Akaike 1974):

$$AIC \equiv 2p - 2\ln \mathcal{L}_{max},$$

where *p* is the number of free parameters in the model and \mathcal{L}_{max} is the maximum probability function calculated at the best-fitting point. The best model is the one that minimizes the AIC value. We also use the DIC criterion (Kunz, Trotta & Parkinson 2006) defined as

$$\text{DIC} \equiv 2p_{\text{eff}} - 2\ln\mathcal{L}_{\text{max}}$$

where $p_{\text{eff}} = \langle -2 \ln \mathcal{L} \rangle + 2 \ln \mathcal{L}_{\text{max}}$ is the number of parameters that a data set can effectively constrain. Here, the brackets indicate the average over the posterior distribution. Unlike the AIC and BIC criteria, the DIC statistics does not penalize for the total number of free parameters of the model, but only for those that are constrained by the data (Liddle 2007). We thus computed the differences with respect to the reference Λ CDM flat scenario. Both the AIC and DIC results indicate that the Λ CDM model is only slightly favoured with respect to the *w*CDM model (see Table 2).

4 FINAL OUTLOOKS AND PERSPECTIVES

In this work, we faced out the circularity problem in using GRBs as distance indicators. To do so, we employed the E_p - E_{iso} (Amati) correlation and we proposed a new technique to build d_L in a model-independent way, using the OHD measurements. In particular, we considered the OHD data points and we approximated the Hubble function by means of a Bézier parametric curve obtained from the linear combinations of Bernstein's polynomials. Assuming vanishing spatial curvature as suggested by Planck's results, we were able to calibrate the Amati relation in a model-independent way. We thus obtained a new sample of distance moduli for 193 different GRBs (see Table A1).

We then used the new data sample to constrain two different cosmological scenarios: the concordance ACDM model, and the wCDM model, with the dark energy EoS parameter is free to vary. Hence, we performed a Monte Carlo integration through the Metropolis-Hastings algorithm on the joint likelihood function obtained by combining the GRB measurements with the SNe JLA data set. In our numerical analysis, we fixed H_0 to the best-fitting value obtained from the model-independent analysis over OHD data, i.e. $H_0 = 67.74 \text{ km s}^{-1} \text{ Mpc}^{-1}$. Our results for Ω_m and w agree with previous findings using GRBs and our treatment candidates as a severe alternative to calibrate the Amati relation in a modelindependent form. Finally, we employed the AIC and BIC selection criteria to compare the statistical performance of the investigated models. We found that the ACDM model is preferred with respect to the minimal wCDM extension. Although a pure Λ CDM model is statistically favoured, we note that the values of Ω_m and w for the wCDM model are remarkably in agreement with those obtained by the Dark Energy Survey (Abbott et al. 2018). We can then conclude that no modifications of the standard paradigm are expected as intermediate redshifts are involved.

Future efforts will be dedicated to the use of our new technique to fix refined constraints over dynamical dark energy models. Also, we will compare our outcomes with respect to previous modelindependent calibrations.

L50 L. Amati et al.

Table 2. 95 per cent confidence level results of the MCMC analysis for the SN + GRB data. The AIC and DIC differences are intended with respect to the Λ CDM model.

Model	w	Ω_m	М	Δ_M	α	β	ΔAIC	ΔDIC
ΛCDM	-1	$0.397\substack{+0.040\\-0.039}$	$-19.090\substack{+0.037\\-0.037}$	$-0.055^{+0.043}_{-0.043}$	$0.126^{+0.011}_{-0.012}$	$2.61^{+0.13}_{-0.13}$	0	0
wCDM	$-0.86\substack{+0.36\\-0.38}$	$0.34\substack{+0.13 \\ -0.15}$	$-19.079\substack{+0.046\\-0.046}$	$-0.055\substack{+0.042\\-0.042}$	$0.126\substack{+0.011\\-0.012}$	$2.61\substack{+0.13 \\ -0.13}$	1.44	1.24

Figure 4. Marginalized 1σ and 2σ contours, and posterior distributions from the MCMC analysis of SN + GRB data for the Λ CDM model (top) and for the *w*CDM model (bottom).

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous referee for helpful suggestions that helped to improve the quality of the manuscript. RD and OL are grateful to Anna Silvia Baldi and Kuantay Boshkayev for useful discussions. LA acknowledges financial contribution from

the agreement ASI-INAF n.2017-14-H.O. The work was supported in part by the Ministry of Education and Science of the Republic of Kazakhstan, Program 'Fundamental and applied studies in related fields of physics of terrestrial, near-earth and atmospheric processes and their practical application' IRN: BR05236494.

REFERENCES

- DES Collaboration, Abbott T. M. C.DES Collaboration et al., 2018, preprint (arXiv:1811.02375)
- Amati L., 2006, MNRAS, 372, 233
- Amati L., Della Valle M., 2013, Int. J. Mod. Phys. D, 22, 1330028
- Amati L. et al., 2002, A&A, 390, 81
- Amati L., Guidorzi C., Frontera F., Della Valle M., Finelli F., Landi R., Montanari E., 2008, MNRAS, 391, 577
- Aubourg É. et al., 2015, Phys. Rev. D, 92, 123516
- Audren B., Lesgourgues J., Benabed K., Prunet S., 2013, J. Cosmol. Astropart. Phys., 2, 001
- Bernardini M. G., Margutti R., Zaninoni E., Chincarini G., 2012, MNRAS, 425, 1199
- Betoule M. et al., 2014, A&A, 568, A22
- Capozziello S., Izzo L., 2008, A&A, 490, 31
- Capozziello S., D'Agostino R., Luongo O., 2018, MNRAS, 476, 3924
- Cucchiara A. et al., 2011, ApJ, 736, 7
- D'Agostini G., 2005, preprint (arXiv:physics/0511182)
- Dainotti M. G., Amati L., 2018, PASP, 130, 051001
- Dainotti M. G., Cardone V. F., Capozziello S., 2008, MNRAS, 391, L79
- Demianski M., Piedipalumbo E., Sawant D., Amati L., 2017a, A&A, 598, A112
- Demianski M., Piedipalumbo E., Sawant D., Amati L., 2017b, A&A, 598, A113
- Ghirlanda G., Ghisellini G., Lazzati D., Firmani C., 2004, ApJ, 613, L13
- Ghirlanda G., Ghisellini G., Firmani C., 2006, New J. Phys., 8, 123
- Goobar A., Perlmutter S., 1995, ApJ, 450, 14
- Haridasu B. S., Luković V. V., D'Agostino R., Vittorio N., 2017, A&A, 600, L1
- Izzo L., Muccino M., Zaninoni E., Amati L., Della Valle M., 2015, A&A, 582, A115
- Jimenez R., Loeb A., 2002, ApJ, 573, 37
- Kodama Y., Yonetoku D., Murakami T., Tanabe S., Tsutsui R., Nakamura T., 2008, MNRAS, 391, L1
- Kunz M., Trotta R., Parkinson D., 2006, Phys. Rev. D, 74, 023503
- Liang N., Xiao W. K., Liu Y., Zhang S. N., 2008, ApJ, 685, 354
- Liddle A. R., 2007, MNRAS, 377, L74
- Luković V. V., D'Agostino R., Vittorio N., 2016, A&A, 595, A109
- Nava L. et al., 2012, MNRAS, 421, 1256
- Ooba J., Ratra B., Sugiyama N., 2018, ApJ, 864, 80
- Percival W. J. et al., 2010, MNRAS, 401, 2148
- Perlmutter S. et al., 1998, Nature, 391, 51
- Perlmutter S. et al., 1999, ApJ, 517, 565
- Phillips M. M., 1993, ApJ, 413, L105
- Planck Collaboration VI, 2018, preprint (arXiv:1807.06209)
- Riess A. G. et al., 1998, AJ, 116, 1009
- Riess A. G. et al., 2018, ApJ, 861, 126
- Rodney S. A. et al., 2015, AJ, 150, 156
- Salvaterra R. et al., 2009, Nature, 461, 1258
- Schaefer B. E., 2007, ApJ, 660, 16
- Schmidt B. P. et al., 1998, ApJ, 507, 46

APPENDIX A:

Tanvir N. R. et al., 2009, Nature, 461, 1254

Wei J.-J., Wu X.-F., Melia F., Wei D.-M., Feng L.-L., 2014, MNRAS, 439, 3329

Yonetoku D., Murakami T., Nakamura T., Yamazaki R., Inoue A. K., Ioka K., 2004, ApJ, 609, 935

Table A1. List of the full sample of GRBs used in this work and their redshift z and calibrated μ_{GRB} .

970228 0.695 43.76 ± 0.77 $051109A$ 2.346 47.73 ± 0.89 090323 3.57 47.08 ± 0.53 $120909A$ 3.93 48.20 ± 0.92 970508 0.835 44.64 ± 0.73 060115 3.5328 47.67 ± 1.07 090328 0.736 45.47 ± 0.36 $121128A$ 2.2 45.56 ± 0.30 970828 0.958 43.87 ± 0.51 060124 2.296 46.47 ± 0.88 $090418A$ 1.608 48.05 ± 0.64 $130408A$ 3.758 48.55 ± 0.46 971214 3.42 47.97 ± 0.51 060206 4.0559 49.11 ± 1.22 090423 8.1 50.05 ± 0.67 $130420A$ 1.297 42.87 ± 0.29 980613 1.096 46.06 ± 1.11 060210 3.91 47.52 ± 0.79 090424 0.544 42.67 ± 0.30 $130427A$ 0.3399 41.59 ± 0.41 980703 0.966 45.09 ± 0.37 060218 0.03351 34.60 ± 0.42 090516 4.109 47.93 ± 1.00 $130505A$ 2.27 46.27 ± 0.39 981226 1.11 44.03 ± 1.13 060306 3.5 47.48 ± 1.04 090618 0.54 40.54 ± 0.30 $130701A$ 1.155 44.69 ± 0.30 990506 1.3 43.74 ± 0.57 060526 3.22 45.97 ± 0.50 090812 2.452 48.61 ± 0.88 $130831A$ 0.4791 41.24 ± 0.33 990510 1.619 45.14 ± 0.34 $060607A$ 3.075 47.57 ± 0.65 $090902B$ 1.822 46.04 ± 0.40 $131011A$ <th>$_{\rm RB}\pm\sigma_{\mu,\rm GRB}$</th> <th>z</th> <th>GRB</th> <th>$\mu_{ m GRB} \pm \sigma_{\mu, m GRB}$</th> <th>z</th> <th>GRB</th> <th>$\mu_{\rm GRB} \pm \sigma_{\mu,{\rm GRB}}$</th> <th>z</th> <th>GRB</th> <th>$\mu_{\rm GRB}\pm\sigma_{\mu,\rm GRB}$</th> <th>z</th> <th>GRB</th>	$_{\rm RB}\pm\sigma_{\mu,\rm GRB}$	z	GRB	$\mu_{ m GRB} \pm \sigma_{\mu, m GRB}$	z	GRB	$\mu_{\rm GRB} \pm \sigma_{\mu,{\rm GRB}}$	z	GRB	$\mu_{\rm GRB}\pm\sigma_{\mu,\rm GRB}$	z	GRB
970508 0.835 44.64 ± 0.73 060115 3.5328 47.67 ± 1.07 090328 0.736 45.47 ± 0.36 $121128A$ 2.2 45.56 ± 0.30 970828 0.958 43.87 ± 0.51 060124 2.296 46.47 ± 0.88 $090418A$ 1.608 48.05 ± 0.64 $130408A$ 3.758 48.55 ± 0.46 971214 3.42 47.97 ± 0.51 060206 4.0559 49.11 ± 1.22 090423 8.1 50.05 ± 0.67 $130420A$ 1.297 42.87 ± 0.29 980613 1.096 46.06 ± 1.11 060210 3.91 47.52 ± 0.79 090424 0.544 42.67 ± 0.30 $130427A$ 0.3399 41.59 ± 0.41 980703 0.966 45.09 ± 0.37 060218 0.03351 34.60 ± 0.42 090516 4.109 47.93 ± 1.00 $130505A$ 2.27 46.27 ± 0.39 981226 1.11 44.03 ± 1.13 060306 3.5 47.48 ± 1.04 090618 0.54 40.54 ± 0.30 $130518A$ 2.488 46.31 ± 0.37 990123 1.6 45.37 ± 0.70 060418 1.489 45.89 ± 0.64 $090715B$ $3.$ 47.01 ± 0.78 $130701A$ 1.155 44.69 ± 0.36 990510 1.619 45.14 ± 0.34 $060607A$ 3.075 47.57 ± 0.65 $090902B$ 1.822 46.04 ± 0.40 $131011A$ 1.874 44.68 ± 0.35 990712 0.434 41.85 ± 0.44 060707 3.424 47.74 ± 0.68 $090926B$ 1.24 44.51 ± 0.30 $131105A$	3.20 ± 0.93	3.93	120909A	47.08 ± 0.53	3.57	090323	47.73 ± 0.89	2.346	051109A	43.76 ± 0.77	0.695	970228
970828 0.958 43.87 ± 0.51 060124 2.296 46.47 ± 0.88 $090418A$ 1.608 48.05 ± 0.64 $130408A$ 3.758 48.55 ± 0.46 971214 3.42 47.97 ± 0.51 060206 4.0559 49.11 ± 1.22 090423 8.1 50.05 ± 0.67 $130420A$ 1.297 42.87 ± 0.29 980613 1.096 46.06 ± 1.11 060210 3.91 47.52 ± 0.79 090424 0.544 42.67 ± 0.30 $130427A$ 0.3399 41.59 ± 0.43 980703 0.966 45.09 ± 0.37 060218 0.03351 34.60 ± 0.42 090516 4.109 47.93 ± 1.00 $130505A$ 2.27 46.27 ± 0.39 981226 1.11 44.03 ± 1.13 060306 3.5 47.48 ± 1.04 090618 0.54 40.54 ± 0.30 $130518A$ 2.488 46.31 ± 0.37 990123 1.6 45.37 ± 0.70 060418 1.489 45.89 ± 0.64 $090715B$ $3.$ 47.01 ± 0.78 $130701A$ 1.155 44.69 ± 0.30 990506 1.3 43.74 ± 0.57 060526 3.22 45.97 ± 0.50 090812 2.452 48.61 ± 0.88 $130831A$ 0.4791 41.24 ± 0.33 990510 1.619 45.14 ± 0.34 $060607A$ 3.075 47.57 ± 0.65 $090902B$ 1.822 46.04 ± 0.40 $131011A$ 1.874 44.68 ± 0.35 990712 0.434 41.85 ± 0.44 060707 3.424 47.74 ± 0.68 $090926B$ 1.24 44.51 ± 0.30 $131105A$ <	5.56 ± 0.30	2.2	121128A	45.47 ± 0.36	0.736	090328	47.67 ± 1.07	3.5328	060115	44.64 ± 0.73	0.835	970508
971214 3.42 47.97 ± 0.51 060206 4.0559 49.11 ± 1.22 090423 8.1 50.05 ± 0.67 $130420A$ 1.297 42.87 ± 0.29 980613 1.096 46.06 ± 1.11 060210 3.91 47.52 ± 0.79 090424 0.544 42.67 ± 0.30 $130427A$ 0.3399 41.59 ± 0.43 980703 0.966 45.09 ± 0.37 060218 0.03351 34.60 ± 0.42 090516 4.109 47.93 ± 1.00 $130505A$ 2.27 46.27 ± 0.39 981226 1.11 44.03 ± 1.13 060306 3.5 47.48 ± 1.04 090618 0.54 40.54 ± 0.30 $130518A$ 2.488 46.31 ± 0.37 990123 1.6 45.37 ± 0.70 060418 1.489 45.89 ± 0.64 $090715B$ $3.$ 47.01 ± 0.78 $130701A$ 1.155 44.69 ± 0.30 990506 1.3 43.74 ± 0.57 060526 3.22 45.97 ± 0.50 090812 2.452 48.61 ± 0.88 $130831A$ 0.4791 41.24 ± 0.30 990510 1.619 45.14 ± 0.34 $060607A$ 3.075 47.57 ± 0.65 $090902B$ 1.822 46.04 ± 0.40 $131011A$ 1.874 44.68 ± 0.35 990705 0.842 43.51 ± 0.73 060614 0.125 38.88 ± 2.58 $090926B$ 1.24 44.51 ± 0.30 $131105A$ 1.686 45.26 ± 0.59 991208 0.706 41.85 ± 0.44 060707 3.424 47.74 ± 0.68 $090926B$ 1.24 44.51 ± 0.30 $131108A$ <t< td=""><td>3.55 ± 0.46</td><td>3.758</td><td>130408A</td><td>48.05 ± 0.64</td><td>1.608</td><td>090418A</td><td>46.47 ± 0.88</td><td>2.296</td><td>060124</td><td>43.87 ± 0.51</td><td>0.958</td><td>970828</td></t<>	3.55 ± 0.46	3.758	130408A	48.05 ± 0.64	1.608	090418A	46.47 ± 0.88	2.296	060124	43.87 ± 0.51	0.958	970828
9806131.09646.06 \pm 1.110602103.9147.52 \pm 0.790904240.54442.67 \pm 0.30130427A0.339941.59 \pm 0.49807030.96645.09 \pm 0.370602180.0335134.60 \pm 0.420905164.10947.93 \pm 1.00130505A2.2746.27 \pm 0.399812261.1144.03 \pm 1.130603063.547.48 \pm 1.040906180.5440.54 \pm 0.30130518A2.48846.31 \pm 0.339901231.645.37 \pm 0.700604181.48945.89 \pm 0.64090715B3.47.01 \pm 0.78130701A1.15544.69 \pm 0.309905061.343.74 \pm 0.570605263.2245.97 \pm 0.500908122.45248.61 \pm 0.88130831A0.479141.24 \pm 0.309905101.61945.14 \pm 0.34060607A3.07547.57 \pm 0.6509092B1.82246.04 \pm 0.40131011A1.87444.68 \pm 0.339907050.84243.51 \pm 0.730606140.12538.88 \pm 2.58090926B1.2444.51 \pm 0.30131105A1.68645.26 \pm 0.599912080.70641.98 \pm 0.310607073.42447.74 \pm 0.68090926B1.2444.51 \pm 0.30131105A1.68645.26 \pm 0.599912161.0243.36 \pm 0.520608141.92945.63 \pm 0.790910180.97142.94 \pm 1.05131117A4.04240.99 \pm 0.469912161.0243.66 \pm 0.520608141.929<	2.87 ± 0.29	1.297	130420A	50.05 ± 0.67	8.1	090423	49.11 ± 1.22	4.0559	060206	47.97 ± 0.51	3.42	971214
9807030.966 45.09 ± 0.37 0602180.03351 34.60 ± 0.42 090516 4.109 47.93 ± 1.00 $130505A$ 2.27 46.27 ± 0.39 9812261.11 44.03 ± 1.13 060306 3.5 47.48 ± 1.04 090618 0.54 40.54 ± 0.30 $130518A$ 2.488 46.31 ± 0.37 9901231.6 45.37 ± 0.70 060418 1.489 45.89 ± 0.64 090715B $3.$ 47.01 ± 0.78 $130701A$ 1.155 44.69 ± 0.30 9905061.3 43.74 ± 0.57 060526 3.22 45.97 ± 0.50 090812 2.452 48.61 ± 0.88 $130831A$ 0.4791 41.24 ± 0.30 9905101.619 45.14 ± 0.34 060607A 3.075 47.57 ± 0.65 090902B 1.822 46.04 ± 0.40 $131011A$ 1.874 44.68 ± 0.35 9907050.842 43.51 ± 0.73 0606140.125 38.88 ± 2.58 090926 2.1062 44.75 ± 0.35 $131030A$ 1.295 43.82 ± 0.51 9907120.434 41.85 ± 0.44 060707 3.424 47.74 ± 0.68 090926B 1.24 44.51 ± 0.30 $131105A$ 1.686 45.26 ± 0.59 9912080.706 41.98 ± 0.52 060814 1.929 45.63 ± 0.79 091010 0.971 42.94 ± 1.05 $131117A$ 4.042 47.69 ± 0.36 9912161.02 43.66 ± 0.52 060814 1.929 45.63 ± 0.79 091018 0.971 42.94 ± 1.05 $13117A$ 0.642 41.55 ± 40.29 47.18	$.59 \pm 0.41$	0.3399	130427A	42.67 ± 0.30	0.544	090424	47.52 ± 0.79	3.91	060210	46.06 ± 1.11	1.096	980613
9812261.11 44.03 ± 1.13 0603063.5 47.48 ± 1.04 0906180.54 40.54 ± 0.30 130518A2.488 46.31 ± 0.37 9901231.6 45.37 ± 0.70 0604181.489 45.89 ± 0.64 090715B3. 47.01 ± 0.78 130701A1.155 44.69 ± 0.30 9905061.3 43.74 ± 0.57 0605263.22 45.97 ± 0.50 0908122.452 48.61 ± 0.88 130831A 0.4791 41.24 ± 0.30 9905101.619 45.14 ± 0.34 060607A3.075 47.57 ± 0.65 090902B 1.822 46.04 ± 0.40 131011A 1.874 44.68 ± 0.39 9907050.842 43.51 ± 0.73 0606140.125 38.88 ± 2.58 090926 2.1062 44.75 ± 0.35 131030A 1.295 43.82 ± 0.31 9907120.434 41.85 ± 0.44 060707 3.424 47.74 ± 0.68 090926B 1.24 44.51 ± 0.30 131105A 1.686 45.26 ± 0.59 9912080.706 41.98 ± 0.31 0607290.543 42.55 ± 1.22 091003 0.8969 45.53 ± 0.52 131108A 2.4 47.08 ± 0.36 9912161.02 43.36 ± 0.52 0608141.9229 45.63 ± 0.79 091018 0.971 42.94 ± 1.05 131117A 4.042 40.99 ± 0.40 9912161.02 47.18 ± 1.04 060908 1.8836 47.14 ± 1.18 091020 1.71 $46.52 + 0.39$ 131231A 0.642	5.27 ± 0.39	2.27	130505A	47.93 ± 1.00	4.109	090516	34.60 ± 0.42	0.03351	060218	45.09 ± 0.37	0.966	980703
9901231.6 45.37 ± 0.70 0604181.489 45.89 ± 0.64 090715B3. 47.01 ± 0.78 130701A1.155 44.69 ± 0.30 9905061.3 43.74 ± 0.57 060526 3.22 45.97 ± 0.50 090812 2.452 48.61 ± 0.88 130831A 0.4791 41.24 ± 0.30 9905101.619 45.14 ± 0.34 060607A 3.075 47.57 ± 0.65 090902B 1.822 46.04 ± 0.40 131011A 1.874 44.68 ± 0.39 9907050.842 43.51 ± 0.73 0606140.125 38.88 ± 2.58 090926 2.1062 44.75 ± 0.35 131030A 1.295 43.82 ± 0.31 9907120.434 41.85 ± 0.44 060707 3.424 47.74 ± 0.68 090926B 1.24 44.51 ± 0.30 131105A 1.686 45.26 ± 0.59 9912080.706 41.98 ± 0.31 060729 0.543 42.55 ± 1.22 091003 0.8969 45.53 ± 0.52 131108A 2.4 47.69 ± 0.36 9912161.02 43.36 ± 0.52 0608141.9229 45.63 ± 0.79 091018 0.971 42.94 ± 1.05 131117A 4.042 40.59 ± 0.42 000131 45 47.18 ± 1.04 060008 18836 47.14 ± 118 091020 1.71 $46.52 + 0.39$ 131231A 0.642	5.31 ± 0.37	2.488	130518A	40.54 ± 0.30	0.54	090618	47.48 ± 1.04	3.5	060306	44.03 ± 1.13	1.11	981226
9905061.3 43.74 ± 0.57 060526 3.22 45.97 ± 0.50 090812 2.452 48.61 ± 0.88 130831A 0.4791 41.24 ± 0.30 9905101.619 45.14 ± 0.34 060607A 3.075 47.57 ± 0.65 090902B 1.822 46.04 ± 0.40 131011A 1.874 44.68 ± 0.39 9907050.842 43.51 ± 0.73 0606140.125 38.88 ± 2.58 090926 2.1062 44.75 ± 0.35 131030A 1.295 43.82 ± 0.31 9907120.434 41.85 ± 0.44 060707 3.424 47.74 ± 0.68 090926B 1.24 44.51 ± 0.30 131105A 1.686 45.26 ± 0.55 9912080.706 41.98 ± 0.31 0607290.543 42.55 ± 1.22 091003 0.8969 45.53 ± 0.52 131108A 2.4 47.08 ± 0.36 9912161.02 43.36 ± 0.52 0608141.9229 45.63 ± 0.79 091018 0.971 42.94 ± 1.05 131117A 4.042 46.99 ± 0.44 000131 45 47.18 ± 1.04 060008 1.8836 47.14 ± 1.18 091020 1.71 46.52 ± 0.39 131231A 0.642	1.69 ± 0.30	1.155	130701A	47.01 ± 0.78	3.	090715B	45.89 ± 0.64	1.489	060418	45.37 ± 0.70	1.6	990123
9905101.619 45.14 ± 0.34 060607A 3.075 47.57 ± 0.65 090902B 1.822 46.04 ± 0.40 $131011A$ 1.874 44.68 ± 0.39 9907050.842 43.51 ± 0.73 0606140.125 38.88 ± 2.58 090926 2.1062 44.75 ± 0.35 $131030A$ 1.295 43.82 ± 0.31 9907120.434 41.85 ± 0.44 060707 3.424 47.74 ± 0.68 090926B 1.24 44.51 ± 0.30 $131105A$ 1.686 45.26 ± 0.59 9912080.706 41.98 ± 0.31 0607290.543 42.55 ± 1.22 091003 0.8969 45.53 ± 0.52 $131108A$ 2.4 47.08 ± 0.36 9912161.02 43.36 ± 0.52 0608141.9229 45.63 ± 0.79 091018 0.971 42.94 ± 1.05 $131117A$ 4.042 46.99 ± 0.46 000131 45 47.18 ± 1.04 060008 1.8836 47.14 ± 1.18 091020 1.71 46.52 ± 0.39 $131231A$ 0.642	$.24 \pm 0.30$	0.4791	130831A	48.61 ± 0.88	2.452	090812	45.97 ± 0.50	3.22	060526	43.74 ± 0.57	1.3	990506
990705 0.842 43.51 ± 0.73 060614 0.125 38.88 ± 2.58 090926 2.1062 44.75 ± 0.35 $131030A$ 1.295 43.82 ± 0.35 990712 0.434 41.85 ± 0.44 060707 3.424 47.74 ± 0.68 $090926B$ 1.24 44.51 ± 0.30 $131105A$ 1.686 45.26 ± 0.59 991208 0.706 41.98 ± 0.31 060729 0.543 42.55 ± 1.22 091003 0.8969 45.53 ± 0.52 $131108A$ 2.4 47.08 ± 0.36 991216 1.02 43.36 ± 0.52 060814 1.9229 45.63 ± 0.79 091018 0.971 42.94 ± 1.05 $131117A$ 4.042 46.99 ± 0.46 000131 45 47.18 ± 1.04 060008 1.8836 47.14 ± 1.18 091020 1.71 46.52 ± 0.39 $131231A$ 0.642 41.55 ± 0.26	1.68 ± 0.39	1.874	131011A	46.04 ± 0.40	1.822	090902B	47.57 ± 0.65	3.075	060607A	45.14 ± 0.34	1.619	990510
990712 0.434 41.85 ± 0.44 060707 3.424 47.74 ± 0.68 $090926B$ 1.24 44.51 ± 0.30 $131105A$ 1.686 45.26 ± 0.59 991208 0.706 41.98 ± 0.31 060729 0.543 42.55 ± 1.22 091003 0.8969 45.53 ± 0.52 $131108A$ 2.4 47.08 ± 0.33 991216 1.02 43.36 ± 0.52 060814 1.9229 45.63 ± 0.79 091018 0.971 42.94 ± 1.05 $131117A$ 4.042 46.99 ± 0.46 000131 45 47.18 ± 1.04 060008 1.8836 47.14 ± 1.18 091020 1.71 46.52 ± 0.39 131314 0.642 41.55 ± 0.32	3.82 ± 0.31	1.295	131030A	44.75 ± 0.35	2.1062	090926	38.88 ± 2.58	0.125	060614	43.51 ± 0.73	0.842	990705
991208 0.706 41.98 \pm 0.31 060729 0.543 42.55 \pm 1.22 091003 0.8969 45.53 \pm 0.52 131108A 2.4 47.08 \pm 0.30 991216 1.02 43.36 \pm 0.52 060814 1.9229 45.63 \pm 0.79 091018 0.971 42.94 \pm 1.05 131117A 4.042 46.99 \pm 0.40 000131 4.5 47.18 \pm 1.04 060008 1.8836 47.14 \pm 1.18 091020 1.71 46.52 \pm 0.39 131231A 0.642 41.55 \pm 0.30	5.26 ± 0.59	1.686	131105A	44.51 ± 0.30	1.24	090926B	47.74 ± 0.68	3.424	060707	41.85 ± 0.44	0.434	990712
991216 1.02 43.36 ± 0.52 060814 1.9229 45.63 ± 0.79 091018 0.971 42.94 ± 1.05 131117A 4.042 46.99 ± 0.46 000131 45 47.18 + 1.04 060908 1.8836 47.14 + 1.18 091020 1.71 46.52 + 0.39 131231A 0.642 41.55 + 0.30	1.08 ± 0.36	2.4	131108A	45.53 ± 0.52	0.8969	091003	42.55 ± 1.22	0.543	060729	41.98 ± 0.31	0.706	991208
$000131 45 4718 \pm 1.04 060908 1.8836 4714 \pm 1.18 091020 1.71 4652 \pm 0.39 1312314 0.642 4155 \pm 0.26$	5.99 ± 0.46	4.042	131117A	42.94 ± 1.05	0.971	091018	45.63 ± 0.79	1.9229	060814	43.36 ± 0.52	1.02	991216
-0.00131 ± 0.07 ± 1.07 -0.0700 ± 0.0000 $\pm 7.17 \pm 1.10$ -0.071020 ± 1.11 $\pm 0.02 \pm 0.07$ ± 0.071020 ± 0.07	$.55 \pm 0.30$	0.642	131231A	46.52 ± 0.39	1.71	091020	47.14 ± 1.18	1.8836	060908	47.18 ± 1.04	4.5	000131
$000210 0.846 44.82 \pm 0.34 060927 5.46 47.84 \pm 0.70 091024 1.092 43.92 \pm 0.32 140206A 2.73 46.07 \pm 0.33 140206A 2.73 46.07 2.73 2.73 46.07 2.73 2.73 46.07 2.73 2.73 2.73 2.73 $	5.07 ± 0.33	2.73	140206A	43.92 ± 0.32	1.092	091024	47.84 ± 0.70	5.46	060927	44.82 ± 0.34	0.846	000210
$000418 1.12 43.97 \pm 0.35 061007 1.262 44.36 \pm 0.41 091029 2.752 46.12 \pm 0.68 140213A 1.2076 43.72 \pm 0.3076 43.72 \pm 0$	3.72 ± 0.30	1.2076	140213A	46.12 ± 0.68	2.752	091029	44.36 ± 0.41	1.262	061007	43.97 ± 0.35	1.12	000418
$000911 1.06 45.76 \pm 0.58 061121 1.314 46.73 \pm 0.40 091127 0.49 39.90 \pm 0.31 140419A 3.956 47.83 \pm 0.84A 0.84$	1.83 ± 0.84	3.956	140419A	39.90 ± 0.31	0.49	091127	46.73 ± 0.40	1.314	061121	45.76 ± 0.58	1.06	000911
$000926 2.07 44.62 \pm 0.37 061126 1.1588 46.15 \pm 0.76 091208B 1.063 45.18 \pm 0.30 140423A 3.26 47.24 \pm 0.40 47.24 \pm 0.$	1.24 ± 0.40	3.26	140423A	45.18 ± 0.30	1.063	091208B	46.15 ± 0.76	1.1588	061126	44.62 ± 0.37	2.07	000926
010222 1.48 44.52 \pm 0.34 061222A 2.088 46.87 \pm 0.51 100414A 1.368 45.92 \pm 0.37 140506A 0.889 45.78 \pm 0.99	5.78 ± 0.99	0.889	140506A	45.92 ± 0.37	1.368	100414A	46.87 ± 0.51	2.088	061222A	44.52 ± 0.34	1.48	010222
010921 0.45 42.29 ± 0.49 070125 1.547 45.08 ± 0.44 100621A 0.542 41.88 ± 0.41 140508A 1.027 43.69 ± 0.32	3.69 ± 0.32	1.027	140508A	41.88 ± 0.41	0.542	100621A	45.08 ± 0.44	1.547	070125	42.29 ± 0.49	0.45	010921
011121 0.36 44.03 ± 0.70 070521 1.35 45.67 ± 0.36 100728A 1.567 44.83 ± 0.34 140512A 0.725 44.31 ± 1.49	4.31 ± 1.41	0.725	140512A	44.83 ± 0.34	1.567	100728A	45.67 ± 0.36	1.35	070521	44.03 ± 0.70	0.36	011121
011211 2.14 45.34 ± 0.35 071003 1.604 47.79 ± 0.45 100728B 2.106 47.03 ± 0.39 140515A 6.32 49.32 ± 0.79	0.32 ± 0.71	6.32	140515A	47.03 ± 0.39	2.106	100728B	47.79 ± 0.45	1.604	071003	45.34 ± 0.35	2.14	011211
$020124 3.198 46.59 \pm 0.79 071010B 0.947 42.48 \pm 0.59 100814A 1.44 43.93 \pm 0.36 140518A 4.707 47.58 \pm 0.466 4.707 47.58 \pm 0.466 4.707 47.58 \pm 0.466 4.707 4.758 \pm 0.466 4.758 4$	1.58 ± 0.46	4.707	140518A	43.93 ± 0.36	1.44	100814A	42.48 ± 0.59	0.947	071010B	46.59 ± 0.79	3.198	020124
$020405 0.69 43.02 \pm 0.31 071020 2.145 48.45 \pm 0.66 100816A 0.8049 45.58 \pm 0.31 140620A 2.04 45.44 \pm 0.30 0.8049 45.58 \pm 0.31 0.8049 45.58 \pm 0.31 0.8049 45.44 \pm 0.30 0.8049 45.58 \pm 0.31 0.8049 45.58 \pm 0.31 0.8049 45.44 \pm 0.30 0.8049 45.58 \pm 0.31 0.8049 45.58 \pm 0.31 0.8049 45.44 \pm 0.30 0.8049 45.58 \pm 0.31 0.8049 45.44 \pm 0.30 0.8049 $	5.44 ± 0.30	2.04	140620A	45.58 ± 0.31	0.8049	100816A	48.45 ± 0.66	2.145	071020	43.02 ± 0.31	0.69	020405
020813 1.25 43.73 ± 0.67 071117 1.331 46.77 ± 1.30 100906A 1.727 43.93 ± 0.41 140623A 1.92 48.26 ± 1.12	3.26 ± 1.12	1.92	140623A	43.93 ± 0.41	1.727	100906A	46.77 ± 1.30	1.331	071117	43.73 ± 0.67	1.25	020813
$020819B 0.41 41.07 \pm 0.75 080207 2.0858 45.41 \pm 1.78 101213A 0.414 43.63 \pm 1.00 140629A 2.275 46.46 \pm 0.506 0.566 \pm 0.566 0.566 0.566 \pm 0.566 $	5.46 ± 0.50	2.275	140629A	43.63 ± 1.00	0.414	101213A	45.41 ± 1.78	2.0858	080207	41.07 ± 0.75	0.41	020819B
020903 0.25 39.31 ± 1.38 080319B 0.937 44.01 ± 0.36 101219B 0.55 42.89 ± 0.31 140801A 1.32 44.79 ± 0.30	1.79 ± 0.30	1.32	140801A	42.89 ± 0.31	0.55	101219B	44.01 ± 0.36	0.937	080319B	39.31 ± 1.38	0.25	020903
$021004 2.3 46.86 \pm 1.06 080411 1.03 44.50 \pm 0.38 110106B 0.618 44.31 \pm 0.68 140808A 3.29 48.53 \pm 0.43$	3.53 ± 0.45	3.29	140808A	44.31 ± 0.68	0.618	110106B	44.50 ± 0.38	1.03	080411	46.86 ± 1.06	2.3	021004
$021211 1.01 44.21 \pm 0.97 080413A 2.433 47.75 \pm 0.78 110205A 2.22 46.20 \pm 0.98 140907A 1.21 45.20 \pm 0.30$	5.20 ± 0.30	1.21	140907A	46.20 ± 0.98	2.22	110205A	47.75 ± 0.78	2.433	080413A	44.21 ± 0.97	1.01	021211
$030226 1.98 45.23 \pm 0.55 0804138 1.1 44.63 \pm 0.70 1102134 1.46 44.71 \pm 0.79 1410284 2.33 46.12 \pm 0.35 0.30226 1.98 1.1 $	5.12 ± 0.35	2.33	141028A	44.71 ± 0.79	1.46	110213A	44.63 ± 0.70	1.1	080413B	45.23 ± 0.55	1.98	030226
$030323 3.37 48.08 \pm 1.06 080603B 2.69 46.77 \pm 1.02 110213B 1.083 43.79 \pm 0.43 141109A 2.993 47.27 \pm 0.77 \pm 0.77$	1.27 ± 0.71	2.993	141109A	43.79 ± 0.43	1.083	110213B	46.77 ± 1.02	2.69	080603B	48.08 ± 1.06	3.37	030323
$030328 1.52 43.58 \pm 0.43 080605 1.64 46.00 \pm 0.65 1104224 1.77 43.76 \pm 0.32 1412204 1.3195 43.78 \pm 0.33 1412204 141204$	3.78 ± 0.33	1.3195	141220A	43.76 ± 0.32	1.77	110422A	46.00 ± 0.65	1.64	080605	43.58 ± 0.43	1.52	030328
$030329 0.1685 38.28 \pm 0.30 080607 3.036 47.24 \pm 0.44 1105034 1.613 45.56 \pm 0.34 1412214 1.452 46.71 \pm 0.47 0.$	5.71 ± 0.47	1.452	141221A	45.56 ± 0.34	1.613	110503A	47.24 ± 0.44	3.036	080607	38.28 ± 0.30	0.1685	030329
030429 2.65 46.09 + 0.50 080721 2.591 47.33 + 0.46 1107154 0.82 43.42 + 0.30 1412254 0.915 45.43 + 0.416 0.9	5.43 ± 0.41	0.915	141225A	43.42 ± 0.30	0.82	110715A	47.33 ± 0.46	2.591	080721	46.09 ± 0.50	2.65	030429
030528 0.78 41.06 + 0.41 080804 2.2045 47.83 + 0.35 110731A 2.83 47.76 + 0.37 150206A 2.087 45.71 + 0.44	5.71 ± 0.44	2.087	150206A	47.76 ± 0.37	2.83	110731A	47.83 ± 0.35	2.2045	080804	41.06 ± 0.41	0.78	030528
$040912B = 1.563 = 42.91 \pm 2.16 = 080913 = 6.695 = 50.73 \pm 1.26 = 1108014 = 1.858 = 45.94 \pm 1.06 = 150301B = 1.5169 = 46.73 \pm 0.55$	573 ± 0.52	1 5169	150301B	45.94 ± 1.06	1 858	110801A	50.73 ± 1.26	6 695	080913	42.91 ± 2.16	1 563	040912B
040924 0.859 43.48 + 0.81 080916A 0.689 44.44 + 0.30 110818A 3.36 48.79 + 0.56 150314A 1.758 45.62 + 0.33	562 ± 0.35	1 758	150314A	48.79 ± 0.56	3 36	110818A	4444 + 030	0.689	080916A	4348 ± 0.81	0.859	040924
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	432 ± 0.00	0 593	150323A	48.38 ± 0.72	2.893	111107A	43.64 ± 0.62	1 6919	080928	41.64 ± 0.57	0.716	041006
$(41219 \ 0.31 \ 40.24 + 0.65 \ 0.81007 \ 0.5295 \ 42.92 + 0.59 \ 1112284 \ 0.716 \ 40.63 + 0.34 \ 1504034 \ 2.06 \ 46.20 + 0.42$	520 ± 0.10	2.06	150403A	40.63 ± 0.34	0.716	111228A	42.92 ± 0.59	0.5295	081007	40.24 ± 0.65	0.31	041219
550318 14436 4422 + 0.52 081008 19685 4526 + 0.49 1201194 1728 4522 + 0.34 1504134 3139 4592 + 0.99	592 ± 0.98	3 1 3 9	150413A	45.22 ± 0.34	1 728	120119A	45.26 ± 0.49	1 9685	081008	44.22 ± 0.62	1 4436	050318
550401 2.8983 4612 + 0.61 081028 3.038 4551 + 0.95 120326 1.798 4504 + 0.30 150514 0.807 43.47 + 0.47	347 ± 0.93	0.807	150514A	45.04 ± 0.30	1.720	120326A	45.51 ± 0.15	3.038	081028	46.12 ± 0.52	2 8983	050401
$05041 = 20505$ 0.12 ± 0.012 $0.0124 = 20505$ $1.001 \pm 0.011 \pm 0.011$ 1.001 ± 0.011 1.001 ± 0.011 1.00	107 ± 0.19	0.755	150821A	45.89 ± 0.47	2 1974	120520H	45.21 ± 0.30	2.58	081118	41.8 ± 0.54	0.6535	050416A
0505754 - 0.606 - 42.13 + 0.36 - 0.81121 - 2.512 - 46.48 + 0.34 - 1207114 - 1405 - 46.00 + 0.40 - 1510214 - 1.49 - 43.82 + 0.34 - 0.36 - 0.81121 - 0.36	382 ± 0.36	1 49	151021A	46.00 ± 0.17	1 405	120021B	4648 ± 0.34	2.50	081121	42.13 ± 0.36	0.606	050525A
$0.50603 2.821 47.76 \pm 0.37 0.81203A 2.05 47.99 \pm 1.28 120712A 41745 48.38 \pm 0.53 151072A 0.81 44.57 \pm 1.33$	157 ± 0.00	0.81	1510274	48.38 ± 0.13	4 1745	1207124	47.99 ± 1.28	2.05	0812034	47.76 ± 0.37	2.821	050603
5050820 2615 47 03 + 0.55 081201 226 44.55 + 0.31 1207164 2.486 45.60 + 0.32 1510294 1.423 45.24 + 0.55	524 ± 0.51	1 423	1510294	45.60 ± 0.33	2.486	120716A	4455 ± 0.31	2.26	0812034	47.03 ± 0.57	2.615	050820
6295 = 5094 + 0.88 = 081222 - 2.77 = 47.00 + 0.34 = 120724 - 1.48 = 44.95 + 0.68	0.01		15102711	44.25 ± 0.68	1 48	1207244	47.00 ± 0.31	2.77	081222	50.94 ± 0.88	6 295	050904
050922C 2.199 47.20 + 0.73 090102 1.547 47.01 + 0.37 120802A 3.796 46.82 + 0.84				46.82 ± 0.03	3.796	120802A	47.01 ± 0.37	1.547	090102	47.20 ± 0.00	2.199	050922C
051022 0.809 43.30 ± 0.82 090205 4.6497 49.78 ± 0.88 $120811C$ 2.671 45.95 ± 0.30				45.95 ± 0.30	2.671	120811C	49.78 ± 0.88	4.6497	090205	43.30 ± 0.82	0.809	051022

This paper has been typeset from a $T_{\ensuremath{E}} X/ \ensuremath{I\!=\!} X / \ensuremath{I\!=\!} X$ file prepared by the author.