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ABSTRACT
The X-ray emission from the microquasar GRS 1915+105 shows, together with a very complex variability on different time-
scales, the presence of low-frequency quasi-periodic oscillations (LFQPOs) at frequencies lower than ∼30 Hz. In this paper, we
demonstrate that these oscillations can be consistently and naturally obtained as solutions of a system of two ordinary differential
equations, which is able to reproduce almost all variability classes of GRS 1915+105. We modified the Hindmarsh–Rose model
and obtained a system with two dynamical variables x(t), y(t), where the first one represents the X-ray flux from the source,
and an input function J(t), whose mean level J0 and its time evolution is responsible of the variability class. We found that for
values of J0 around the boundary between the unstable and the stable interval, where the equilibrium points are of spiral type,
one obtains an oscillating behaviour in the model light curve similar to the observed ones with a broad Lorentzian feature in
the power density spectrum and, occasionally, with one or two harmonics. Rapid fluctuations of J(t), as those originating from
turbulence, stabilize the LFQPOs, resulting in a slowly amplitude modulated pattern. To validate the model, we compared the
results with real RXTE data, which resulted remarkably similar to those obtained from the mathematical model. Our results
allow us to favour an intrinsic hypothesis on the origin of LFQPOs in accretion discs ultimately related to the same mechanism
responsible for the spiking limit cycle.
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1 IN T RO D U C T I O N

Quasi-periodic oscillations (QPO) in X-ray binaries were discovered
in the eighties (van der Klis 1989) and they were after detected in sev-
eral black hole candidates (BHCs; Remillard & McClintock 2006).
Low-frequency QPOs (LFQPO) are observed as broad peaks with a
well approximate Lorentzian profiles in the power spectral density
(PDS) and centred at a frequency ν0 � 30 Hz (see the review by Motta
2016). LFQPOs have been classified in different types (Wijnands,
Homan & van der Klis 1999; Casella et al. 2004; Casella, Belloni &
Stella 2005; Remillard & McClintock 2006; Motta 2016) according
to the peak frequency and width, the relevance of the harmonics and
the shape of the noise in the PDS. Many observational studies have
shown that central frequencies vary and exhibit correlations with
the mean brightness and energy of the photons. Following van den
Eijnden, Ingram & Uttley (2016), one can classify the explanations
of LFQPOs into the broad types of geometric and intrinsic models:
In the former class, the source luminosity is not time modulated
but has an anisotropic angular pattern and the flux oscillations are
produced by changes of orientation with respect to the sightline
(e.g. precession or Lense–Thirring effect as proposed by Ingram,
Done & Fragile 2009), while in the latter type, the QPO origin is
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related to emissivity changes due to shocks (Chakrabarti & Molteni
1993), or variations of the accretion rate originated in various kinds
of instabilities (Chen & Taam 1992, 1995; Tagger & Pellat 1999;
Varnière, Tagger & Rodriguez 2012; Marcel et al. 2020).

In this paper, we consider the well-studied microquasar GRS
1915+105, discovered by Castro-Tirado, Brandt & Lund (1992).
This source exhibits a bright and highly variable X-ray emission,
characterized by several different variability patterns that alternate
steady and noisy emission to regular and chaotic series of bursts. A
first classification of the observed multifarious time behaviour based
on the signal structure and on the photon energy distribution was
presented by Belloni et al. (2000), who defined 12 classes identified
by a greek letter, but new other patterns were observed on subsequent
occasions. Some examples of X-ray light curves, from the RXTE data
archive of four of these variability classes, are shown in Fig. 1. In
the top panel, there is a typical χ class light curve that consists of
a rather steady and highly noisy signal with a nearly constant mean
value, and in the bottom panel, there is a ρ class light curve with
a long sequence of nearly regular bursts. In the two intermediate
panels, there are examples of δ and ρd signals, the latter defined
by Massaro et al. (2020a), which are considered transition classes
between stable and unstable states. A bursting ρ class light curve
was first reported by Taam, Chen & Swank (1997), who interpreted
it as an evidence of a limit cycle in an accretion disc around a black
hole originating from thermal-viscous instabilities (see also Taam &
Lin 1984; Szuszkiewicz & Miller 1998).
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Figure 1. Examples of four types of RXTE light curves of GRS 1915+105. The greek letters correspond to the variability classes according to the definition
by Belloni et al. (2000).

LFQPOs are frequently observed also in GRS 1915+105 (Paul
et al. 1997; Fender & Belloni 2004). Markwardt, Swank & Taam
(1999) and Muno, Morgan & Remillard (1999) found that these
oscillations occur during the dips, when the source is in a flaring
state, and that their frequency correlates with the parameters of
the thermal disc component, like the temperature. Rodriguez et al.
(2002) confirmed that frequency variations are well correlated with
the soft X-ray flux and proposed that they could be related to a hot
point in an optically thick disc, while the presence of harmonics
could be a signature of a non-linear instability. The high X-ray
flux from GRS 1915+105 allows for detailed investigations on
LFQPOs, which showed the existence of a modulation with the
QPO phase either of the observed reflection fraction or of the iron
line shape that change throughout the cycle (Ingram & van der
Klis 2015).

The stability of accretion discs is also a very interesting subject
of investigations since many years of theoretical analysis suggested
that thermal and viscous instabilities can develop and establish a
limit cycle behaviour. The complex hydrodynamical, thermal, and
magnetic phenomena occurring in accretion discs around black holes
involve non-linear processes whose evolution are described by a
system of partial differential equations, and whose solutions are
obtained by numerical calculations involving several quantities not
directly observable, as the gas density or viscous stresses.

In a recent couple of papers (Massaro et al. 2020a,b, hereafter
Paper I and Paper II), we showed that the solutions of a system of
non-linear ordinary differential equations (ODE) reproduce several
classes of the X-ray light curves of GRS 1915+105. This system,
named Modified Hindmarsh-Rose (shorthly MHR), is a modified
version of the well-studied Hindmarsh–Rose model that is used for
describing neuronal bursts. The MHR model is a non-autonomous
system with a time-dependent input function. The function we
adopted has a variable component added to fast random fluctuations
introduced to simulate a possible plasma turbulence in the emitting
source. Some examples of the numerical solutions obtained in Paper
I are given in Fig. 2. These light curves, remarkably similar to the

true data in Fig. 1, are obtained by changing the value of only one
parameter. It is interesting that the shape of one of the equilibrium
curves of the proposed ODE system presents an S-pattern similar
to those derived from numerical solutions of disc equations (see the
review by Lasota 2016). In stable states, like the χ class, which is
much more frequently observed than all the other ones Belloni et al.
(2000), the X-ray flux of GRS 1915+105 remains nearly constant,
but a large noise component is present. This component may be
particularly relevant for reproducing some variability classes and
can play a very important role in the origin of LFQPOs.

In this paper, we investigate in detail how the MHR model produces
LFQPOs and how the amplitude of the noisy component affects
the characteristics of the solutions. In particular, we present some
results on LFQPOs in GRS 1915+105 applying a harmonic filtering
method and, after a brief description of our mathematical model,
we demonstrate that it can also account for LFQPOs with some
features remarkably similar to the observed ones. These findings can
be applied to other sources as well.

2 LFQPO ANALYSI S OF RXTE OBSERVATIO NS

Extensive investigations of several RXTE observations of GRS
1915+105 focused on QPO detection and their properties were
performed by Morgan, Remillard & Greiner (1997) and Yan et al.
(2013); more recently, van den Eijnden et al. (2016) reported new
results on another sample of RXTE data sets. We selected in these data
a couple of observations having LFQPO features with high-quality
factors, and precisely those with ID 1040801-25-00 and 1040801-29-
00a, both performed in 1996, the former on July 19 and the latter on
August 10. The RXTE/PCA light curves were extracted in standard 1
mode, namely in the total energy band (2–40 keV) and with the time
binning of 125 ms. Both observations include more than a single
orbit and we selected only the first one to avoid time gaps in the data;
then we computed their PDS by means of a standard discrete Fourier
transform algorithm. The July 19 series has a duration of 3296 s and
that of August 10 of 2816 s.
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A mathematical model for GRS 1915+105 407

Figure 2. Solutions of the mathematical model described by Paper I and Paper II and reproducing the observed light curves GRS 1915+105 in Fig. 1. These
series, from the top to bottom, are obtained by increasing only a parameter as explained in Section 3.

In the two panels of Fig. 3, we report the PDS of both observations,
whose values (black spectra) are affected by a very large noise that
can be reduced by performing a simple running average smoothing;
broad Lorentzian peaks centred at 1.11 (July 19) and 1.66 Hz (August
10), in a very good agreement with the above quoted papers, are well
apparent. Note that in both spectra, a first harmonic feature is also
present.

We reconstruct the time signal corresponding to these features
applying a technique similar to that used by van den Eijnden et al.
(2016), which consists of filtering both the real and imaginary series
of the discrete Fourier transform of the photon count rates. We did
not use the same optimal filter used by these authors but applied the
simple rectangular bandpass with a smooth tapering at the boundaries
given by the following formula:

�(X) = 1

4

(
1 + (X − X1)√

(X − X1)2 + s2
1

)

×
(

1 − (X − X2)√
(X − X2)2 + s2

2

)
, (1)

where X1 and X2 are the two frequencies defining the accepted
window and s1 and s2 rule the slopes for tapering the filter profile
(for a symmetric filter, s1 = s2). In our case, we considered also the
power in the first harmonic to better approximate the true waveform.
The filtered PDS spectrum of the July 19 data is shown in red in
Fig. 3, showing that our method is not largely different from that
used by van den Eijnden et al. (2016).

A segment of the signal obtained by the inverse Fourier transform
is shown in Fig. 4. The signal structure presents an amplitude
modulation applied to a carrier at the frequency of the central value
of LFQPO peak like the waveform reported by van den Eijnden et al.
(2016).

As already shown in Paper I, the same MHR mathematical model
used for computing the light curves reported in Fig. 2 is also able to
produce LFQPOs with only a further increase of the input parameter

and without any changes of the other parameters. In Fig. 5, we
reported two series computed in the quoted paper and their PDS
to show how the model gives LFQPOs remarkably similar to the
true data. Light curves show a modulated fast oscillation with an
amplitude depending on the input parameter. Note also the large
differences in the amplitudes of these signals, which are due to the
values of J0 but not to the amplitude of the noise, as explained
in the next section. In the lower panel, the upper spectrum has a
well-apparent second harmonic and the third one is also marginally
detectable, whereas in the lower spectrum, only the peak at the
fundamental frequency is visible. In the same plot, we report the
Lorentzian best fits to the peaks, which are in a very well agreement
with their profiles and have quality factors Q = ν/�ν equal to 29.2
and 5.8, comparable to observed values.

Thus, one can rise the hypothesis that the spikes of the limit
cycle and LFQPO, both frequently observed in GRS 1915+105,
have a common origin and their occurrence depends on the value
of only one parameter. In the next section, we summarize the main
mathematical properties of the MHR model and extend the analysis
of the nature of the equilibrium points in order to make clear the
necessary conditions for developing LFQPOs. Moreover, the MHR
model will make possible to investigate the relevant role of the
presence of a noise component in stabilizing LFQPOs, which, in
the absence of such a component, would be rapidly damped.

3 TH E M H R N O N - L I N E A R O D E S Y S T E M

As stated in the introduction, in Paper I and Paper II, we reproduced
the rich and complex behaviour of GRS 1915+105 by means of a
non-linear system of ODE as those used for describing quiescent
and bursting signals in neuronal arrays. This approach offers the
possibility of describing transitions between stable and unstable
equilibrium states with the onset of limit cycles. The original
Hindmarsh–Rose model (see the historic review of Hindmarsh &
Cornelius 2005, and the tutorial paper Shilnikov & Kolomiets 2008)
was based on three ODEs, for three dynamical variables x, y, and
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Figure 3. Upper panel: Fourier spectrum of the light curve of GRS
1915+105 of the RXTE observation on 1996 July 19 with a QPO broad
peak centred at the frequency of 1.11 Hz. The yellow data are after running
average smoothing to reduce the noise. Red data are those obtained after the
two bandpass filtering on the fundamental and first harmonic feature used for
deriving the QPO signal. Lower panel: Fourier spectrum of the light curve
of GRS 1915+105 of the RXTE observation on 1996 August 10 with a QPO
broad peak centred at the frequency of 1.66 Hz. The cyan data are obtained
running average smoothing to reduce the noise.

z, involving changes on different time-scales. In our previous works
(Paper I andPaper II), we considered a modified system without
the variable z and including an external input function of the time
J(t). Moreover, we adopted the simplifying assumption of taking
the same quadratic coefficient in both equations, and without loss
of generality, the cubic coefficient was assumed equal to 1.0. The
resulting modified system, therefore, is non autonomous and includes
only two ODEs that, using the same notation as in Paper I, are{

ẋ = −x3 + βx2 + y + J (t) = f (x, y)

ẏ = −βx2 − y = g(x, y)
(2)

where the signs of the various terms were taken to have positive
parameters’ values. As in our previous papers, we consider only the
x time series that represents the X-ray photon flux of the source. Of
course the solutions must be scaled both in time and amplitude to
be compared with the observational data.
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Figure 4. A short segment of the X-ray light curve of the RXTE observation
on 1996 July 19 of GRS 1915+105 obtained by means of the two band
Fourier filtering shown in the upper panel of Fig. 3.
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Figure 5. Upper panel: light curves computed in Paper I by means of the
MHR model assuming J(t) of equation (6), with C = 3.5 and two values of
J0 = 6.1 (upper magenta spectrum), just higher than the transition level and
7.5 (lower indigo spectrum), both located in the stable region. Lower panel:
power density spectra of these curves, shifted to separate the profiles of QPO
features. The black and yellow thick curves show the Lorentzian fits to the
QPO peaks.
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Figure 6. Nullclines for the MHR model with β = 3 and for two J0 values
equal to −2 (green long dashed curve) and 2 (red dot–dashed curve); the solid
blue curve shows the parabola given by equation (4). Two phase trajectories
(short dashed lines), one stable and the other describing a limit cycle, with
equal initial conditions and two J0 values are shown; green filled circle and
red open circle show their equilibrium points. The turquoise vertical lines
delimit the unstable equilibrium interval, and the violet line corresponds to
the minima of cubic nullclines.

Figure 7. Plot of the traces of the Jacobian for two values of β as function of
the mean input J0. Stable intervals (χ , QPO) for the curve relative to β = 3.0
(solid red line) are outside the long vertical turquoise solid segments, while
the unstable interval (ρ) is between them. The QPO interval is indicated in the
stable interval between the higher stability boundary and the local minimum
of the cubic nullcline. The ‘high-frequency oscillation’ (hfo) in the unstable
interval is also indicated. Dashed vertical lines within the stable and unstable
regions mark the intervals in which other variability classes and behaviour
are obtained as reported in the graph.

3.1 Nullclines, equilibrium points, and stability for a constant
input

In the simple case of a constant J(t) = J0, an assumption that makes
the model autonomous, the equilibrium conditions of equation 2, i.e.
ẋ = ẏ = 0, are

y = x3 − β x2 − J0, (3)

y = −β x2. (4)

The system admits only the real solution x∗ = J
1/3
0 , y∗ = −β J

2/3
0 ,

which corresponds to the equilibrium point. In Fig. 6, we plotted in
the plane x, y the curves of equations (3) and (4), named nullclines,

for β = 3.0 as in Paper I: They intersect at the equilibrium point that,
as we demonstrated in that paper, results always stable for J0 < 0
while there is only one unstable interval for J0 > 0.

As shown in Paper I, the nature of the equilibrium depends only
upon the sign of the trace of the Jacobian of the system,(−3x2

∗ + 2βx∗ 1

−2βx∗ −1

)
,

evaluated at (x∗, y∗) because the determinant is always non negative.
The zeroes of the trace,

x1,2 = 1

3
(β ±

√
β2 − 3), (5)

define an interval within the trace is positive and therefore the
equilibrium is unstable. For β = 3.0, this unstable interval for the
variable x is [0.1835, 1.8165] and is entirely contained in the interval
[0.0, 2.0] that corresponds to the portion of the nullclines between
the local maximum and minimum where the slope is negative, as it
is easy to verify from the roots of the x derivative of equation (3).
It is important to note that the instability interval on x depends only
upon β but not upon J0; thus, a change of this parameter moves
the location of the equilibrium point allowing transitions between
stable and unstable states. However, we can relate the stability to J0

computing the values of the trace when J0 = x3
∗ varies; the resulting

curves, for β, 3.0 and 4.0, are reported in Fig. 7. The two previous
limits define three intervals for J0 that we indicate as S1 ≡ [ − ∞,
0.006 1792...], I ≡ [0.006 1792..., 5.993 82...], and S2 ≡ [5.993 82...,
+∞]. In this figure, the two turquoise vertical solid lines delimit the
unstable interval I for the former value of β given above, while the
equilibrium in the intervals S1 and S2 is stable, but the trajectories in
the phase space approaching to this state are different as explained in
Section 4.1. When J0 varies slowly across the limits of I, transitions
from stable to unstable equilibrium and vice versa occurs, thus ruling
the onset or the disappearance of the limit cycle.

Examples of stable and unstable dynamical solutions are
also illustrated in Fig. 6, where two trajectories in the phase space
corresponding to the values of (x(t), y(t)) of the system in equation (2)
are also plotted: They start from the same initial position, x0 =
−2.0, y0 = −2.0, but, while the one for J0 = −2.0 reaches the green
dashed nullcline and then moves directly towards the corresponding
equilibrium point, the other (orange trajectory), computed fixing
J0 = 2.0, crosses the parabolic nullcline and evolves to a closed orbit
(limit cycle) around the unstable (red open circle) equilibrium point.

4 STA BLE SOLUTI ONS: NUMERI CAL RES ULTS

Our first step was the computation of some light curves in the case
of a stable equilibrium. We consider first the condition J(t) = J0

without any noisy component that is useful for describing the nature
of equilibrium points and the evolution of phase space trajectories;
subsequently, we will present the results when random fluctuations
are included in J(t). In all the following calculations, we will assume
β = 3.0, as in Paper I. In the study of LFQPOs, the stable solutions
for negative values of J0 are not interesting and therefore we focus on
the case of positive values of this parameter. Numerical computations
were performed by means of a Runge–Kutta fourth-order integration
routine (Press et al. 2007).

4.1 Solutions without noise

The x, y trajectories in the phase space have a rather simple pattern
with a transient phase, depending on the initial values, followed by a
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Figure 8. Nullclines for the system of equation (2) with β = 3 and for two
J0 values equal to 6.5 (red curve C1) and 9.5 (red curve C2); the blue (curve
P) shows the parabola given by equation (4). Stable equilibrium points are at
the intersections of the parabola with the cubic lines and are marked by open
circles. Two phase trajectories (dashed lines) with the different initial points,
marked by black solid circles, spiralling towards the equilibrium points are
also reported.

rapid approach to a steady condition (equilibrium or limit cycle). In
Fig. 6, the trajectory for J0 = −2.0, after the initial transient, moves
very close to the cubic nullcline and then it reachs the equilibrium
point. This behaviour is always observed for all values of J0 ∈ S1.
Stable trajectories for J0 ∈ S2 have again an initial transient, but when
the point is close to the cubic nullcline, it starts to describe a spiral
that approximates an elliptical shape when its amplitude decreases
converging to the equilibrium point. The resulting x curve tends to
an exponentially damped sinusoid. A couple of such trajectories in
the phase space are plotted in Fig. 8. A stable point like that of
the former type is called a sink, while a point of the latter type is
a spiral (see Strogatz 1994). In this figure, equilibrium points are
close to the minimum of the cubic nullcline, whose coordinates are
xm = 2β/3 = 2.0 and ym = −4β3/9 = −12.0. There is, therefore, a
rather narrow interval [x2, xm] where the equilibrium is stable and the
system describes a relatively high number of converging rounds. In
Fig. 7, this interval is limited by the second turquoise and the violet
vertical lines; the corresponding interval for J0 is S2∗ ≡ [5.993 82,
..., 8.0] and it is reported as the QPO range, although it is possible to
have this feature in the adjacent intervals.

In this paper, we are interested only to equilibrium points of spiral
type that can be related to the appearance of LFQPOs. The typical
decay time decreases very rapidly for J0 increasing from the stability
limit to values slightly higher than xm; thus, when this parameter
is between 6 and 7.5, the solution can have a rather long series of
oscillations. For J0 > 8.0, the phase space trajectory has a small
number of cycles, and for higher enough values (�15.0), the path
does not encircle at all the equilibrium point. Note that also for such
high J0 value, the corresponding x∗ = 2.4662... is quite close to xm.

It is easy to calculate a linear approximation of the MHR
system of equation (2) that gives a rather good solution in this
neighbourhood:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = (
∂f

∂x

)
m

(x − xm) +
(

∂f

∂y

)
m

(y − ym) = y − ym

ẏ = (
∂g

∂x

)
m

(x − xm) +
(

∂g

∂y

)
m

(y − ym)

= − 4
3 β2(x − xm) − (y − ym)

, (6)

Figure 9. Numerical phase space trajectories of the MHR system with β =
3, J0 = 7.5, and with a random component of amplitude C = 6.0 (violet
dotted curve) and without the random input (green dashed curve). Red dash–
dotted and solid blue curves show the cubic and the parabolic nullclines,
respectively.

where the partial derivative are evaluated at (xm, ym). This linearized
system is that of a damped harmonic oscillator:

ẅ + ẇ + 4

3
β2w = 0, (7)

with w = x − xm. Thus, the solution of the MHR model, when
approaching the equilibrium point, can be well approximated by a
sinusoid with an exponentially decreasing amplitude. This is seen in
Fig. 8 where the trajectory for J0 = 6.5 evolves to an elliptical shape
converging at the equilibrium. It is interesting that the frequency of
this oscillation is depending only on β and results in

ν0 = 1

2π

√
4β2/3 − 1/4 (8)

and the exponential decay time is equal to unity. For β > 2.0, a
very good approximation (better than 2 per cent) of this equation is
ν0 ≈ β/π

√
3.

4.2 Solutions with a random noise component

We now study the solutions when a random noise component is added
to the input function,

J (t) = J0 + Cr(t), (9)

where r(t) is a random number with a uniform distribution in the
interval [−0.5, 0.5]. This term is present in the equation for ẋ and
therefore it implies that the cubic nullcline in no longer stable but it
is rapidly translating along the vertical axis around its mean position,
i.e. the curve corresponding to the cubic with J(t) = J0.

The trajectory shown in Fig. 9 was computed for J0 = 7.5 and C =
6.0: Note that in this case, the random term is large enough to move
the equilibrium point into the unstable region. The evolution of this
trajectory, however, presents a transient in which the noise acts only
as a small perturbation with respect to path in the absence of noise.
However, when the trajectory approaches the mean equilibrium
state, it does not converges directly to this point but describes
small approximately elliptical curves in its surroundings having a
variable amplitude. It appears as a ‘steady’ situation because this
oscillation continues definitively and has the aspect of a periodic
signal with an amplitude modulated on a time-scale ranging from
about 5–10 fundamental periods. The effect of large random changes
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A mathematical model for GRS 1915+105 411

Figure 10. Upper panel: In the upper panel, there is the initial segment of the
numerical time solutions for the x variable of the system of equation (2) with
β = 3, J0 = 7.5, and a random component amplitude C = 6.0 (violet dotted
curve) and without the random input (orange thick curve); in the lower panel,
there is a longer light curve with the same parameters’ values to show that
the pattern remains stable, and the vertical line limits in the interval shown
in the upper panel. Lower panel: Fourier PDS of the QPO after a three-point
running average, and the lower orange curve shows the PDS of the signal
without noise shown in in the same figure. Note that the peak frequencies are
the same, but the height of the latter spectrum is much lower than the one of
QPO signal.

of J(t) appears like a weak perturbation of the trajectory because
these changes act only on the derivative of x, and the corresponding
variations of this variable are too small to produce a large deviation
from the undisturbed path. As a consequence, the cumulative effect
of these fast changes is negligible and the resulting trajectory exhibits
only small deviations with respect to that corresponding to the
constant J0.

The time-scale of calculated signals was chosen to have QPO
frequencies close to 1 Hz. The time evolution of this solution is
given in the two panels of the upper row of Fig. 10, where there is
a detail of the lower panels to show the transient phase and the first
segment of oscillating pattern. We also reported the solution without
the random noise to make clear the different behaviour of the resulting
curves when this component is considered. The lower plot reports the
corresponding PDS, where an LFQPO feature, remarkably similar
to the one observed in GRS 1915+105 (see Fig. 3), confirming that

Figure 11. Three light curves computed with the MHR model with β = 3.0
for different values of J0 to show the decrease of the period and the evolution
of the shape towards an approximate sinusoid.

in these conditions, the MHR model can originate this phenomenon.
The resulting light curve is like those shown in the upper panel of
Fig. 5 and therefore it is also remarkably similar to that derived from
the filtered data. This similarity reduces the PDS degeneracy, i.e. the
fact that different types of signal have analogous PDS, and confirms
that the MHR model reproduces the light curves of these unstable
states with a high accuracy.

5 UNSTA BLE SOLUTI ONS, LI MI T CYCLE, AND
H I G H - F R E QU E N C Y O S C I L L AT I O N S

For values of of J0 within the interval [0.006 1792,0.599 382], the
corresponding values of the equilibrium point are in the unstable
interval and, as shown in Paper I, the MHR model describes a limit
cycle whose light curve is like that of the ρ class (see Fig. 2). The
period of the limit cycle varies regularly with J0 according to a power
law of exponent 0.5: This variation is due to the shortening of the
slow leading trail, making the signal shape more and more similar to a
sinusoid. In Paper I, we named this particular pattern ‘high-frequency
oscillation‘ (shortly ‘hfo’) because its frequency corresponds to the
highest one that one can reach increasing J0 ∈ I and that is slightly
lower than the value estimated by means of equation (8).

These two effect are clearly visible in the three curves of limit
cycles reported in Fig. 11: Note, in particular, the curve for J0 = 5.8, a
value close the upper boundary of the unstable interval, whose profile
is approximating a sinusoidal shape. The corresponding phase space
trajectories are shown in Fig. 12 (only two trajectories are plotted to
avoid confusion): Both curves have sections in stable intervals and
particularly the one with the higher J0 is for about half-cycle in the
stable region. Note also that the equilibrium point is located very
close to the minimum of the cubic nullcline and this confirms that
equation (8) can be assumed as a valuable approximation for the
‘hfo’ frequency.

As seen above, the addition of a low-amplitude noise introduces
only small perturbations in the resulting signals, but when this
amplitude increases up to a value C = 15 or even higher, the
phase space trajectory (see Fig. 13) exhibits a more complex pattern
with large separated annular patterns, implying a low-frequency
modulation. A short segment of the light curve is in the upper
panel in Fig. 14, where the amplitude modulation is evident. In
the lower panel of the same figure, we report the PDS of the this
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Figure 12. Phase space plot to show the nullclines (red and blue curves) and
the trajectories (dashed lines) of two curves in Fig. 11. Turquoise vertical
lines delimit the unstable interval and the violet line indicates the coordinate
of the cubic nullcline minimum.

Figure 13. Phase space plot to show the nullclines (red dot–dashed and solid
blue curves) and the trajectories of an MHR result for J0 = 5.8 without
(orange dashed line) and with (dark green line) a noise component with C =
20. Turquoise vertical lines delimit the unstable interval and the violet line
indicates the minimum coordinate of the cubic nullcline.

signal exhibiting a prominent broad peak again very similar to the
LFQPO feature in Fig. 3. The solid black line shows the PDS of
the ‘hfo’ without noise. The main peak and its harmonics are more
evident after a light smoothing (turquoise data in the same figure)
and its central frequency is slightly lower than that of ‘hfo’ without
noise. As a further remark, we underline that the structure of the
noisy phase space trajectory in Fig. 13 is recalling the solutions of the
Lorenz model (Lorenz 1963) and therefore it suggests that the chaotic
behaviour found in some light curves of GRS 1915+105 (Misra et al.
2006) can be related to the same processes described by the MHR
model, which is not properly a chaotic deterministic system, but a
noise perturbed limit cycle.

6 N OISE LEVEL AND LFQPO INTENSITY

Our results indicate that the occurrence of LFQPOs is dependent
on the presence of a noisy component: In other conditions, in
fact, solutions exhibit an ‘hfo’ or converge spiralling toward the

Figure 14. Upper panel: light curve computed with the MHR model with β =
3.0, J0 = 5.8, and a large noise component (C = 20). Note the asymmetry of
the signal with the noise fluctuations greater in the lower part of the curve than
in the upper one. Lower panel: Fourier PDS of the signal in the upper panel
(dark green data) showing a well-evident broad peak and three harmonics;
these features are more apparent after a running average over five points
(turquoise data). The black spectrum is that of the signal without noise.

equilibrium point according to the value of J0, lower or higher
the threshold stability, respectively. We verified this connection
performing some numerical calculations with different choices of
parameters and, in the following, we show the results of nine cases
for three choices of J0 and three of C. The former parameter was
taken equal to 5.7 in the I ‘hfo’ interval, to 6.5, which is in S2∗, and to
8.0, so that the equilibrium point coincides with the local minimum
of the cubic nullcline. The three values of C are 1.0, 5.0, and 9.0.

The resulting PDS are given in the three panels in Fig. 15. The
top panel shows the PDSs for the ‘hfo’ state with increasing added
noise: The spectrum of the lowest noise data exhibits a harmonic
series of narrow peaks about two orders of magnitude higher than
the noise amplitude. A lower and lower number of harmonics appears
also when the noise increases but the central frequency and width
remain stable to the ‘hfo’ value, which is equal to 0.41 in the units
corresponding to those adopted for the time. For J0 high enough to
move the system in the stable region and a QPO feature is always
present in the PDS, but with only one or two harmonics. Its central
frequency decreases slightly for increasing noise from 0.51 to 0.48,
in any case higher by about 20 per cent than in the previous case. A
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Figure 15. Top panel: PDS computed by means of the MHR model for β =
3.0, J0 = 5.7, and three different noise levels; spectra were vertically shifted
to avoid confusion. Central panel: PDS computed for J0 = 6.5; vertical lines
mark the central frequencies of LFQPO peaks. Bottom panel: PDS computed
for J0 = 8.0.

further increase of J0 moves the equilibrium point at the cubic local
minimum and the PDS continues to present the QPO peak but it
appears mild and with the only the first harmonic barely detectable;
its central frequency is stable at 0.545, as expected from equation (8).

7 TH E O R I G I N O F L F Q P O S I N T H E MH R
M O D E L

As shown in the introduction, the MHR model reproduces well
light curves of several variability classes according to the values
of the single parameter J0, which controls transitions from stable
to unstable equilibrium. In the latter states, the system describes
a limit cycle whose period decreases for increasing J0 and the
spike profiles change to a more and more symmetric shape that
approximates a sinusoid with a short and constant period, here named
‘high-frequency oscillations’. A further increase of J0 produces a
transition to the second stable region; thus, we expect a signal
evolving to a steady level. In Section 4, we discussed the nature
of the equilibrium points and showed that they are of type sink of of
type spiral according that the value of J0 is in S1 or S2, respectively.
In the latter case, the x curve presents a number of oscillations before
to reach the final value. Fast fluctuations of the J(t) generally act
on the phase space trajectories as small perturbations with respect
to the one corresponding to the mean value J0. For values close
to the upper boundary of the unstable interval I, the system excite
‘hfo’ modes with an amplitude modulation on longer time-scales.
The corresponding PDS shows a broad feature, typical of LFQPOs
frequently found in BHCs, like GRS 1915+105. When J0 values are
above the stability threshold, the equilibrium point remains always
in the stable region, and LFQPOs are also present if the x coordinate
of this point is lower than or close to the minimum of the cubic
nullcline. These results allow us to favour an ‘intrinsic’ hypothesis
on the origin of LFQPOs in an accretion disc essentially related to the
same mechanism responsible of the spiking limit cycle and occurring
for J0 values close to transition between the unstable and the stable
region.

The role of random fluctuations, which could be due to plasma
turbulence in the disc, in establishing LFQPOs was already noticed
in a paper by Maccarone et al. (2011), who computed the bispectrum
of some observations of GRS 1915+105 and found a correlation
between LFQPOs and the variations of the noise component. This
tool provides the possibility of discriminating among the various
variability modes producing similar PDS and Maccarone et al.
(2011) concluded that ‘the variability is caused by a reservoir of
energy being drained by a noise component ... and a quasi-periodical
component, while in the brighter part of the χ state, the variability
is consistent with a white noise input spectrum driving a damped
harmonic oscillator with a non-linear restoring force’. MHR results
are in agreement with this finding and confirm the relevance of the
noise; in particular, we found that small deviations from the decaying
trajectory perturb it towards a different path that converges again
to the equilibrium until another small deviation restores a similar
condition. Then the noise is like a stabilizing factor for the LFQPO
and their frequency is limited in a rather narrow interval close to one
of the corresponding oscillators at the local minimum of the cubic,
as shown in Section 4.

The correlations of LFQPO frequency with the photon energy of
the source luminosity are useful for addressing possible relationships
with the MHR model parameters. For example, according to equa-
tion (8), these correlations would imply that the parameter β must
be linear, depending on the photon energy.
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It is important to point out that our results does not exclude
geometric models for LFQPOs, particularly in some sources that do
not exhibit the same complex variability of GRS 1915+105. These
models can naturally account for some phenomena as the modulation
of the iron line energy as a function of QPO phase (see, e.g. Ingram
et al. 2016; Nathan et al. 2019). The present version of the MHR
model is only focused on the time stucture of the brightness changes
and does not include any energy dependence of the emission and,
particularly, the properties of the iron line. We stress that it should be
considered as a simple tool approximating the non-linear instability
in accretion discs, which produces the large variety of light curves, as
those observed in GRS 1915+105. It may have, however, a heuristic
content because that can help the understanding of some features and
details, like the spike profiles or the LFQPO signal structure.

8 C O N C L U S I O N

In Paper I and Paper II, we proposed the non-linear mathematical
MHR model, containing only a small number of parameters, whose
solutions reproduce several different classes of light curves of GRS
1915+105 , and describe well the transition from stables to bursting
states. An interesting finding of this model was that it is also able to
describe the occurrence of LFQPOs as a consequence of a transition
from an unstable to a stable equilibrium. In this paper, we studied
in detail the nature of this transition and compare the model results
with some observational data.

The major findings of the present work are related to the fact
that the stable equilibrium points where LFQPOs are present is of
the spiral type. Moreover, we found that for values of the driving
parameter J0 within the interval S2∗, the equilibrium point lies
between the stability threshold and the local minimum of the cubic
nullcline. In this condition, the phase space trajectories converge
to the equilibrium point describing a tight spiral around it that
corresponds to an oscillating pattern in the model light curve. It
follows that the PSDs are very similar to the observed ones with a
broad Lorentzian feature and, occasionally, one or two harmonics.
The general structure of model light curves is also like the observed
ones after a filtering in the peak range.

Another important finding is that the fluctuations of J0 play a role
in stabilizing LFQPOs: Without noise, the phase space trajectory
converges to the equilibrium and light curves are like a damped
oscillation, while random displacements can move the trajectory
towards outer positions from which a new path approaching to
equilibrium follows. Without noise, the occurrence of long-duration
LFQPOs would not be possible. This result confirms the bispectral
analysis of some light curves of GRS 1915+105 by Maccarone
et al. (2011), who pointed out the noise relevance in the process
responsible of LFQPOs. The possibility of noise-induced QPO in
the original HR model including three ODEs was also considered
by Ryashko & Slepukhina (2017), confirming thus the relevance of
the random fluctuations although in different conditions. Turbulence
in accretion discs is important because it can provide a driving
mechanism also for HFQPOs and can produce the 3:2 twin peak
feature, as demonstrated by the numerical model recently developed
by Ortega-Rodrı́guez et al. (2020). In Section 3, we derived a simple
linear approximation of the MHR model that was used for estimating
the central frequency of the Lorentzian peak in a narrow interval
around the local minimum of the cubic nullcline that was found to be
depending only on the parameter β. More generally, one could expect
that this frequency is determined by the shape of equilibrium track
near the minimum and, if this curve can be derived from a physical
stability calculations as made, for instance, by Watarai & Mineshige

(2001, see Paper II), one could relate the observed LFQPO data to
some parameters of the accretion disc.

These results suggest a possible explanation why many BHCs
exhibit LFQPOs but not the large variety of light curve profiles as
those of GRS 1915+105. In fact, it would be sufficient that the
values of the equivalent J0 in these sources remain for all the time
in the range corresponding to an equilibrium point close or just
above the boundary between the unstable interval of ‘hfo’ and spiral
trajectories. An interesting property worthwhile of investigation is
if such a condition can be related to their disc sizes that, for many
BHCs, are estimated much lower than GRS 1915+105 (Remillard &
McClintock 2006).

The present results confirm that MHR model is a simple and
efficient approximation for describing the instabilities in an accretion
disc and predicting a large variety of light curves that are originated
in this type of physical processes. Using this model, we also showed
that the origin of LFQPOs can be explained by the same instability,
but for values of the input parameter in a range higher than the
unstable interval. There are, however, some relevant topics to further
study: The most important is to complete the physical interpretation
of the model and the association of the mathematical variables with
physical quantities of the accretion disc. This association requires
numerical calculations of equilibrium states and an analysis of their
stability using hydrodynamic codes. It is also possible that in this
way, one will open the possibility of adding the variable energy and
of achieving a more complete mathematical modelling of the source
behaviour in different bands.
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