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ABSTRACT
We present a computational framework for ‘painting’ galaxies on top of the dark matter halo/sub-halo hierarchy obtained from
N-body simulations. The method we use is based on the sub-halo clustering and abundance matching (SCAM) scheme which
requires observations of the 1- and 2-point statistics of the target (observed) population we want to reproduce. This method is
particularly tailored for high redshift studies and thereby relies on the observed high-redshift galaxy luminosity functions and
correlation properties. The core functionalities are written in C++ and exploit Object Oriented Programming, with a wide use
of polymorphism, to achieve flexibility and high computational efficiency. In order to have an easily accessible interface, all the
libraries are wrapped in PYTHON and provided with an extensive documentation. We validate our results and provide a simple and
quantitative application to reionization, with an investigation of physical quantities related to the galaxy population, ionization
fraction, and bubble size distribution. The library is publicly available at https://github.com/TommasoRonconi/scampy with full
documentation and examples at https://scampy.readthedocs.io.

Key words: methods: numerical – cosmology: theory – dark ages, reionization, first stars – large-scale structure of Universe.

1 IN T RO D U C T I O N

Cosmological N-body simulations are a fundamental tool for assess-
ing the non-linear evolution of the large-scale structure (LSS). With
the increasing power of computational facilities, cosmological N-
body simulations have grown in size and resolution, allowing to study
extensively the formation and evolution of dark matter (DM) haloes
(Springel et al. 2005; Boylan-Kolchin et al. 2009; Klypin, Trujillo-
Gomez & Primack 2011; Angulo et al. 2012; Klypin et al. 2016).
Our confidence on the reliability of these simulations stands on the
argument that the evolution of the non-collisional matter component
only depends on the effect of gravity and on the initial conditions.
While for the first, we can rely on a solid theoretical background, with
analytical solutions for both the classical gravitation theory and for a
wide range of its modifications, for the latter, we have measurements
at high accuracy (Planck Collaboration VI 2018) of the primordial
power spectrum of density fluctuations.

The formation and evolution of the luminous component (i.e.
galaxies and intergalactic baryonic matter) are far from being
understood at the same level as the DM. Several possible approaches
have been attempted so far to asses this modelling issue, which can
be divided into two main categories. On one side, ab initio models,
such as N-body simulations with full hydrodynamical treatment
and semi-analytical models, that should incorporate all the relevant
astrophysical processes, are capable of tracing back the evolution in
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time of galaxies within their DM host haloes (see Somerville & Davé
2015; Naab & Ostriker 2017, for reviews).

On the other side, empirical (or phenomenological) models are
designed to reproduce observable properties of a target (observed)
population of objects at a given moment of their evolution (see e.g.
Wechsler & Tinker 2018, for a review). This latter class of methods is
typically cheaper in terms of computational power and time required
for running. The development of an approach to model the luminous
component without prior assumptions on the baryon physics have
emerged from the advent of large galaxy surveys (York et al. 2000;
Colless et al. 2001; Lilly et al. 2007; Driver et al. 2011; Grogin et al.
2011; McCracken et al. 2012).

Building an empirical model of galaxy occupation requires to
define the hosted-object/hosting-halo connection for associating to
the underlying DM distribution its baryonic counterpart. This has
been achieved by exploiting several approaches that span from
the classical mass-based methods, such as the halo occupation
distribution (HOD) scheme (Peacock & Smith 2000; Seljak 2000;
White 2001; Berlind & Weinberg 2002; Yang, Mo & van den Bosch
2003; Zehavi et al. 2004; Tinker et al. 2005; Zheng et al. 2005;
Brown et al. 2008; Leauthaud et al. 2012) or the sub-halo abundance
matching (SHAM) scheme (Mo & White 1996; Wechsler et al.
1998; Vale & Ostriker 2004; Conroy, Wechsler & Kravtsov 2006;
Wang et al. 2006, 2007; Behroozi, Conroy & Wechsler 2010; Guo
et al. 2010; Moster et al. 2010; Trujillo-Gomez et al. 2011), to more
sophisticated parametrizations that follow the halo evolution in time
(Conroy & Wechsler 2009; Yang et al. 2012; Behroozi, Wechsler &
Conroy 2013b; Moster, Naab & White 2013, 2018; Zhu, Avestruz &
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Gnedin 2020) also allowing for adaptive complexity (Behroozi et al.
2019). At the same time the number of observables that can be
generated with such methods increased including galaxy luminosity
(e.g. Rodrı́guez-Puebla et al. 2017; Moster et al. 2018; Somerville
et al. 2018), gas (e.g. Popping, Behroozi & Peeples 2015), metallicity
(e.g. Rodrı́guez-Puebla et al. 2016), and dust (e.g. Imara et al. 2018).

Given their capability to target galaxy formation without biasing
the model with baryon physics uncertainties, empirical models
complement and help to constrain ab initio models. The power of
empirical approaches comes from the possibility to infer the DM
density field from observations of the biased luminous component
(Monaco & Efstathiou 1999; Jasche & Lavaux 2019; Kitaura et al.
2019). The mock catalogues obtained can be used to build precise
co-variance matrices in preparation for assessing the uncertainties
on cosmological parameters estimates, that will be inferred from
next generation LSS observational campaigns, such as DESI (Levi
et al. 2013) and Euclid (Amendola et al. 2018). Via the usage
of empirical models, it is possible to considerably speed up the
construction of mock catalogues and are the natural framework for
forward modelling of the LSS observable properties (see e.g. Nuza
et al. 2014; Leclercq, Jasche & Wandelt 2015; Kitaura et al. 2019).
Furthermore, where ab initio models have struggled to obtain tight
parameter constraints (e.g. on the mechanism for galaxy quenching),
empirical models are capable of revealing possibly new unexpected
physics (see e.g. Behroozi, Wechsler & Conroy 2012; Behroozi &
Silk 2015).

Ab initio approaches are tuned to reproduce the LSS of the
Universe at the present time, and therefore their reliability in the high
redshift regime has to be proven. On the other hand, empirical models
are by design particularly suitable for addressing the modelling of
the high redshift Universe, but they rely on the availability of high
redshift observations of the population to be modelled.

Our motivation for the original development of the Application
Programming Interface (API) we present in this work is to study
a particular window in the high redshift Universe. Specifically, our
aim is twofold: (i) provide a physically robust and efficient way
of modelling galaxy populations in the high redshift Universe from
a DM-only N-body simulation; (ii) test applications, such as the
modelling of the distribution of the first sources that started to
shed light on the neutral medium, triggering the process called
reionization. We expect that this tool could have further applications,
especially in the context of cross-correlation of different tracers
and/or diffuse backgrounds.

SCAMPY provides a PYTHON interface that uses the sub-halo clus-
tering and abundance matching (SCAM) prescription for ‘painting’
galaxies on top of DM-only simulations. The SCAM algorithm is an
extension of the classical HOD for defining the galaxy–halo connec-
tion. This class of methods is widely used in the scientific community
but specialized software exists only within larger software packages
(e.g. the Halotools package from Hearin et al. 2017, which is part of
the Astropy library collection). Our intent is to provide the user with
a light and versatile interface able to provide performances and ex-
tensibility with as little dependence to external software as possible.

We have carefully designed the software to exploit the best features
of PYTHON and C++ language. Our intent was not only to achieve
high performances of our code but also to make it more accessible,
to ease cross-platform installation, and to generally set-up a flexible
tool. Since the API we present has been designed to be easily
extensible, in the future we will also be able to evolve our current
research towards novel directions. Furthermore, this effort would
hopefully also encourage new users to adopt our tool. As much as
experiments are accurately designed to have the longest life-span

possible, we have taken care of designing our software for a long
term use.

The API relies on an optimized C++ core implementation of
the most computationally expensive sections of the algorithm. This
allows, on the one hand, to exploit the performances of a compiled
language. On the other hand, it overcomes the limit on the usage
of multithreading for shared memory parallelization, as otherwise
imposed by the PYTHON standard library.

SCAMPY embeds two main functionalities: on the one side, it is
designed for handling and building mock-galaxy catalogues, based
on a user-defined parametrization. On the other side, it provides an
extremely efficient implementation of the halo-model, which is used
to infer the parameters required by the SCAM algorithm.

We provide a framework for loading a DM halo/sub-halo hier-
archy, where the haloes are obtained by means of a friends-of-
friends algorithm run on top of cosmological N-body simulations,
while the sub-structures are identified using the SUBFIND algorithm
(Springel et al. 2001). None the less, thanks to its extensible design,
adapting the API for working with simulations obtained by means
of approximated methods, such as COLA (Tassev, Zaldarriaga &
Eisenstein 2013) or PINOCCHIO (Monaco, Theuns & Taffoni 2002),
would be straightforward.

Once the SCAMPY parameters, which regulate the occupation
of structures, have been set, we can easily produce the output
mock-catalogue by calling the dedicated functions from the same
framework we used for loading the DM halo/sub-halo hierarchy.

This work is organized as follows. In Section 2, we describe the
SCAM technique. We describe the main components and algorithms
that implement the aforementioned scheme inside our API in Sec-
tion 3. In Section 4, we show the results of the several tests we have
performed in order to validate the functionalities of our API. We
have tested our instrument in a proof-of-concept application of the
target problem: in Section 5, we study the effect of individual sources
injecting ionizing photons in the neutral intergalactic medium at high
redshift. Finally, in Section 6, we provide a summary of this work
and anticipate the developments we are planning to pursue.

2 SU B - H A L O C L U S T E R I N G A N D A BU N DA N C E
M AT C H I N G

Our approach for the definition of the hosted-object/hosting-halo
connection is based on the SCAM technique (Guo et al. 2016).
With the standard HOD approach, hosted objects are associated
with each halo employing a prescription which is based on the total
halo mass, or on some other mass proxy (e.g. halo peak velocity
and velocity dispersion). On the other side, the SHAM assumes
a monotonic relation between some observed object property (e.g.
luminosity or stellar mass of a galaxy) and a given halo property (e.g.
halo mass). While the first approach is capable of, and extensively
used for, reproducing the spatial distribution properties of some
target population, the second is the standard for providing plain
DM haloes and sub-haloes with observational properties that would
otherwise require a full-hydrodynamical treatment of the simulation
from which these are extracted.

The SCAM prescription aims to combine both approaches, pro-
viding a parametrized model to fit both some observable abundance
and the clustering properties of the target population. The approach
is nothing more than applying HOD and SHAM in sequence:

(i) the occupation functions for central, Ncen(Mh), and satellite
galaxies, Nsat(Mh), depend on a set of defining parameters which
can vary in number depending on the shape used. These functions
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depend on a proxy of the total mass of the host halo. We sample
the space of the defining parameters using a Markov-chain Monte
Carlo (MCMC) to maximize a likelihood built as the sum of the χ2

of the two measures we want to fit, namely the two-point angular
correlation function at a given redshift, ω(θ , z), and the average
number of sources at a given redshift, ng(z):

logL ≡ −1

2

(
χ2

ω(θ,z) + χ2
ng (z)

)
, (1)

The analytic form of both ω(θ , z) and ng(z), depending on the same
occupation functions Ncen(Mh) and Nsat(Mh), can be obtained with
the standard halo model (see Cooray & Sheth 2002, for a review),
which we describe in detail in Section 2.1. How these occupation
functions are used to select which sub-haloes will host our mock
objects is reported in Section 3.1.1.

(ii) Once we get the host halo/sub-halo hierarchy with the
abundance and clustering properties we want, as guaranteed by
equation (1), we can apply our SHAM algorithm to link each mass
(or, equivalently, mass-proxy) bin with the corresponding luminosity
(or observable property) bin.

When these two steps have been performed, the mock-catalogue
is built.

2.1 The halo model

The modern formulation of the halo-model theory (see Cooray &
Sheth 2002, for a review) provides a halo-based description of non-
linear gravitational clustering that is widely used in literature to infer
the underlying DM statistical properties at both low and high redshift.
The key assumption of this model is that the number of galaxies, Ng,
in a given DM halo only depends on the halo mass, Mh. Specifically,
if we assume that Ng(Mh) follows a Poisson distribution with mean
proportional to the mass of the halo Mh, we can write

〈Ng〉(Mh) ∝ Mh (2)

〈Ng(Ng − 1)〉(Mh) ∝ M2
h (3)

From these assumptions it is possible to derive correlations of any
order as a sum of the contributions of each possible combination of
objects identified in single or in multiple haloes. To get the models
required by equation (1) we only need the 1-point and the 2-point
statistics. We derive the first as the mean abundance of objects at a
given redshift. The average mass density in haloes at redshift z is
given by

ρ(z) =
∫

Mh n(Mh, z) dMh (4)

where n(Mh, z) is the halo mass function. With equation (2) we can
then define the average number of objects at redshift z, hosted in
haloes with mass Mmin ≤ Mh ≤ Mmax, as

ng(z) ≡
∫ Mmax

Mmin

〈Ng〉(Mh) n(Mh, z) dMh . (5)

Deriving the 2-point correlation function, ξ (r, z), would require
to treat with convolutions, we therefore prefer to obtain it by inverse
Fourier-transforming the non-linear power spectrum P(k, z), who’s
derivation can instead be treated with simple multiplications:

ξ (r, z) = 1

2π2

∫ kmax

kmin

dkk2P (k, z)
sin(kr)

kr
. (6)

P(k, z) can be expressed as the sum of the contribution of two terms:

P (k, z) = P1h(k, z) + P2h(k, z) , (7)

where the first, dubbed 1-halo term, results from the correlation
among objects belonging to the same halo, while the second, dubbed
2-halo term, gives the correlation between objects belonging to two
different haloes.

The 1-halo term in real space is the convolution of two similar
profiles of shape

ũ(k, z|Mh) = 4πρsr
3
s

Mh

{
sin(krs)

[
Si((1 + c)krs) − Si(krs)

]
− sin(ckrs)

(1 + c)krs
− cos(krs)

[
Ci((1 + c)krs) − Ci(krs)

]}
,

(8)

where c is the halo concentration, ρs and rs are, respectively, the
scale density and radius of the NFW profile and the sine and cosine
integrals are defined as

Ci(x) =
∫ ∞

t

cos t

t
dt and Si(x) =

∫ x

0

sin t

t
dt . (9)

Equation (8) provides the Fourier transform of the DM distribution
within a halo of mass Mh at redshift z. Weighting this profile by the
total number density of pairs, n(Mh)(Mh/ρ)2, contributed by haloes
of mass Mh, leads to the expression for the 1-halo term:

P1h(k, z) ≡
∫

n(Mh, z)

(
Mh

ρ

)2∣∣ũ(k, z|Mh)
∣∣2

dMh

= 1

n2
g(z)

∫ Mmax

Mmin

〈Ng(Ng − 1)〉(Mh) n(Mh, z)
∣∣ũ(k, z|Mh)

∣∣2
dMh,

(10)

with n(Mh, z) the halo mass function for host haloes of mass
Mh at redshift z and where, in the second equivalence, we used
equations (3) and (5) to substitute the ratio

(
Mh/ρ

)2
.

The derivation of the 2-halo term is more complex and for a
complete discussion the reader should refer to Cooray & Sheth
(2002). Let us just say that, for most of the applications, it is enough
to express the power spectrum in its linear form. Corrections to
this approximation are mostly affecting the small-scales which are
almost entirely dominated by the 1-halo component. This is mostly
because the 2-halo term depends on the biasing factor which on
large scales is deterministic. We therefore have that, in real-space,
the power coming from correlations between objects belonging to
two separate haloes is expressed as the product between the convo-
lution of two terms and the biased linear correlation function (i.e.
b′

h(M ′
h)bh(M ′′

h )ξlin(r, z)). The two terms in the convolution provide
the product between the Fourier-space density profile ũ(k, z|Mh),
weighted by the total number density of objects within that particular
halo (i.e. n(Mh)(Mh/ρ)). In Fourier space, we therefore have

P2h(k, z) ≡
∫

n(M ′
h)

M ′
h

ρ
ũ(k, z|M ′

h) b(M ′
h) dM ′

h∫
n(M ′′

h )
M ′′

h

ρ
ũ(k, z|M ′′

h ) b(M ′′
h ) Plin(k, z) dM ′′

h =

= Plin(k, z)

n2
g(z)

[∫ Mmax

Mmin

〈Ng〉(Mh) n(Mh) b(Mh, z) ũh(k, z|Mh) dMh

]2

(11)

with b(Mh) the halo bias and Plin(k, z) the linear matter power
spectrum evolved up to redshift z. For going from the first to the
second equivalence we have to make two assumptions. First we
assume self-similarity between haloes. This means that the two
nested integrals in dM ′

h and dM ′′
h are equivalent to the square of
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Figure 1. Flowchart describing the main components of the algorithm. In red the two main kernel modules. Green rectangles dub models from which the
workflow depends. Round grey circles are for engines that operate on some inputs. Cyan is for inputs, yellow and parallelograms for outputs.

the integral in the rightmost expression. Secondly, we make use of
equations (2) and (5) to substitute the ratio Mh/ρ.

The average number of galaxies within a single halo can be
decomposed into the sum

〈Ng〉(Mh) ≡ Ncen(Mh) + Nsat(Mh) (12)

where Ncen(Mh) is the probability to have a central galaxy in a halo of
mass Mh, while Nsat(Mh) is the average number of satellite galaxies
per halo of mass Mh. These two quantities are precisely the occu-
pation functions we already mentioned in Section 2. Given that no
physics motivated functional form exists for Ncen(Mh) and Nsat(Mh),
usually, they are parametrized. By tuning this parametrization we
obtain the prescription for defining the hosted-object/hosting-halo
connection.

With the decomposition of equation (12), we can approximate
equation (3) to

〈Ng(Ng − 1)〉(Mh) ≈ 〈NcenNsat〉(Mh) + 2 〈Nsat(Nsat − 1)〉(Mh)

≈ Ncen(Mh) Nsat(Mh) + N2
sat(Mh) (13)

Thus we can further decompose the 1-halo term of the power
spectrum as the combination of power given by central-satellite
couples (cs) and satellite-satellite couples (ss):

P1h(k, z) ≈ Pcs(k, z) + Pss(k, z) , (14)

When dealing with observations, it is often more useful to derive
an expression for the projected correlation function, ω(rp, z), where
rp is the projected distance between two objects, assuming flat sky.
From the Limber approximation (Limber 1953), we have

ω(rp, z) = A
[
ξ (r, z)

] = A
{
F
[
P (k, z)

]} = H0

[
P (k, z)

]
= 1

2π

∫
k P (k, z) J0(rpk) dk, (15)

where J0(x) is the 0th-order Bessel function of the first kind. Reading
the expression above from left to right, we can get the projected
correlation function by Abel-projecting the 3D correlation function
ξ (r, z). From the definition in equation (6), ω(rp, z) is therefore
obtained by Abel-transforming the Fourier transform of the power
spectrum. This is equivalent to perform a zeroth-order Hankel
transform of the power spectrum, which leads to the last equivalance
in equation (15).

Equation (15) though, is valid as long as we are able to measure
distances directly in an infinitesimal redshift bin, which is not
realistic. Our projected distance depends on the angular separation,

θ , and the cosmological distance, dC(z), of the observed object

rp(θ, z) = θ · dC(z) . (16)

By projecting the objects in our light cone on a flat surface at the
target redshift, we are summing up the contribution of all the objects
along the line of sight. Therefore, the two-point angular correlation
function can be expressed as

ω(θ, z) =
∫

dV (z)

dz
N2(z) ω[rp(θ, z), z] dz (17)

where dV (z)
dz

is the comoving volume unit and N(z) is the normalized
redshift distribution of the target population. If we assume that ω(θ ,
z) is approximately constant in the redshift interval [z1, z2], we can
then write

ω(θ, z) ≈
[∫ z2

z1

dz
dV (z)

dz
N2(z)

]
· ω[rp(θ ), z)] (18)

where z is the mean redshift of the objects in the interval.

3 TH E S C A M P Y L I B R A RY

In this section, we introduce SCAMPY, our highly optimized and
flexible API for ‘painting’ an observed population on top of the DM-
halo/sub-halo hierarchy obtained from DM-only N-body simulations.
We will give here a general overview of the algorithm on which our
API is based. We refer the reader to Appendix A for a description of
the key aspects of our hybrid C++/PYTHON implementation, where
we point out how the package is intended for future expansion and
further optimization. We also provide, at the end of this section, a
brief discussion of the API performances. For a detailed analysis,
the reader should refer to Appendix B. The source code and a guide
for installing the library can be obtained by cloning the GitHub
repository of the project (github.com/TommasoRonconi/scampy).
The full documentation of SCAMPY, with a set of examples and
tutorials, is available on the website (scampy.readthedocs.io) of the
package.

3.1 Algorithm overview

In Fig. 1, we give a schematic view of the main components of the
SCAMPY package. All the framework is centred around the occupa-
tion probabilities, namely Ncen(Mh) and Nsat(Mh), which define the
average numbers of, respectively, central and satellite galaxies hosted
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within each halo. Several parametrizations of these two functional
forms exist. One of the most widely used is the standard 5-parameters
HOD model (Zheng, Coil & Zehavi 2007; Zheng et al. 2009), with
the probability of having a central galaxy given by an activation
function and the number distribution of satellite galaxies given by a
power law

Ncen(Mh) = 1

2

[
1 + erf

(
log M − log Mmin

σlog Mh

)]
(19)

Nsat(Mh) =
(

Mh − Mcut

M1

)αsat

, (20)

where Mmin is the characteristic minimum mass of haloes that
host central galaxies, σlog Mh is the width of this transition, Mcut

is the characteristic cut-off scale for hosting satellites, M1 is a
normalization factor, and αsat is the power-law slope. Our API
provides users with both an implementation of the equations (19) and
(20), and the possibility to use their own parametrization by inheriting
from a baseoccupation p class.1 Given that both the modelling of
the observable statistics (Section 2.1) and the HOD method used for
populating DM haloes depend on these functions, we implemented
an object that can be shared by both these sections of the API. As
outlined in Fig. 1, the parameters of the occupation probabilities can
be tuned by running an MCMC sampling. By using a likelihood as
the one exposed in Section 2, the halo-model parametrization that
best fits the observed 1- and 2-point statistics of a target population
can be inferred.2

The chosen cosmological model acts on top of our working
pipeline. Besides providing the user with a set of cosmographic
functions for modifying and analysing results on the fly, it plays
two significant roles in the API. On the one hand, it defines the
cosmological functions that are used by the halo model, such as the
halo-mass function or the DM density profile in Fourier space. On the
other hand, it provides a set of luminosity functions that the user can
associate to the populated catalogue through the SHAM procedure.
This approach is not the only one possible, as users are free to
define their own observable property distribution and provide it to
the function that is responsible for applying the abundance matching
algorithm.

Algorithm 1 Schematic outline of the steps required to obtain a mock
galaxy catalogue with SCAMPY.

// Load Halo/Subhalo hierarchy
// (e.g. from SUBFIND algorithm)
halo cat = catalogue( chosen from file )

// Choose occupation probability function
OPF = OPF(HOD parameters)

// Populate haloes
gxy array = halo cat.populate(model = OPF)

// Associate luminosities
gxy array = SHAM(gxy array, SHAM parameters)

Once the HOD parametrization and the observable-property dis-
tribution have been set, it is possible to populate the halo/sub-halo

1The documentation of the library comprehends a tutorial on how to achieve
this.
2In the documentation website we will provide a step-by-step tutorial using
emcee (Foreman-Mackey et al. 2013).

Figure 2. A 4 Mpc h−1 thick slice of a populated catalogue obtained from a
DM-only simulation with 64 Mpc h−1 box side length. The colour code on the
background shows the smoothed DM density field (with density increasing
going from darker to brighter regions) while the markers show our mock
galaxies (with colour representing lower to higher luminosity going from
brighter to darker). Circles are for centrals and crosses for satellites.

hierarchy of a DM-only catalogue. In algorithm 1, we outline the
steps required to populate a halo catalogue with mock observables.
We start from a halo/sub-halo hierarchy obtained by means of some
algorithm (e.g. SUBFIND) that have been run on top of a DM-only
simulation. This is loaded into a catalogue structure that manages
the hierarchy dividing the haloes in central and satellite sub-haloes.3

Our catalogue class comes with a populate() member
function that takes an object of type occupation probability as
argument and returns a trimmed version of the original catalogue
in which only the central and satellite haloes hosting an object of
the target population are left. We give a detailed description of
this algorithm in Section 3.1.1. When this catalogue is ready, the
SHAM algorithm can be run on top of it to associate at each mass a
mock-observable property. Cumulative distributions are monotonic
by construction. Therefore it is quite easy to define a bijective
relation between the cumulative mass distribution of haloes and the
cumulative observable property distribution of the target population.
This algorithm is described in Section 3.1.2.

3.1.1 Populating algorithm

Input sub-halo catalogues are trimmed into hosting sub-halo cat-
alogues by passing to the populate() member function of the
class catalogue an object of type occupation p.

In algorithm 2, we describe this halo occupation routine. For each
halo i in the catalogue, we compute the values of 〈Ncen〉(Mi) and
〈Nsat〉(Mi). To account for the assumptions made in our derivation of

3For the case of SUBFIND run on top of a GADGET snapshot this can be done
automatically using the catalogue.read from gadget() function.
We plan to add similar functions for different halo-finders [e.g. ROCKSTAR,
Behroozi, Wechsler & Wu (2013a), and SPARTA, Diemer (2017)] in future
extensions of the library.
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the halo model, we select the number of objects each halo will host
by extracting a random number from a Poisson distribution. For the
occupation of the central halo this reduces to extracting a random
variable from a binomial distribution: Ncen = B(1, 〈Ncen〉i). While,
in the case of satellite sub-haloes, we extract a random Poisson
variable Nsat = P(〈Nsat〉i), then we randomly select Nsat satellite
sub-haloes from those residing in the ith halo.

Algorithm 2 Description of thepopulate (model = OPF) function.
This is an implementation of the HOD prescription, where the
assumptions made to define the halo model (i.e. the average number
of objects within a halo follows a Poisson distribution with mean
〈Ng〉(Mh)) are accounted for.

// Iterate over all the haloes in catalogue
for halo in catalogue do

// Compute probability of central
pcen ← model.Ncen( halo.mass )

// Define a binomial random variable
select ← random.Binomial(1, pcen)
if select then

halo ← central

// Compute average number of satellites
N sat ← model.Nsat( halo.mass )

// Define a Poisson random variable
Nsat = random.Poisson(N sat)
halo ← select randomly Nsat objects among satellites

In Fig. 2, we show a 4 Mpc h−1 thick slice of a simulation with
box side lenght of 64 Mpc h−1, the background colour code represents
the density field traced by all the sub-haloes found by the SUBFIND

algorithm, smoothed with a Gaussian filter, while the markers
show the positions of the sub-haloes selected by the populating
algorithm. We will show in Section 4.1 that this distribution of
objects reproduces the observed statistics. It is possible to notice
how the markers trace the spatial distribution of the underlying DM
density field.

3.1.2 Abundance matching algorithm

When the host sub-haloes have been selected we can run the last
step of our algorithm. The abundance matching() function
implements the SHAM prescription to associate with each sub-halo
an observable property (e.g. a luminosity or the star formation rate of
a galaxy). This is achieved by defining a bijective relation between the
cumulative distribution of sub-haloes as a function of their mass and
the cumulative distribution of the property we want to associate them.

An example of this procedure is shown in Fig. 3. We want to set,
for each sub-halo, the UV luminosity of the galaxy it hosts. In the
left-hand panel, we show the cumulative mass distribution of sub-
haloes, dN (Msubhalo), with the dashed green region being the mass
resolution limit of the DM sub-haloes in our simulation after the
populating algorithm has been applied. On the right-hand panel we
show the cumulative UV luminosity function, which is given by the
integral

�(MUV < MUV
lim ) =

∫ MUV
lim

−∞

d�

dMUV
dMUV (21)

where MUV
lim is the limiting magnitude of the survey data we want to

reproduce (marked by a dashed red region in Fig 3). We find the abun-
dance corresponding to each mass bin (grey step line in the left-hand
panel) and we compute the corresponding luminosity by inverting
the cumulative luminosity function obtained with equation (21):

MUV(Msubhalo) = �−1[ dN (Msubhalo)] . (22)

The result of this matching is shown by the orange crosses in the
right-hand panel of Fig. 3. At the time we are writing, the scatter
around the distribution of luminosities can be controlled by tuning
the bin-width used to measure dN (Msubhalo). We plan to extend this
functionality of the API by adding a parameter for tuning this scatter
to the value chosen by the user.

In Fig. 2, the colour gradient of markers highlights the increase
in their associated luminosity (from lighter to darker colour, going
from fainter to brighter object).

3.2 Performance discussion

In this section, we comment some design choices made for opti-
mizing the performances of the library. A detailed discussion on
the implementation is provided in Appendix A. For some bench-
marking measures of the API performances we refer the reader to
Appendix B.

With our hybrid implementation we have deployed a library that
exploits both the performance efficiency of a compiled language
(C++) as well as the flexibility of an interpreted language (PYTHON).
The C++ core of the library has multithreaded sections to run in
parallel the most computationally demanding calculations of the
workflow. This choice has been made in order to circumvent the
Global Interpreter Lock (GIL) which would otherwise force the
PYTHON application to run on a single thread. Spawning threads
directly from the C++ core is more efficient than using most of the
PYTHON packages for multithreading. None the less this behaviour
can be suppressed by setting the corresponding environment variable
accordingly.

Functions that do not spawn threads by default are those meant for
modelling cosmological statistics (e.g. clustering and abundances)
and functions that have a pure PYTHON implementation.

Since the former functions would ideally be used in an MCMC
framework, they run on a single thread. In this way all the
cores of the CPU are available for parallelizing the parameter
space sampling. Nevertheless, we have carefully optimized and
benchmarked such functions (more details in Appendices A and B,
respectively): on a single thread, one single computation of the
likelihood in equation (1) for a typical problem size (i.e. a data set
with approximately 10 degrees of freedom) takes approximately 1
ms, running on a common laptop.

Concerning the pure PYTHON implementation, the catalogue
class and the populate function are the only sections of the library
that would gain from a multithreaded core, given that they operate
on lists of independent objects. Such functionality has not been
implemented yet but would be a natural evolution of our library.
At the current state of the implementation, both these operations
take times in the order of 1/10 s for a sub-halo table with 104/5

objects. Loading and populating sub-haloes have O(Nsub) scaling,
where Nsub is the number of sub-haloes loaded into the catalogue. The
dependence of these time measurements to the machine architecture
is negligible.
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Introducing SCAMPY 2101

Figure 3. Abundance matching scheme. Left-hand panel: cumulative number density of host sub-haloes divided into regular logarithmic bins (solid grey
step-line). The green dashed band shows the limit imposed by the resolution in mass of the simulation, which is inherited by the host catalogue obtained with
the populator algorithm. Right-hand panel: cumulative luminosity function (solid grey line). The dashed red band shows the limit imposed by the magnitude
limit of the observed target population. Orange crosses mark the positions, bin-per-bin, of the abundances measured in each bin of the left-hand panel. In both
the left-hand and the right-hand panel we reported with a dashed line of corresponding colour the limit imposed by the resolution of the catalogue (dashed green
line in right panel) and by the magnitude limit of the survey (dashed red line in the left-hand panel).

Table 1. Fiducial values of the HOD parameters at the different redshifts
inspected. The HOD model is defined by equations (19) and (20).

z Mmin σ log M Mcut M1 αsat

[1010 M� h−1] [M� h−1] [1012 M� h−1]

0 5.0 0.3 0.0 1.0 1.0
2 2.0 0.3 0.0 1.0 1.0
4 2.0 0.3 0.0 1.0 1.0
6 1.0 0.3 0.0 0.5 1.2
8 1.5 0.2 0.0 0.5 1.2

4 V ERIF ICATION AND VA LIDATION

We have extensively tested all the functions building up our API
in all their unitary components. We developed a testing machinery,
included in the official repository of the project, to run these tests
in a continuous integration environment. This will both guarantee
consistency during future expansions of the library, as long as
providing users with a quick check that the build have been completed
successfully.

In this section, we show that our machinery is producing the
expected results. Specifically, in Section 4.1 we show that the mock-
catalogues obtained with SCAMPY reproduce the observables we
want. We have also tested our API for the accuracy in reproducing
cross-correlations in Section 4.2. Even though there is no instruction
in the algorithm that guarantees this behaviour, using the halo model
it is trivial to obtain predictions for the cross-correlation of two
different populations of objects.

All the validation tests have been obtained by assuming a set of
reasonable values for the HOD parameters of equations (19) and (20).
All the parameters used are listed in Table 1. We will refer to these
sets of parameters as fiducial model in the rest of this manuscript.

The resulting occupation probabilities have been then used to
populate a set of halo/sub-halo catalogues. These catalogues have
been obtained by running on the fly the friends of friends (FoF)
and SUBFIND (Springel et al. 2001) algorithms on top of a set of
cosmological N-body simulations. The DM snapshots have been
obtained by running the (non-public) P-GADGET-3 N-body code
(which is derived from the GADGET-2 code, Springel 2005). In

Table 2. Our set of cosmological simulations with the corresponding relevant
physical quantities: Npart is the total number of DM particles; Mpart is the mass
of each particle; Lbox-side is the side length of the simulation box; zmin is the
minimum redshift up to which the simulation has been evolved.

Name Npart Mpart Lbox-side zmin

lowres 5123 8.13 × 107 M� h−1 64 Mpc h−1 0
midres 10243 1.02 × 107 M� h−1 64 Mpc h−1 2
highres 10243 1.27 × 106 M� h−1 32 Mpc h−1 2

Table 3. Fiducial cosmological parameters of the N-body simulations used
in this work.

h �CDM �b � σ 8 ns

0.7 0.3 0.045 0.7 0.8 0.96

Table 2, we list the different simulation boxes we used for testing the
library. Given the large computational cost of running high resolution
N-body codes, only the lowres simulation box has been evolved
up to redshift z = 0, while we stopped the others at redshift z =
2. The cosmological parameters used for all these simulations are
summarized in Table 3.

4.1 Observables

Here, we present measurements obtained after both the populating
algorithm of Section 3.1.1 and the abundance matching algorithm
of Section 3.1.2 have been applied to the DM-only input catalogue.
Applying the abundance matching algorithm does not modify the
content of the populated catalogue, besides associating to each mass
an additional observable property.

In the two panels of Fig. 4, we show the abundances of central and
satellite sub-haloes, as a function of the halo mass. The dashed yellow
step-lines show the distribution in the DM-only input catalogue,
while the grey solid line marks the distribution defined by the
fiducial occupation probability functions. By applying the populating
algorithm (Section 3.1.1) to the input catalogue we obtain the
distributions marked by the solid red step-lines, which are in perfect
agreement with the expected distribution.
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2102 T. Ronconi et al.

Figure 4. Occupation probability functions for central sub-haloes (left-hand panel) and satellite sub-haloes (right-hand panel). The grey solid line marks the
z = 0 fiducial model of Table 1. The yellow step-wise dashed line and the red step-wise solid line mark the distributions measured on the sub-halo catalogue
before and after having applied our populating algorithm.

We then draw a random Gaussian sample around the halo model
estimate for the objects abundance and their clustering using the
above selection of occupation probabilities (equations 5 and 6,
respectively). These random samples build up our mock data set.
We then run an MCMC sampling of the parameter space, with the
likelihood of equation (1), to infer the set of parameters that best
fit the mock data set. For sampling the parameter space we use
the EMCEE (Foreman-Mackey et al. 2013) Affine Invariant MCMC
Ensemble sampler, along with the SCAMPY PYTHON interface to the
halo model estimates of ng(z) and ξ (r, z).

After having obtained the best-fitting parameters, we produce 10
runs of the full pipeline described in algorithm 1. In doing this, we are
producing 10 different realizations of the resulting mock catalogue.
Since the selection of the host sub-haloes is not deterministic, this
procedure allows to obtain an estimate of the errors resulting from
the assumptions of the halo model. Finally, we use the LandySzalay
(Landy & Szalay 1993) estimator in each of the populated catalogues
to measure the 2-point correlation function:

ξ (r) = DD(r) − 2DR(r) + RR(r)

RR(r)
(23)

where DD(r) is the normalized number of unique pairs of sub-haloes
with separation r, DR(r) is the normalized number of unique pairs
between the populated catalogue and a mock sample of objects
with random positions, and RR(r) is the normalized number of
unique pairs in the random objects catalogue. We then measure,
with equation (23), the clustering in each of the 10 realizations and
we compute the mean and standard deviation of these measurements
in each radii bin.

The results are shown in Fig. 5, for redshift z = 0, and in Fig. 6,
for redshifts z = 2, 4, 6, and 8. In the upper panel of Fig. 5 we show
the mock data set with triangle markers and errors, the lines show the
halo model best-fitting estimate of the 2-point correlation function
(with the different contributes of the 1- and 2-halo terms). The circle
markers show the average measure obtained from our set of mock
catalogues.

In the lower panel of Fig. 5 and in the four panels of Fig. 6 we show
the relative distance between the measure performed on the catalogue
populated with the best-fitting parametrization of the occupation
probabilities (ξ b.fit) and on a catalogue populated with the fiducial
value of the parameters (ξfid). Comparing the measurements in the
two different populated catalogues, instead of comparing with the
model itself, guarantees that discrepancies due to box-size and reso-
lution of the simulation used are mitigated in the distance ratio plot.

Figure 5. Validation of the two-point correlation function at redshift z = 0.
Upper panel: comparison between the mock clustering data set (triangles),
the best-fitting halo-model prediction (solid line) and the mean and standard
deviation of the clustering measured with the Landy–Szalay estimator on the
10 realizations (circles and errors), we also show the modelled 1-halo (dotted
line) and 2-halo (dashed line) terms for reference. Lower panel: red markers
show the distance ratio between the measurement obtained on the mock
catalogue with the best-fitting parameters and the averaged measurement
obtained on the mock catalogue with fiducial parameters. The dashed line
shows 0 per cent distance between the two. In both panels, empty circles
mark measurements at r > 6.4 Mpc h−1, where the limited box size affects
the precision of the result.

As it is shown in the lower panel of Fig. 5, at redshift z = 0, the
catalogue populated with the best-fitting parameters reproduces the
clustering properties of the fiducial catalogue with a distance lower
than 15 per cent on most of the scales inspected.

The discrepancies at small scales could depend on several effects.
In particular:

(i) Implementation of the populating algorithm: galaxies can be
assigned to satellite haloes randomly or by rank ordering them based
on some property of the sub-halo. The two methods might produce
different levels of clustering within the halo.

(ii) The sub-halo finder used: SUBFIND is known for not resolving
completely the sub-halo hierarchy closer to the halo centre.

(iii) Simulation resolution: discretization of the DM distribution
limits the smallest sub-halo that can be modelled. This also results
in a larger scatter when going at higher redshift (as shown in Fig. 6)
where the average size of a halo gets smaller.
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Introducing SCAMPY 2103

Figure 6. Validation of the two-point correlation function at redshift z = 2 (upper left panel), z = 4 (upper right panel), z = 6 (lower left panel), and z = 8
(lower right panel). Red markers show the distance ratio between the averaged-measurement obtained on the mock catalogue with the best-fitting parameters
and the measurement obtained on the mock catalogue with fiducial parameters. The dashed line shows 0 per cent distance between the two. As in Fig. 5, empty
circles mark measurements at r > 6.4 Mpc h−1.

Concerning the latter point, it is worth to mention that, even
thought the measurement is less precise, the average distance from
the expected result is still lower than 10\15 per cent. Finally, in both
Figs 5 and 6, we mark with empty circles measurements taken at
radii r > 6.4 Mpc h−1, where the limited size of the simulation box
affects the statistics.

All the discrepancies we find are a known weakness of the HOD
method. In literature there have been a lot of effort in quantifying and
correcting this effect (see e.g. Beltz-Mohrmann, Berlind & Szewciw
2020; Hadzhiyska et al. 2020, for two recent works), which, as
already mentioned, is thought to result from a concurrence of box-
size effects, cosmic variance, and assembly bias. Hadzhiyska et al.
(2020), in particular, find an average distance of 15 per cent between
the HOD prediction and the clustering measured in hydrodynamical
N-body simulations.

The requirement of reproducing the 1-point statistics of the
original catalogue is necessary to have the expected observational
property distribution in the output mock-catalogue. This requirement
guarantees that the abundance matching scheme will start associating
the observational property from the right position in the cumulative
distribution, i.e. from the abundance corresponding to the limiting
value that said property has in the survey.

In Fig. 7, we show the example case of the UV luminosity function.
We mark with orange circles the cumulative luminosity function
measured on the mock-catalogue after the application of our API.
For comparison we also show the luminosity function model we are
matching (grey solid line) and the observation limit of the target
population (red dashed region).

As it is shown in the lower panel of Fig. 7, the distance ratio
between the expected distribution and the mock distribution is lower
than ≈ 10 per cent over all the range of magnitudes.

The halo-model prediction for the total abundance of sources
is nhm

g (z) = 3.49 × 10−2 [h3Mpc−3], while we measure npop
g (z) =

(3.06 ± 0.04) × 10−2 [h3Mpc−3] in the populated catalogue. Such
a miss-match is somehow expected. In fact, it has been shown (e.g.
Sinha et al. 2018) that the HOD model presents difficulties when
fitting multiple statistics. For the distribution of sources shown in
Fig. 7, we correct this error by extrapolating the limiting magnitude
(marked by the hatched region) to the value matching the abundance
of the populated galaxies.

Figure 7. Cumulative luminosity function at redshift z = 0. Upper panel:
the grey solid line marks the model prediction while the orange circles with
errors mark the distribution measured on the populated catalogue. The hatched
red region marks the limiting magnitude MUV

lim . Lower panel: distance ratio
between the luminosity function measured on the populated catalogue and
the model.

Sinha et al. (2018) also show that the clustering statistics with the
higher constraining power depends on the galaxy population that has
to be modelled. Since we are running our analysis on a simulated
data set, with the aim of validating the computational framework,
we are not pushing this analysis further. Nevertheless, in a real-
life application, the likelihood of equation (1) should be adjusted
considering these observations, depending on the scientific goal of
the application. The halo model class of our library provides a
wide range of cosmological statistics that can be modelled, leaving
to the users the responsibility of choosing the one that better suits
their needs.

4.2 Multiple populations cross-correlation

Even though in our API there is no prescription for this purpose, it
is interesting to test how the framework performs in predicting the
cross-correlation between two different populations. This quantity
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2104 T. Ronconi et al.

Figure 8. Comparison between the cross-correlation function, measured
with the modified Landy–Szalay estimator of equation (26), between two
dummy mock-populations at redshift z = 0. The lower panel shows the
distance ratio between the measurement and the model prediction.

measures the fractional excess probability, relative to a random
distribution, of finding a mock-source of population 1 and a mock-
source of population 2, respectively, within infinitesimal volumes
separated by a given distance.

It is simple to modify equations (10) and (11) to get the expected
power spectrum of the cross-correlation (Cooray & Sheth 2002).
For the 1-halo term this is achieved by splitting the (Mh/ρ)2 of
equation (10) in the contribution of the two different populations,
which leads to the following equation:

P
(1,2)
1h (k, z) = 1

n
(1)
g (z)n(2)

g (z)
·∫ Mmax

Mmin

N (1)
g (Mh)N (2)

g (Mh)nh(Mh)|ũh(k,Mh, z)|2dMh (24)

where quantities referring to the two different populations are marked
with the superscripts (1) and (2).

For the case of the 2-halo term, obtaining an expression for the
cross-correlation requires to divide the two integrals of equation (11)
in the contributions of the two different populations, leading to

P
(1,2)
2h (k, z) = Pm(k, z)

n
(1)
g (z)n(2)

g (z)

·
[∫ Mmax

Mmin

N (1)
g (Mh)nh(Mh)bh(Mh, z)ũh(k, Mh, z)dMh

]
·
[∫ Mmax

Mmin

N (2)
g (Mh)nh(Mh)bh(Mh, z)ũh(k, Mh, z)dMh

]
(25)

We get the cross-correlation of the two mock-populations using
a modification (González-Nuevo et al. 2017) of the Landy–Szalay
estimator

ξ (1,2)(r) = D1D2(r) − D1R2(r) − D2R1(r) + R1R2(r)

R1R2(r)
, (26)

where D1D2(r), D1R2(r), D2R1(r), and R1R2(r) are the normal-
ized data1-data2, data1-random2, data2-random1, and random1-
random2, respectively, pair counts for a given distance r.

In Fig. 8, the red circles show the cross-correlation measured with
equation (26) for two different mock-populations with a dummy
choice of the occupation probabilities parameters. Errors are mea-
sured using a bootstrap scheme with 10 sub-samples. For comparison,
we also show the halo-model prediction of the two-point correlation
function, obtained with equations (24) and (5), separated in 1-halo

and 2-halo term contribution. The lower panel of Fig. 8 shows the
distance ratio between the measure and the model prediction, which
is lower than 40 per cent over almost all the scales inspected.

5 PROOF-OF-CONCEPT APPLI CATI ON:
I O N I Z I N G PH OTO N S P RO D U C T I O N FRO M
LY M A N - B R E A K G A L A X I E S AT H I G H
REDSHIFT

In the context of high redshift cosmology, one of the most compelling
open problems is the process of reionization, that brought the
Universe from the optically thick state of the Dark Ages to the
transparent state we observe today (see e.g. Choudhury & Ferrara
2006; Wise 2019, for reviews). Modelling this phase of the Universe
evolution is a tricky task, especially using methods tuned to reproduce
the observations at low redshift, such as hydrodynamical simulations
and semi-analytical models. Instead, if we trust the capability of N-
body simulations to capture the evolution of DM haloes up to the
highest redshifts, an empirical method such as SCAMPY is more likely
to correctly predict the distribution of sources.

We expect reionization to occur as a non-homogeneous process in
which patches of the Universe ionize and then merge, prompted by
the formation of the first luminous sources (Barkana & Loeb 2001).
In order to map the spatial distribution of these ionized bubbles to
the underlying DM distribution we apply our method to reproduce
the observations of eligible candidates for the production of the
required ionizing photon budget. It is commonly accepted that the
primary role in the production of ionizing photons at high redshift
has been played by primordial, star-forming galaxies (Shapiro &
Giroux 1987; Miralda-Escude & Ostriker 1990; Barkana & Loeb
2001; Steidel, Pettini & Adelberger 2001). The best candidates for
these objects are Lyman-break galaxies (LBGs) which are selected
in surveys using their differing appearance in several imaging filters,
due to the position of the Lyman limit (Steidel et al. 2001, 2018; Lapi
et al. 2017; Matthee et al. 2018).

The first galaxies that started to inject ionizing radiation in the
intergalactic medium were hosted in small DM haloes with masses up
to a minimum of 108 M� h−1. In order to paint a population of LBGs
on top of a DM simulation, we need, first of all, a high resolution
N-body simulation to provide the halo/sub-halo hierarchy required
by SCAMPY. We therefore run the FoF and SUBFIND algorithms on top
of 25 snapshots in the redshift range 4 ≤ z ≤ 10 with thinness �z =
0.25. The DM snapshots have been obtained by running the (non-
public) P-GADGET-3 N-body code (which is derived from the GADGET-
2 code, Springel 2005) on the two simulation dubbed highres and
midres in Table 2.

Simulating the reionization process in more detail would required
larger simulations at the same level of mass resolution as obtained
for the highres and midres catalogues of our sample, the
computational cost becoming out of reach for the test we want
to perform here. Overcoming the computational cost of N-body
simulations could be obtained by applying up-sampling techniques of
sub-grid modelling. Such methods use a low resolution density field
and build mock halo catalogues either by matching the theoretical
predictions of the halo mass function (de la Torre & Peacock 2013;
Angulo et al. 2014) or the bias evolution in time (Nasirudin, Iliev &
Ahn 2020). This goes beyond the aim of the test-bench application we
want to present here and we reserve to exploit it in future extensions
of this work.

To set the occupation probabilities parameters with the likelihood
in equation (1), we need the 1- and 2-point statistics of LBGs at high
redshift. The observational constrains of these high redshift statistics,
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Introducing SCAMPY 2105

Figure 9. Four snapshots at different redshift (shown in the top left angle of each tile) of the ionization fraction obtained by projecting the values in each voxel
along one dimension. The value of Xre increases from darker to lighter shades of grey.

due to the high distances involved, are not sufficiently tight. We have
therefore extrapolated the available measures as follows:

(i) in Bouwens et al. (2019) the luminosity function of LBGs is
fitted up to redshift z = 10 and MUV ≈ −16. We extrapolate this fit
up to MUV = −13 and integrate to obtain an estimate of the number
density of LBGs at high redshift.

(ii) Harikane et al. (2016) provide measurements of the angular
2-point correlation function in the redshift range 4 ≤ z ≤ 7. We
assume the clustering at redshift z ≥ 7 to be constant and equal to
the measurement obtained for redshift z = 7.

Both the observables assumed above are simplistic approximations
which are though sufficient for test-benching our model. We will
investigate further the limits imposed by the lack of statistics at high
redshift in future extensions of this work.

Once the parameters of the model have been set for each redshift,
we run the algorithm described in Section 3.1 and obtain a set of
LBG mock catalogues. As a first approximation, let us define a
neutral hydrogen distribution on top of each of our snapshots and

consider the ionized region that should form around each source of
our mock catalogues. Each mock-LBG in our simulation is producing
an amount of ionizing photons which is proportional to its UV
luminosity, MUV. Namely, the rate of ionizing photons that escape
from each UV source is

Ṅion(MUV) ≈ fesc kion SFR(MUV) (27)

where kion ≈ 4 × 1053 is the number of ionizing photons
s−1 (M�/yr)−1, with the quoted value appropriate for a Chabrier
initial mass function (IMF), fesc is the average escape fraction
for ionizing photons from the interstellar medium of high-redshift
galaxies (see e.g. Mao et al. 2007; Dunlop et al. 2013; Robertson
et al. 2015; Lapi et al. 2017; Chisholm et al. 2018; Matthee et al.
2018; Steidel et al. 2018), and log (SFR(MUV)) ≈ −7.4 − 0.4 MUV is
the star formation rate of each source. The volume of the Strömgren
sphere, that forms around each mock-LBG, is then given by

VS ≡ Ṅion(MUV)

nH(z)
trec (1 − e−t/trec ) (28)
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where nH(z) ≈ 2 × 10−7 (�b(z)h2/0.022) cm−3 is the mean comov-
ing hydrogen number density at given redshift while t is the cosmic
time at given redshift and trec is the cosmic time at the epoch the
source started producing a steady flux of ionizing photons.

We make the following simplistic assumptions:

(i) at each snapshot we do not provide any information about
the previous reionization history: at each redshift sources have to
completely ionize the medium and the value of trec is fixed at the
cosmic time corresponding to z = 20.

(ii) the escape fraction is set to fesc = 0.1, which is a conservative
value with respect to what recent observations suggest.

With the aforementioned simplifications, we can build spheres
around each source at each redshift, therefore producing an ap-
proximated map of the ionization state of our snapshots, without
having to rely on radiative transfer. In Fig. 9 we show the projection
along one dimension of 4 snapshots at redshift z = 10, 8, 6 and 4
for the highres simulation. To get the point-by-point ionization
fraction we divide our snapshots into voxels of fixed size. If a voxel
is embedded within the Strömgren sphere belonging to some source,
it is set as ionized, otherwise it is considered neutral. Voxels that lie
in the overlapping of two or more Strömgren spheres are counted
only once. This further approximation implies losing an amount of
ionizing photons which is proportional to the overlapping volume
of the whole simulation box. This approximation mainly affects the
lower redshifts, as shown in the next Section. In Fig. 9 we set the
voxel-side to 0.25 Mpc h−1, resulting in 1283 voxels in total.

In the remaining part of this Section we will show the results of
some measurements that can be obtained from these mock ionization
snapshots.

5.1 Ionized fraction measurement

At each redshift, we measure the ionization fraction resulting from
our pipeline by counting the number of voxels marked as ionized
over the total number of voxels in which the snapshot is divided.
The results for both the midres and the highres simulations are
marked with empty squares and red circles, respectively, in Fig. 10.
We compare our measurement with models of reionization history
from recent literature.

The grey shaded region shows the tanh -model used in Planck
Collaboration VI (2018) while the orange one delimits the prediction
of the same model with a larger value of the parameter that regulates
the steepness of the ionization fraction evolution (�z = 1.5 instead of
�z = 0.5, as from Lewis 2008). The solid green line shows the model
from Kulkarni et al. (2019) which is obtained by computing with the
ATON code (Aubert & Teyssier 2008, 2010), the radiative transfer
a posteriori on top of a gas density distribution obtained using the
P-GADGET-3 code with the QUICK LYALPHA approximation from
Viel, Haehnelt & Springel (2004).

Our mock ionization boxes predict reionization to reach half-
completion (Xre = 0.5) at redshift z = 6.88+0.12

−0.13, which is a lower
value with respect to the Planck Collaboration VI (2018) prediction
of z = 7.68 ± 0.79, but still within the error bars. Comparing
to the extremely steep model used in Planck Collaboration VI
(2018), the evolution in our simulations is way shallower, closer
to the lower limit of the modified tanh -model. None the less, our
measurements seem to agree fairly well with the measurements of
Kulkarni et al. (2019) up to redshift z ≈ 6. With respect to the
other authors, our simulation reaches completeness (i.e. Xre = 1)
at redshift z ≈ 4. As anticipated, this issue at the lowest redshifts
is by some extent expected. The overall ionizing photon budget is

Figure 10. Evolution of the hydrogen ionization fraction Xre with redshift.
Red circles and empty squares mark the measurements obtained with our
method on themidres andhighres simulation, respectively. Themidres
distribution has been shifted with an offset of δz = 0.1 along the x-axis
direction to better distinguish it from the highres one. The shaded regions
delimit the model used in Planck Collaboration VI (2018) and a modification
for widening the reionization window. The solid line shows the prediction
from Kulkarni et al. (2019).

indeed underestimated in our approximation as the result of how we
treat the overlapping region between different Strömgren spheres. We
plan to address this point, by implementing a physically motivated
treatment of these overlapping regions (e.g. in Zahn et al. 2007) in
future extensions of our analysis.

Taking into account the strong approximations made in this proof-
of-concept application, the measurement we obtain for the evolution
of Xre is surprisingly consistent with equivalent measures in literature.

5.2 Ionized bubble size distribution

It is accepted that reionization results from the percolation of ionized
H II bubbles as well as from their growth in radius (Miralda-Escude &
Ostriker 1990; Furlanetto, Zaldarriaga & Hernquist 2004; Wang &
Hu 2006) in the neutral intergalactic medium. A relevant statistics
for cosmological studies is the size distribution of the individual
bubbles forming around ionizing radiation sources. Obtaining pre-
cise measurements of this statistics could help constraining future
experiments, such as CMB-S4 (Roy et al. 2018) and 21 cm intensity
mapping (e.g. Mesinger, Furlanetto & Cen 2011).

In our framework, getting estimates of the bubble size distribution
is straightforward. In Fig. 11, we present measurements of two
different definitions for the bubble size probability.

On the left-hand panel we plot the fraction of bubbles of given
size over the total number of bubbles in the simulation box. The
measurement has been obtained at redshift 4 ≤ z ≤ 10, with bin size
δz = 1, we plot results only for z = 4, 6, 8, and 10 for clarity. The
distribution shown presents a lognormal shape that we fit with the
model from Roy et al. (2018)

P (R) = 1

R

1√
2πσ 2

ln r

exp

{
−
[
ln(R/R)

]2

2σ 2
ln r

}
; (29)

the model is regulated by two free parameters: the characteristic
bubble size R (in Mpc h−1) and the standard deviation σ ln r. We
list the best-fitting values of these parameters in Table 4, for the
different redshifts considered. While the value of the characteristic
radius is almost constant in time with a value of R ≈ 0.2 Mpc h−1,
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Table 4. Best-fitting parameters of the lognormal model defined in
equation (29) obtained from our measures on the highres mock
ionized bubble catalogue.

z R [Mpc h−1] σ 2
ln r

10 0.229 ± 0.006 0.614 ± 0.025
9 0.181 ± 0.006 0.786 ± 0.033
8 0.222 ± 0.004 0.810 ± 0.024
7 0.213 ± 0.003 0.974 ± 0.022
6 0.165 ± 0.003 1.340 ± 0.033
5 0.178 ± 0.003 1.616 ± 0.052
4 0.208 ± 0.003 1.983 ± 0.052

the standard deviation increases significantly from higher to lower
redshift.

On the right-hand panel of Fig. 11, we show the fraction of ionized
voxels as a function of the bubble radius over the total number of
ionized voxels in the simulation box (normalized to 1). The solid lines
show the measurements obtained from the highres box, while
the dashed ones mark the distribution obtained from the midres
box. The results on the two boxes are consistent between the two
simulations, especially at lower redshifts. Compared to the left-hand
panel, the measurements obtained for the bubble size probability
definition of the right-hand panel are more consistent with what
can be found in literature (e.g. Zahn et al. 2007). In particular, the
characteristic radius seems to grow from higher to lower redshift,
reaching values in the order of 1\10 Mpc h−1. We could not fit
the distributions on the right-hand panel of Fig. 11 with the same
lognormal model of equation (29). This is probabily due to not
having considered bubble overlapping in our measurements. We will
investigate further on this topic in future work.

6 SU M M A RY A N D C O N C L U S I O N S

We have here presented SCAMPY, our application for painting
observed populations of objects on top of DM-only N-body cos-
mological simulations. With the provided PYTHON interface, users
can load and populate DM haloes and sub-haloes obtained by means
of the FoF and SUBFIND algorithms applied to DM snapshots at any

redshift. We foresee to extend this framework to the usage with DM
halo and sub-halo catalogues obtained with alternative algorithms.

The main requirements that guided the design of SCAMPY were
to provide a flexible and optimized framework for approaching
a wide variety of problems, while keeping the computation fast
and efficient. To this end, we stick to the simple, yet physically
robust, SCAM prescription for providing the recipe to populate DM
haloes and sub-haloes. In Section 2, we presented an overview of
the theoretical background of this methodology, while, in Section 3
we provided a detailed description of the components and main
algorithms implemented in SCAMPY.

In Section 4, we have shown a set of measurements obtained from
simulations populated with galaxies using SCAMPY. We have demon-
strated that the output mock-galaxies have the expected abundance
and clustering properties. Furthermore, we have also proven that the
same API could be used to ‘paint’ multiple populations on top of the
same DM simulation and that the cross-correlation between these
populations is also well mimicked.

In the context of reionization, this could help in studying the
spatial distribution properties and evolution in time of the ionized
bubbles that might have developed around sources of ionizing
radiation. In Section 5, we have performed a preliminary study,
under simplistic assumptions, on the ionization properties of the
high redshift Universe which result from the injection in the medium
of ionizing photons from Lyman Break Galaxies (LBG). We are
now able to measure locally on simulations the ionized hydrogen
filling factor at different redshifts. This also allows to perform a
tomographic measure of the ionization state of the medium at varying
cosmic time. Furthermore, we can also directly measure the ionized
bubble size distribution, which is a quantity that, up to now, has been
either modelled indirectly (Roy et al. 2018) or measured assuming
radiative transfer (Zahn et al. 2007).

While a specific problem prompted the development of the API,
extensibility has been a crucial design choice. SCAMPY features a
modular structure exploiting Object-Oriented programming, both
in C++ and in PYTHON. With a wise usage of polymorphism, we
obtained a flexible application that can be both used by itself as well
as along with other libraries.

We are working on adding to the API further miscellaneous
functionalities, such as the possibility to download and install it with

Figure 11. Bubble size probability distributions. Left-hand panel: fraction of the bubbles with given size over the total number of bubbles, markers are measured
from the highres simulation while the solid lines show the model of equation (29) fitted on these data (the best-fitting parameters are listed in Table 4).
Right-hand panel: fraction of ionized voxels embedded in bubbles with given size over the total number of ionized voxels. Dashed lines mark the measurements
obtained from the midres simulation, while solid lines have been obtained from the highres simulation.

MNRAS 498, 2095–2113 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/2/2095/5877255 by guest on 27 January 2021



2108 T. Ronconi et al.

both pip and conda, in the next months. The online documentation
is continuously updated, and more examples and tutorials are ready
to be uploaded in the next months.

To conclude, we are planning to extend our work both on the
scientific side, by exploring new directions, and on the computa-
tional side, by implementing an efficient kd-tree algorithm for the
optimization of the neighbour search in both DM-halo catalogues
and mock-galaxy catalogues. A possible list of the directions we are
planning to pursue follows.

(i) Application of the algorithm to multiple populations/different
tracers of the LSS – An application of the same pipeline to the other
major players that are known to be involved on the reionization of
hydrogen, e.g. AGNs, would be trivial, provided that suitable data
sets are available. Another possibility would be the cross-correlation
with intensity mapping like e.g. Spinelli et al. (2020).

(ii) Application to the reionization process – Up to now we have
mainly applied SCAMPY functionalities to a proof-of-concept frame-
work. None the less, with the data set at our disposal, an extensive
study of the role played by LBG in reionization is possible, provided
that larger N-body simulations with high resolution are available.
This would require DM halo catalogues on large simulation boxes,
with a complete sampling of the lower masses (down to 108 M�).
Such catalogues could be obtained by running high resolution N-
body simulations or, more realistically, by applying a subresolution
scheme, such as the halo-bias models proposed by Nasirudin et al.
(2020).

(iii) Extension to different cosmological models – By now all our
investigations have been performed assuming a lambda cold dark
matter cosmology. To extend these results to other cosmological
models would only require modest modifications of the source
code and to obtain the corresponding DM-only N-body simulations,
similar to high-redshift studies performed e.g. in warm Dm scenarios
or massive neutrino cosmologies (Maio & Viel 2015; Fontanot et al.
2015).

(iv) Machine learning extension of the halo occupation model –
Using the HOD is straightforward and a lot of literature is available
on the topic. This approach, though, comes with the limit that all the
properties of the observed population have to be inferred from the
mass of the host halo. This is known to be a rough approximation. To
overcome this limit, we plan to use, instead, a neural network (NN)
model of the host halo occupation properties where the inputs of the
NN are a set of known features of the halo/sub-halo hierarchy, such
as the local environment around the halo and the dispersion velocity
within the halo. Matter density based approaches for extending
DM only N-body simulations have already been attempted. Recent
efforts in this sense include work from He et al. (2019) which
use NNs to predict the non-linear evolution of matter perturbations
beyond the Zel’dovic approximation. In another work, Yip et al.
(2019), paint baryons on top of simulations only run with DM.
We plan instead to investigate the possibility to post process the
baryonic effects on top of DM-only simulations in a halo-based
framework.
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APPENDI X A : A PI STRUCTURE AND BU S H IDO

In the context of software development for scientific usage and,
in general, whenever the development is intended for the use in
Academia, the crucial aspects that would make the usage flexible are
often overlooked.

In the development of SCAMPY, we have considered the good
practices in software development, such as cross-platform testing and
the production of reasonable documentation for the components of
the API. We have outlined a strategy for keeping the software ordered
and easy to read while maintaining efficient the computation. The
usage of advanced programming techniques, along with the design
of a handy class dedicated to interpolation, also allowed to boost the
performances of our code.

In this Appendix, we describe the framework we have developed,
highlighting the best programming practices used, and commenting
on the design choices.

The overall structure can be divided broadly into four main
components:

(i) C++ core – it mainly deals with the most computationally
expensive sections of the algorithm.

(ii) PYTHON interface – it provides the user interface and
implements sections of the algorithm that do not need to be severely
optimized.

(iii) Tests, divided into unit tests and integration tests, are used
for validation and consistency during code development.

(iv) Documentation provides the user with accessible information
on the library’s functionalities.

The organization of the source code is modular. Test and docu-
mentation sections are treated internally as modules of the library,
and their development is, to some extent, independent to the rest of
the API. Furthermore, not being essential for the API operation, their
build is optional.
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The Meson Build System deals with compilation and installa-
tion of the library. Much like the well-known CMake (reference
website), it allows to ease the compilation and favours portability
while automatizing the research and eventual download of external
dependencies.

A1 Modularization

The C++ and PYTHON implementations are treated separately and
have different modularization strategies. As we already anticipated,
the C++ language is adopted to exploit the performances of a
compiled language. None the less, it also allows for multithreading
parallelization on shared memory architectures. This would not
be normally possible in standard PYTHON because of the Global
Interpreter Lock, which limits the processor to execute exactly only
one thread at a time.

Each logical piece of the algorithm (see Section 3.1 and Fig. 1)
has been implemented in a different module. This division has been
maintained both in the core C++ implementation and in the PYTHON

interface. Bridging over the two languages has been obtained through
the implementation of source C++ code with a C-style interface
enclosed in an extern ’C’ scope to produce shared libraries with
C-style mangling. To wrap the compiled C++ libraries in PYTHON

we use the CTypes module. This choice was made because CTypes
is part of the PYTHON standard. Therefore no external libraries
or packages are needed. This choice favours portability and eases
compilation.

All of the C++ modules are organized in different sub-directories
with similar structure:

(i) src sub-directory, containing all the source files (.cpp
extension);

(ii) include sub-directory, containing all the header files (.h
extension);

(iii) a meson.build script for building.

All the PYTHON implementation is hosted in a dedicated sub-
directory of the repository. Each module of the PYTHON interface to
the API is coded in a separate file. The PYTHON dependencies to the
C++ implementation are included in the source files at compile time
by the build system.

In Table A1, we list all the Python-modules provided to the user.
They are divided between the C++ wrapped and the PYTHON only
ones. All of them are part of the scampy package that users can
import by adding a

/path/to/install directory/python
to their PYTHONPATH.

A2 External dependencies

Scientific codes often severely depend on external libraries. Even
though a golden rule when programming, especially with a HPC
intent, is to not reinvent the wheel, external dependencies have to
be treated carefully. If the purpose of the programmer is to provide
their software with a wide range of functionalities, while adopting
external software where possible, the implementation can quickly
become a dependency hell.

For this reason, we decided to keep the dependence on external
libraries to a reasonable minimum. The leitmotiv being, trying not
to be stuck on bottlenecks requiring us to import external libraries
while maintaining the implementation open to the usage along with
the most common scientific software used in our field.

Table A1. PYTHON modules of the API. The first column lists the module
names and the second provides a short description of the module purpose.
We divided the table in two blocks, separating the modules of the package
that depend on the C++ implementation from those that have a pure PYTHON

implementation.

Module Purpose

Wrapped from C-interface
interpolator Templated classes and functions for

cubic-spline interpolation in linear and
logarithmic space.

cosmology Provides the interface and an implementation
for cosmological computations that span from
cosmographic to Power-Spectrum dependent
functions, computations are boosted with
interpolation.

halo model Provides classes for computing the halo-model
derivation of non-linear cosmological
statistics.

occupation p Provides the occupation probability functions
implementation.

Python-only
objects Defines the objects that can be stored in the

class catalogue of the scampy package,
namely host halo, halo, and galaxy.

gadget file Contains a class for reading the halo/sub-halo
hierarchy from the outputs of the SUBFIND

algorithm of GADGET.
catalogue It provides a class for organizing a collection

of host-haloes into an hierarchy of central and
satellite haloes. It also provides functionalities
for automatic reading of input files and to
populate the DM haloes with objects of type
galaxy.

abundance matching Contains routines used for running the SHAM
algorithm.

The C++ section of the API depends on the following external
libraries:

(i) GNU scientific library (version 2 or greater Galassi et al.
2009): this library is widely used in the community and compiled
binary packages are almost always available in HPC platforms.

(ii) FFTLog (Hamilton 2000): also this library is a must in the
cosmology community. In our API, we provide a C++ wrap of
the functions written in Fortran90. We have developed a patch for
the original implementation that allows to compile the project with
Meson (see fftlog patch on GitHub for details).

(iii) OpenMP: one of the most common APIs for multithreading
in shared memory architectures. It is already implemented in all
the most common compilers, thus it does not burden on the user to
include this dependency.

We are aware that a vast collection of libraries for cosmolog-
ical calculations is already available to the community (Marulli,
Veropalumbo & Moresco 2016; Astropy Collaboration 2013, 2018).
The intent of our cosmology module is not to substitute any of
these but to provide an optimized set of functions integrated in the
API without adding a further dependence on external libraries. By
using polymorphism (both static and dynamic) we tried to keep our
API as much flexible as possible. We explicitly decided to not force
the dependence to any specific Boltzmann-solver to obtain the linear
power spectrum of matter perturbations (see Section 2.1), the choice
is left to the user.
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Furthermore, the choice of PYTHON to build the user interface,
allowed to easily implement functions that do not require any other
specific library to work. An example is theabundance matching
module, which is almost completely independent to the rest of the
API: the only other internal module needed is thescampy.object
but all its functionalities can be obtained by using PYTHON lambdas
and NUMPY arrays.

The only other PYTHON libraries used in ScamPy are:

(i) CTypes which is part of the PYTHON standard and is used for
connecting the C-style binaries to the PYTHON interface.

(ii) Numpy that, despite not being part of the standard, is possibly
the most common PYTHON library on Earth and provides a large num-
ber of highly optimized functions and classes for array manipulation
and numerical calculations.

A3 Extensibility

Simplifying the addition of new features has been one of our
objectives from the first phases of development. We wanted to be
able to expand the functionalities of the API, both on the C++ side,
in order to boost the performances, and on the PYTHON side, in order
to use the API for a wide range of cosmological applications.

This is easily achieved with the modular structure we have built
up. Adding a new C++ module reduces to including a new set of
headers and source files in a dedicated sub-directory. Further details
on the structure said sub-directory should have and on the way its
build is integrated in the API will be provided in the library website.

Adding new modules to the PYTHON interface is even simpler, as
it only requires to add a new dedicated file in the python/scampy
sub-directory. Eventually, it can be also appended to the all list
in the python/scampy/ init .py file of the package. In this
case, it is not necessary to operate on the build system as it will auto-
matically install the new module along with the already existing ones.

A P P E N D I X B: PE R F O R M A N C E S A N D
B E N C H M A R K I N G

We have measured the performances of our API’s main components
and benchmarked the scaling and efficiencies of the computation
at varying precision and work-load. We will show here a set of
time measurements performed on the two main components of the
library: the cosmology class and the halo model class. These
are the two classes that would most affect the performances in real-
life applications of our API.

B1 Wrapping benchmark

First of all, in Table B1, we show the execution time of the
same function called from different languages. Since our hybrid
implementation requires to bridge through C to wrap in PYTHON the
optimizations obtained in C++, it is interesting to compare their
respective execution time. Along with the PYTHON execution time,
we also provide the ratio with respect to the reference C++ time, tC++,
for the same function. All the times are expressed in nanoseconds.

We are showing three typical member calls that are representative
of the functionalities provided by the two classes. For both of them,
we measured the constructor time (c.tor), the time for executing a
function that returns a scalar (dC(z) and ng(z)) and the execution
time for a function returning an array (n(M, z) and ξ (r, z)). It can
be noticed that, especially for the cosmology class, by calling the
same function in PYTHON, the execution time increases. The worst
case is the cosmology class constructor time that looses a factor

Table B1. Execution time in nanoseconds of the same function in different
languages. For the PYTHON case, we also show the ratio with respect to the
C++ execution time. The timings reported are the average of 10 runs on
the 4 physical cores with hyper-threading disabled of a laptop with Intel�

CoreTMi7-7700HQ 2.80GHz CPU.

Function C++ PYTHON tpy/tC++

cosmology class
c.tor 2.520e + 05 8.892e + 05 3.528
dC(z) 2.083e + 03 5.984e + 03 2.873
n(M, z) 1.186e + 08 1.197e + 08 1.009

halo model class
c.tor 3.011e + 09 2.961e + 09 0.983
ng(z) 1.917e + 04 2.851e + 04 1.488
ξ (r, z) 3.396e + 06 1.784e + 06 0.525

Figure B1. Percent distance between the constructor time scaling at varying
thinness and the linear scaling case. For the PYTHON case, the percentage
is computed with respect to the C++ time to ease the comparison. For
reference, we also show in the white text-box the measured constructor time
with thinness = 8.

∼3.5 in PYTHON. It has to be noticed though, that the execution time
is lower than a millisecond and, since the constructor is the member
function that is called the less, this is not severely affecting the overall
performance of the PYTHON interface.

None the less, because of the larger number of function calls
required by moving from one language to another, losing some
performance is expected. What we did not expect is the gain in
performance we are getting when moving to PYTHON, as it is shown
in the last column of the halo model class box of Table B1. This
behaviour might be due to the different way memory is allocated,
accessed and copied in PYTHON with respect to C++/C. Moreover,
the timers used for measuring the execution in the different languages
are different. Even by comparing measures taken with the same
precision, it is not guaranteed to have the same accuracy.

B2 Halo-model performances

We have then tested the execution time of the halo model con-
structor and member functions at varying work-load. In our im-
plementation, the halo model class requires to define a set of
interpolating functions at construction time, these functions can
be defined using our interpolator class (see Table A1). The
interpolation accuracy depends on the resolution of the interpolation
grid. In the halo model class, at fixed limits of the interpolation
interval, this is controlled by the thinness input parameter, which
takes typical values 50/200 in real-life applications.

In Fig. B1, we show how the constructor-time varies with varying
thinness in the range 10 < thin < 103. The plot is obtained by calling
10 times the constructor per each thinness value and then averaging
(solid and dotted lines). The shaded region marks the best and worst
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Figure B2. Percent distance between the full-model time scaling at varying
work-load and the linear scaling case. For the PYTHON case, the percentage
is computed with respect to the C++ time to ease the comparison. For
reference, we also show in the white text-box the measured constructor time
with work-load = 8.

execution time among the 10 runs. Instead of the actual execution
time we show the per cent distance with respect to perfect linear
scaling (dashed line) for both the C++ case (blue) and the PYTHON

case (red). We define the per cent distance at given thinness as

per cent distance (thin) ≡ 100 · t(thin) − tlin(thin)

tlin(thin)
(B1)

where tlin(thin) is the execution time for given thinness in the linear
scaling case, computed with respect to the C++ case. In the white
text box of Fig. B1, we also show the C++ constructor time for
thin = 8, as a reference. As the picture shows, the scaling is almost
perfectly linear, with a maximum distance of the 0.06 per cent in the
CC++ case.

Possibly the most crucial computational bottleneck of the whole
API is the time taken by the computation of a full model. With the
term ‘full model’ we mean the execution of the two functions for
computing the halo-model estimate of the 1- and 2-point statistics,
namely ng(z) and ξ (r, z). In an MCMC framework, while the
constructor is called only once, these two functions are called tens of
thousands of times. This is a necessary step to set the parametrization
of the SCAM algorithm.

As also shown in Table B1, the execution of the two single
functions takes an amount of time which is in the order of the
millisecond in the C++ case. We can also notice that the execution
time of a full model is dominated by the computation of the two
point correlation function, ξ (r, z). Since this function is operating
on a vector and returning a vector, it is reasonable to expect that its
execution time varies with the work-load, i.e. with the vector size.

In Fig. B2, we show the per cent distance, defined as in equa-
tion (B1), of the average full-model execution time at varying work-
load (solid lines) with respect to the perfect linear scaling case
(dashed line), in the range 23 ≤ load ≤ 214. The measurements
are obtained by averaging the results of 10 runs in both C++ (blue)
and PYTHON (red). The shaded regions mark the best and the worst
performance among all the runs at varying work-load. It can be
noticed that, by increasing the work-load, the average execution time
gets up to 15 per cent worse than perfect linear scaling. This is due to
some latency introduced by the necessity of Fourier transforming the
power spectrum to model clustering. We have to point out though, that
the typical work-load is in the range 5/15 for real-life applications and
that the execution time in this case is of the order of the millisecond.

Finally, we have measured how the constructor time-scales with
increasing number of multithreading processors. We did not perform
this measure for the full-model computation because, in the perspec-

Figure B3. Strong-scaling speed-up (upper panel) and efficiency (lower
panel) of the constructor time at fixed thinness and varying number of
multithreading processors. The solid line marks the average of 100 runs
while the shaded region marks the best and worst result area. We run the tests
on a full computing-node of the SISSA Ulysses cluster.

Figure B4. Weak-scaling efficiency of the constructor time at thinness
growing proportionally to the number of multithreading processors. The solid
line marks the average of 100 runs while the shaded region marks the best
and worst result area. We run the tests on a full computing-node of the SISSA
Ulysses cluster.

tive of using it in an MCMC framework with parallel walkers, the
full-model will be computed always serially.

We present measurements of both the constructor time strong
scaling and weak scaling. While the first measures the scaling with
processor number at fixed thinness, the latter measures the scaling at
thinness increasing proportionally with the processor number.

First of all, let us define the speed-up

S(p) = t(1)

t(p)
, (B2)

where p is the number of processors and t(p) is the time elapsed
running the code on p processors. This quantity measures the gain
in performances one should expect when having access to larger
parallel systems.

We also define the efficiency for the strong and the weak scaling
case:

Estrong(p) = S(p)

p

Eweak(p) = S(p).
(B3)

This quantity roughly measures the percentage of exploitation of the
parallel system used. Thus, providing a hint of how much the serial
part of the code is affecting the gain we can expect from spawning
multiple threads.
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We run these measures on a node from the regular partition
of the SISSA Ulysses cluster.4 Each of these nodes provide two
shared memory sockets with 10 processors each. We measured the
constructor time by averaging the results of 100 runs where the
threads number has been controlled by setting

export OMP NUM THREADS = $ii
export OMP PLACES = cores
export OMP PROC BIND = close

where ii varies in the set {1, 2, 4, 8, 16, 20} and where the
last two commands control the affinity of the processes spawned.

In Fig. B3, we show the speed-up (upper panel) and efficiency
(lower panel) of the strong scaling. The dashed line marks perfect
linear speed-up in the upper panel, and 100 per cent efficiency in

the lower panel. Even though it is far from being perfect, the speed-
up shows a constantly increasing trend. The efficiency seems to get
constant around the 60 per cent for p ≥ 16, but a larger parallel
system would be necessary for getting a more precise measurement.

To conclude, in Fig. B4, we show the weak scaling efficiency case.
The thinness, at given processors number p, is set to thin = 50 · p. As
the picture shows, the efficiency seems to become almost constant
at p � 8 for both the C++ and PYTHON case, with a value between
70 per cent and 80 per cent.

4Please refer to the website for detailed informations.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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